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ABSTRACT
We motivate and describe a novel task which is modelled on in-
teractions between apprentices and expert teachers. In the task an
agent must learn to build towers constrained by rules. The teacher
provides verbal corrective feedback from which the agent learns.
The agent starts out unaware of the constraints as well as the do-
main concepts in which the constraints are expressed. Therefore
an agent that takes advantage of the linguistic evidence must learn
the denotations of neologisms and adapt its conceptualisation of
the planning domain to incorporate those denotations. We show
that an agent which does utilise linguistic evidence outperforms a
strong baseline which does not.

KEYWORDS
human-robot interaction; interactive learning; knowledge repre-
sentation and reasoning
ACM Reference Format:
Mattias Appelgren. 2019. Teaching Agents Through Correction. In Proc.
of the 18th International Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2019), Montreal, Canada, May 13–17, 2019, IFAAMAS,
3 pages.

1 INTRODUCTION
It has long been a goal of Artificial Intelligence research to be able to
interact with agents through natural language [15]. One advantage
that could be gained through such interaction is the ability to teach
new tasks and concepts, a goal of Interactive Task Learning (ITL)
[8]. In ITL we seek to teach agents the requirements of a previously
unknown task, rather than how to perform a known task optimally.
For example, an agent might learn the rules of a game [5] rather
than how to play optimally once the rules are known [13].

The mode of teaching is through interaction, which might re-
place a programmer explicitly detailing the parameters of the task,
for example through a reward function. Although several modes of
interaction are possible, such as physical demonstration [3], we will
focus on language. Language allows us to create concepts for things
like objects and actions. These concepts are extremely powerful
since they allow for more efficient and effective communication.
For example, saying “give me a disk of bread covered with tomato
sauce, cheese, and pepperoni baked in the oven until the cheese
melts and the bread has browned” is a lot less efficient than “give
me a pepperoni pizza”. Teaching such concepts to an agent gives
the added benefit that a non technical human may be able to in-
teract with the agent in a meaningful manner, since they share a
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conceptualisation of the world. However, these benefits do require
that the agent learn to associate the concepts with objects in the
real world [10].

To teach an agent through interaction an interactive dialogue
is held between agent and teacher [7, 12]. The agent and teacher
may make both verbal and non-verbal moves in the dialogue, such
as issuing instructions, asking and answering questions, giving
definitions, or describing objects or situations [1, 4, 6, 7, 12, 14].
However, there are many other ways in which people interact [9]
that have not been well studied for ITL scenarios.

The goal of my thesis is to explore the use of a broader set of
dialogue moves for teaching agents a new task. In this extended
abstract I will briefly present the work I have done on learning from
correction (for details see full paper [2]), consisting of a new task
where an agent must learn to build towers out of coloured blocks in
such a way that they comply to a number of constraints as well as a
proof of concept agent that solves this task. These constraints and
the words used to describe the block are unknown to the agent. The
agent must learn to build rule compliant towers from a teacher’s
feedback.

Correction is a useful mode of interaction as it can tell the agent
about it’s own knowledge as well as how the teacher sees the world.
For example, if a teacher says “no, don’t put red blocks on blue
blocks”, this tells the agent that putting red blocks on blue blocks
should be avoided. However, assuming it was given in response
to an action a, then the agent would also be able to infer that a
resulted in a bad state where “don’t put red blocks on blue blocks”
is violated. This is based on the fact that correction should only
be said if it draws to light an inconsistency between the corrected
move and what is said in the correction [9]. Thus, this interaction
can both teach the agent about a constraint but also give instances
of “red blocks” and “blue blocks” for the purpose of learning to
recognise these concepts in the future.

We present our agent and show that it outperforms two baselines
that do not attempt to use the full language, instead just learning
from “no”. In the process the agent learns the actual rules constrain-
ing the problem as well as colour words which are shared with the
teacher.

2 METHODOLOGY
Our task requires an agent to build towers out of blocks such that
they comply with a set of rules along the lines of

∀x .red(x) → ∃y.on(x ,y) ∧ blue(y) (1)

thus constraining where the blocks can be placed given their colour.
The agent must place all available blocks into the tower in each
scenario. It begins aware that constraints of this form exist, but
does not know what they are, how many there are, what colour
terms exist, nor how to recgonise colour terms given RGB values.
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These things must be learned through interaction. In addition to
this, the corrective utterances may be ambiguous as to what rule is
implied by that utterance.

