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ABSTRACT

A mobile sensing robot team (MSRT) is a typical application
of multi-agent systems. This paper investigates multiagent
reinforcement learning in the MSRT problem. A naive co-
ordinated learning approach is first proposed that uses a
coordination graph to model interaction relationships among
robots. To further reduce the computation complexity in the
context of continuously changing topology caused by robot-
s’ movement, we then propose an on-line transfer learning
method that is capable of transferring the past interaction
experience and learned knowledge to a new context in a dy-
namic environment. Simulations verify that the method can
achieve reasonable team performance by properly balancing
robots’ local selfish interests and global team performance.
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1 INTRODUCTION

A mobile sensing robot team (MSRT) is one type of multi-
agent systems (MASs), in which a group of mobile robot-
s perform coverage or monitoring tasks by sensing collab-
oratively in a common environment [7]. An MSRT prob-
lem [11] can be given by a tuple < 𝒜,𝒫, 𝒯 ,𝒢 >, in which
𝒜 = {𝛼1, 𝛼2, ..., 𝛼𝑛} is a finite set of robots (agents), 𝒫 =
{𝑃1, 𝑃2, ..., 𝑃𝑥} is a set of possible locations of the agents,
𝒯 = {𝑇1, 𝑇2, ..., 𝑇𝑚} is a set of targets that the agents are
aiming to cover, and 𝒢 is a goal function. In MSRTs, each
agent 𝛼𝑖 is physically situated in the environment and its
current position is denoted by 𝐶𝑃𝑖 ∈ 𝒫. The maximum dis-
tance that 𝛼𝑖 can travel in a single time step is defined by
its mobility range 𝑀𝑅𝑖. Agents have limited sensing ranges
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such that agent 𝛼𝑖 can only provide information on targets
within its sensing range 𝑆𝑅𝑖. Agents may also differ in the
credibility 𝐶𝑅𝑖 (i.e., quality) of their sensing abilities, with
higher values indicating better sensing abilities. When a set
of 𝑆 agents are sensing the same target at the same time,
the joint credibility 𝐽𝐶 of these agents can be calculated as
𝐽𝐶(𝑆) =

∑︀
𝛼𝑖∈𝑆 𝐶𝑅𝑖. Each target 𝑇𝑖 is represented implicitly

by an environmental requirement value 𝐸𝑅𝑖 representing the
credibility required for that target to be adequately sensed.
Thus, the remaining coverage requirement of target 𝑇𝑖 can
be given as 𝑅𝑅𝑖 = max{0, 𝐸𝑅𝑖 − 𝐽𝐶(𝑆𝑇𝑖)}, where 𝑆𝑇𝑖 is
the set of agents that are covering target 𝑇𝑖. A major goal
of the MSRT problem is for the agents to explore the envi-
ronment sufficiently to be aware of the presence of targets
and position themselves to minimize 𝑅𝑅𝑖 for all targets,
𝒢 : 𝑚𝑖𝑛

∑︀
𝑇𝑖∈𝒯 𝑅𝑅𝑖. Figure 1(a) gives an illustration of an

MSRT problem with three agents and two targets.

(a) An MSRT problem
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(b) The CG structure

Figure 1: An MSRT with 3 agents (green triangles)
and 2 targets (red stars), and its CG structure.

2 COORDINATED MARL FOR MSRTS

In this paper, we model the MSRT problem as a multiagent
reinforcement learning (MARL) problem [1], in which agents
learn to coordinate their behaviors for a maximized global
team performance. The local state 𝑆𝑖 involves the set of
targets that agent 𝑖 can sense at present as well as after a
single time step. The local action set 𝐴𝑖 can be simply defined
as the set of all the positions within the mobility range of
agent 𝑖. The individual reward for agent 𝑖 can be given by:

𝑟𝑖 =
∑︁

𝑇𝑗∈𝒯
{min{𝐸𝑅𝑗 , 𝐶𝑅𝑖{𝑖∈𝒜′

𝑇𝑗
}} −min{𝐸𝑅𝑗 , 𝐶𝑅𝑖{𝑖∈𝒜𝑇𝑗

}}},

To model the influence of an agent’s action on the whole
team, a reward function for group evaluation is given as:
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𝑟𝑔 =
∑︁

𝑇𝑗∈𝒯
{|𝐸𝑅𝑗 −

∑︁
𝑖∈𝒜𝑇𝑗

𝐶𝑅𝑖| − |𝐸𝑅𝑗 −
∑︁

𝑖∈𝒜′
𝑇𝑗

𝐶𝑅𝑖|},

The overall reward function then can be defined as a
weighted sum of these two components as 𝑅𝑖 = 𝑤× 𝑟𝑖 + (1−
𝑤) × 𝑟𝑔, where 𝑤 is a weight to model a trade-off between
agents’ local selfish interests and global team performance.

