
Learning an Effective Control Policy for a Robotic Drumstick
via Self-Supervision

Demonstration

Mason Bretan
Samsung Research America

Mountain View, CA
mason.bretan@samsung.com

Siddharth Sanan
Samsung Research America

Mountain View, CA
s.sanan@samsung.com

Larry Heck
Samsung Research America

Mountain View, CA
larry.h@samsung.com

ABSTRACT
We train a neural network to control a drumstick fastened to a
motor. The network takes a temporally arranged sequence of de-
sired strikes, or a rhythm, as input and outputs a sequence of motor
velocities controlling the drumstick’s physical movement. We use
a new method of training, we call Collaborative Network Training,
in which three networks work together to directly minimize a non-
differentiable loss function. In this work, the goal is to minimize
the difference between the input sequence and the resulting drum-
stick strikes on a surface produced by the network outputs. The
resulting policy learned by the network works in real-time and has
a precision of 10 milliseconds.

KEYWORDS
Robot learning; robot controls

ACM Reference Format:
Mason Bretan, Siddharth Sanan, and Larry Heck. 2019. Learning an Effective
Control Policy for a Robotic Drumstick via Self-Supervision. In Proc. of the
18th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2019), Montreal, Canada, May 13–17, 2019, IFAAMAS, 3 pages.

1 INTRODUCTION
We use a new method of training neural networks with aims of
enabling task objective functions that are not directly differentiable
w.r.t. the network output and learning parameters when a pro-
cess for measuring performance is available, but labeled data is
unavailable. Our proposed method allows for direct optimization
for achieving a desired task and is particularly suitable for gen-
erating continuous-space actions. We demonstrate the efficacy of
the technique using a controls task in which a drumstick’s move-
ments, controlled by a motor (MX-28 dynamixel), are directed by
the outputs of the network. We develop an interactive scenario in
which a person provides a rhythmic sequence, the system listens,
and the network produces a sequence of actions enabling the robot
to mimic the person (see https://youtu.be/afvHaOw1_EQ).

The method utilizes a trio of networks and a ranking function
that sorts each network according to the performance. This rank-
ing provides a signal for how to update each network’s weights
using gradient descent. The objective is similar to reinforcement
learning (RL) in that network parameters are optimized directly for
a task [2, 4]. For a continuous state space the actor-critic method,

Proc. of the 18th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2019), N. Agmon, M. E. Taylor, E. Elkind, M. Veloso (eds.), May 13–17, 2019,
Montreal, Canada. © 2019 International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

Deep Deterministic Policy Gradient (DDPG), was introduced in [1].
Unlike DDPG, our method does learn the parameters of a critic
network in parallel to the actor, but minimizes a reward function
directly by have three networks work collaboratively.

Similarly, ensemble learning typically requires multiple learners
that are trained to solve the same problem. During inference each
model contributes to a collection of hypotheses which are used to
make the final prediction [5]. Our method is different from such
methods in that the networks rely on a signal describing their
own performance relative to the others, thus, training one another
without labeled data

2 COLLABORATIVE NETWORK TRAINING
Collaborative training relies on the ability to describe the outputs
of each network as being simply better or worse than the outputs of
the other networks within the group. The main premise for collabo-
rative training is that if each network is updated in order to behave
more similarly to better performing networks for a single input
example, then over time and across many examples the collection
will achieve a local optimum for the task. In order to prevent poor
convergence the concept of “exploration" is introduced by using
reflection.

Figure 1: The collaborative training procedure. Three net-
works are ranked on their performance for a given input, x ,
and updated according to losses determined by their rank-
ings. In this example, the Second ranked network is opti-
mized to produce output closer to that of the First network,
the First network remains unchanged, and the Third net-
work is optimized to move away in a new “exploratory" di-
rection informed by the First.

The procedure, summarized in Figure 1, works as follows: N
is the set containing {1, 2, 3, ...,N } where N is the total number
of networks. The parameters of each network, θn , are randomly
initialized for n ∈ N. In all of our experiments each network within
an ensemble have identical architectures. Additionally, we use N =
3 and preliminary testing did not find an increase in performance
for higher N (though this needs further validation).

Demonstration AAMAS 2019, May 13-17, 2019, Montréal, Canada

2339

https://youtu.be/afvHaOw1_EQ


For a given training input, x ∈ X , where X is the set of all train-
ing inputs, the outputs of each network, ŷn , are sorted according
to a ranking function f : (x , ŷn ) 7→ µn where µn describes the
performance of ŷn given x . Thus, the best performing network is
θw1 wherew1 = argmax

n
(µn ) and the worst performing network is

θwN wherewN = argmin
n

(µn ).

The loss for a network in the trio,Ln , is determined by its ranking.
For each of the non-worst networks, N \wN , the loss is found by
computing dMAE between adjacently ranked networks That is,

Lwn∈N\w1
= dMAE (ŷwn , ŷwn−1 ) (1)

whereLwn is differentiable w.r.t toθwn . The goal is for each network
to be trained so that a given network, θwn , produces an output for
x that more closely resembles an output from a better performing
network θwn−1 .