To learn the agent constructs the probability of a particular
instance of correction

P(Corr (ai ,ui ),X ,Z ) (2)

where Corr (ai ,ui ) represents that action ai is corrected with utter-
ance ui . X is made up of visible features, namely the RGB value of
relevant objects (referred to as F (x)). Z is made up of hidden vari-
ables relevant to the correction. In particular, these include whether
a particular rule is part of the goal: ri ∈ G , and whether a particular
colour term can be used to describe an object: e.g. Red(x).

To perform planning the agent must learn what rules are in
the goal and it must learn to predict whether a particular object
belongs to a relevant colour category. To predict the colour we
create grounding models which estimate

P(Red(x)|F (x)) ∝ P(F (x)|Red(x))P(Red(x)) (3)

and equivalent for other colours. These are binary classifiers, an-
swering the question “is object x red or not” rather than “is object
x red, blue, or green”. This allows more flexibility since we do not
initially know what colour terms exist and it is possible that more
than one colour term applies to an object (e.g. red and maroon).

With this in mind the correction model is used to estimate two
things. First, to estimate how likely it is that a rule is part of the
goal, given the evidence

P(ri ∈ G |Corr (ai ,ui ),X ) (4)

which is used to update the agents goal representation.
Second, to estimate how likely it is that each relevant object can

be described by a relevant colour

P(Red(x)|Corr (ai ,ui ),X ) (5)

Since the agent does not have access to labelled data for recog-
nising colour terms these probabilities are used in an Expectation
Maximisation like fashion to update the parameters of the sensor
models. Every time the agent is corrected it updates its belief about
the goal and estimates the most likely setting of the colour variables.
It then updates the sensor models and use these as priors when
calculating the probability of the next correction. If the agent is
extremely unsure it may ask a clarification question such as: “is the
top object red?” which the teacher answers with yes or no. This
happens especially at the beginning of training when the agent has
no information about any colour terms.

Repeated trial and error, with the teacher’s correction, allow
the agent to acquire the necessary colour terms and learn the con-
straints.

3 RESULTS
To test the agent’s capabilities we ran it on a number of different
planning problems, defined by what rules constrained the towers.
Each problem varied on both what rules were included as well
as the number of rules. We compared the agent to two baselines,
a naive baseline which did not attempt to learn at all (it simply
avoided performing a corrected action twice) and a more clever
baseline which attempted to learn to avoid situations similar to

previously corrected states but did not attempt to learn the colour
terms or the true underlying rules.

The clever baseline outperformed the naive one, showing that
this agent does learn. However, our language aware agent outper-
formed both agents consistently over all tested planning problems.
Further in cases where more than one rule contained the same
colour term the language aware agent performed significantly bet-
ter, as it could generalise these overlapping terms.

4 DISCUSSION
The agent described here serves as a proof of concept for learning
from correction. However, there are several limitationswhichwould
need to be overcome to deploy the system in the wild.

First, the visual processing system is simple, only dealing with
colours of simulated blocks. Partially this comes down to a lack
of maturity in the research project, as a more complicated model
could replace the current system, however, it is also a deliberate
choice since our system is largely bounded by the speed of concept
acquisition. It is untenable to have a teacher give thousands of
instances of feedback, which would be required by many current
vision systems. Instead, we work on simple vision with an update
function simple enough to allow a broad range of vision systems to
be integrated when the time comes.

We are more concerned with the restrictions placed on the lan-
guage. Our system makes strong assumptions both about what is
said and how it is said. The language content we wish to support
is simple enough that current semantic parsing technology should
be sufficient, and there is work on updating parsers online [11, 16].
The more significant problem for us are assumptions about the type
of moves the teacher makes. We assume strict, orderly interaction,
whereas real interaction is messy and ambiguous. We assume the
agent knows that type of move has been made, but this will not be
obvious and must be predicted by the agent.

Our current direction for future work is to expand what interac-
tions the agent supports, allowing the teacher to make reference to
previous moves. Further, we will expand the set of rules the agent
can learn and the diversity of how these things are expressed.

5 CONCLUSION
We present a new task which requires an agent to learn from a
teacher’s corrections. The agent learns to recognise colours and
learns rules that constrain the problem. The agent is tested against
two baselines and outperforms them both. Due to simplifying as-
sumptions the agent is severely limited, but serves as a proof of
concept, which will be expanded in future work.
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