In the proposed Distributed Coordinated Learning (DCL)
approach, the global value function can be decomposed into
a linear combination of local value functions as 𝑄(js, ja) =∑︀

𝑖 𝑄𝑖(𝑠𝑖, ja𝑖), where 𝑄(js, ja) stands for the global value
function for the joint state js and joint action ja of all the
agents, while 𝑄𝑖(𝑠𝑖, ja𝑖) is the local 𝑄 value function of agent
𝑖, and can be updated by,

𝑄𝑖(𝑠𝑖, ja𝑖) = 𝑄𝑖(𝑠𝑖, ja𝑖) + 𝛼[𝑅𝑖 + 𝛾 max
ja′

𝑖

𝑄
′
𝑖(𝑠

′
𝑖, ja

′
𝑖) − 𝑄𝑖(𝑠𝑖, ja𝑖)], (1)

where 𝑅𝑖 is the reward value that agent 𝑖 receives, and
maxja′

𝑖
𝑄′

𝑖(𝑠
′
𝑖, ja

′
𝑖) is the maximum value function for agent 𝑖

that is computed by VE on the new CG at next time step.

3 KNOWLEDGE TRANSFER
LEARNING IN MSRTS

Simulation results verifies the effectiveness of the DCL ap-
proach in solving a simple MSRT in Figure 1. However, as
the domain size gets larger, the storage and computation
complexity grows exponentially with the increase of number
of agents, causing significant scalability issues. To solve this
problem, we propose a transfer learning method in the coordi-
nated learning process that is able to adaptively transfer the
learning information at previous step to that at current step
as the topology of agents is changing dynamically. This can be
achieved by two knowledge transfer processes: the knowledge
distilling process, and the knowledge synthesis process.

The knowledge distilling process: In order to adapt
to the continuously changing environment, an agent must
transfer its knowledge about previous neighbors to new neigh-
bors. To enable this knowledge transfer, agent 𝑖 must first
extract its own knowledge in terms of 𝑄𝑖(𝑠𝑖, 𝑎𝑖) out of the
higher-dimensional knowledge 𝑄𝑖(𝑠𝑖, ja𝑖) that is conditioned
on the joint actions over all its neighbors. This process can
be realized by simply discarding the redundant information
of the neighbors as given by Equation 2.

𝑄𝑖(𝑠𝑖, 𝑎𝑖) = 𝑄𝑖(𝑠𝑖, ja𝑖) × (𝐷(𝑖) + 1) −
∑︁

(𝑖,𝑗)∈𝐸

∑︀
𝑠𝑗∈𝑆𝑗

𝑄𝑗(𝑠𝑗 , 𝑎𝑗)

|𝑆𝑗 |
, (2)

where 𝐷(𝑖) is the number of neighbors of agent 𝑖, 𝐸 is the
set of neighboring edges on the current topology structure,
and 𝑆𝑗 is the set of states that involves neighbor 𝑗.

The knowledge synthesis process: While the role of
knowledge distilling is to solve the computation complexi-
ty problem by reducing the dimension of information, the
process of knowledge synthesis is to restore the coordinat-
ed Q value function 𝑄(𝑠𝑖,a𝑖) on the agent 𝑖 for computing
its coordinated joint action value with its new neighbors

and maximizing the global payoff function. This process is a
reverse process of knowledge distilling, as given by:

𝑄𝑖(𝑠𝑖, ja𝑖) =
𝑄𝑖(𝑠𝑖, 𝑎𝑖) +

∑︀
(𝑖,𝑗)∈𝐸

∑︀
𝑠𝑗∈𝑆𝑗

𝑄𝑗(𝑠𝑗 ,𝑎𝑗)

|𝑆𝑗 |

(𝐷(𝑖) + 1)
, (3)
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(b) 50×50 grid

Figure 2: Results in two sizes of MRST domains.

Figure 2(a) gives the results in a 20× 20 grid environment,
involving 8 agents to cover 4 randomly located targets. The
DCL approach with an equal weight can achieve far better
performance than the other approaches. When coordinating
more agents in an even larger domain, the CG may be too
condense for the VE algorithm to compute a global optimal
joint action efficiently at each time step. To address this
issue, a heuristic is proposed to reduce the complexity of CG
based on the influence of neighbors on a local agent. If some
neighboring edges are considered to play minor influence,
these edges can be deleted from the CG. Figure 2(b) shows
the final results when coordinating 20 agents in a 50×50 grid
environment. It is clear that the DCL approaches can achieve
far better performance than the IL approaches, which fully
demonstrates the benefits of coordinated learning in larger
complex domains.

4 CONCLUSIONS

In this paper, we solve the MSRT problem from a learning
perspective, which deviates from the existing mainstream of
research that focuses on using search or inference algorithms
for solving a DCOP problem [2, 6–8, 10, 11]. Unlike other
existing studies in MARL that still focus on static and close
environments [3–5, 9], learning efficient coordinated behaviors
in the MSRT problems is challenging due to the mobility,
limited communication and observability range of agents.
Thus, this paper makes an initial progress in addressing
MARL problems in a dynamic learning environment where
the agents’ sensing tasks, actions available and their mutual
relationships are changing continuously.
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