Finally, the loss for the worst performing network, LwN is com-
puted using

LwN = dMAE (ŷwN , ŷw1 + (ŷw1 − ŷwN )) (2)

To summarize, for a given input, the best performing network
remains unchanged, the second best network is updated in the
direction of the best performing network, and the worst performing
network is updated in the direction described by the reflection of
the worst past the best.

3 DRUMSTICK TRAJECTORY GENERATION
In this system we train a network to generate a sequence of motor
velocities resulting in the production of drumstick trajectories al-
lowing it to strike the drum in a rhythmically controlled manner.
We use a custom ranking function that incorporates a method to
measure the rhythmic similarity between the resulting drum strikes
and the input onset sequence as well as a method to measure “good-
ness" when the drumstick doesn’t come into contact with the drum
at all producing no onsets. To measure rhythmic similarity we com-
pute the cosine distance between the input vector and the resulting
onset vector generated from the drumstick movements. To evalu-
ate the trajectory we measure the euclidean distance between the
tip of the drumstick and two constant values representing either
the ideal “rest" position or ideal “strike" position. Therefore, we
assume prior knowledge of the positions of the stick and drum in
the environment. This allows us to train the models in simulation
by replicating the real-world setup.

Another step to better ensure adequate transfer from simulation
to real-world is to use a symbolic representation of the desired
onset sequence rather than the raw audio signal. In doing this the
actual audio does not need to be simulated. Therefore, the input to
the networks are a sequence of zeros and ones. Each value in the
input vector represents an event a specific time where the temporal
resolution is 10ms. We provide the networks with a sequence of 20
events representing 200ms. In the vector a one indicates an onset
and zeros indicate no onsets at that time. Additionally, the starting
angle of the joint is included in the input vector (see Figure 2).

Frequently a network will produce actions that are not possible.
The safety mechanisms within the simulation recognizes illegal
actions and prevents them. In the scenario where an action would
need to exceed the velocity threshold to successfully reach the target

Figure 2: The network is trained to produce a sequence of
actions controlling the drumstick’s trajectory. The resulting
trajectory should produce a rhythm that is identical to the
sequence provided by the input vector.

position, the simulation moves as far as it can in the same direction
at the thresholded rate. In the scenario where an action would re-
quire the robot to pass through the drum the simulation ignores the
action all together and does nothing. Because of this behavior, the
sequence of performed velocities are likely to be different than the
sequence of generated joint angles. This is particularly true during
the early stages of training. In order to encourage the networks
to learn to generate legal actions instead of using the generated
joint action sequence from the best and worst performing networks,
ŷw1 and ŷw3 , we use the effected joint action sequence, e(ŷw1 ) and
e(ŷw1 ), where e(x) is a function representing the simulation and
built-in safety constraints.

Results We evaluated the system in both simulation and the
real-world. During real-world inference we wanted a user to be
able to provide input by drumming. To do this, the drumming audio
is recorded and a spectral difference-based onset detection method
([3]) is used to create the input sequence necessary for the network
(see Figure 3). This pre-processing audio analysis step introduces
the potential for error by either missing onsets or producing false
positives. Though, themethod is relatively robust achieving roughly
90% accuracy in the controlled environment in which we performed
the experiment.

Figure 3: The processing pipeline of the real-time system
includes an audio stream which is analyzed for drum on-
sets. The onset sequence is provided as input to the network
which then produces a sequence of motor velocities.

For the real-world evaluation 3 minutes worth of drumming was
recorded from a professional drummer and analyzed producing
852 onsets. The resulting onset sequence was then fed into the
network (at 200ms intervals) resulting in an approximate imitation
of the human drummer. Onset detection was performed on the
resulting audio and cosine similarity was measured between the
human and robot drummer’s onsets. The final cosine similarity
for simulation was 1.0 and for real-world was .86. The real-world
scenario performance declined, but the results are still convincing
and much of the decline was likely due to the onset detection.

Demonstration AAMAS 2019, May 13-17, 2019, Montréal, Canada

2340



REFERENCES
[1] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez,

Yuval Tassa, David Silver, and Daan Wierstra. 2015. Continuous control with
deep reinforcement learning. arXiv preprint arXiv:1509.02971 (2015).

[2] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin Riedmiller. 2013. Playing atari with deep

reinforcement learning. arXiv preprint arXiv:1312.5602 (2013).
[3] Miller S Puckette, Miller S Puckette Ucsd, Theodore Apel, et al. 1998. Real-time

audio analysis tools for Pd and MSP. (1998).
[4] Richard S Sutton and Andrew G Barto. 1998. Reinforcement learning: An intro-

duction. Vol. 1. MIT press Cambridge.
[5] Zhi-Hua Zhou. 2015. Ensemble learning. Encyclopedia of biometrics (2015),

411–416.

Demonstration AAMAS 2019, May 13-17, 2019, Montréal, Canada

2341


	Abstract
	1 Introduction
	2 Collaborative Network Training
	3 Drumstick Trajectory Generation
	References



