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ABSTRACT
Current approaches that model dynamism in DCOPs solve a se-
quence of static problems, reacting to changes in the environment
as the agents observe them. Such approaches thus ignore possible
predictions on future changes. To overcome this limitation, we in-
troduce (finite-horizon) Proactive Dynamic DCOPs (PD-DCOPs) and
Infinite-Horizon PD-DCOPs (IPD-DCOPs) to model dynamic DCOPs
in the presence of exogenous uncertainty. In contrast to reactive
approaches, PD-DCOPs and IPD-DCOPs are able to explicitly model
the possible changes to the problem, and take such information
into account proactively, when solving the dynamically changing
problem. The additional expressivity of these formalisms allows
them to model a wider variety of distributed optimization problems.
Our work presents both theoretical and practical contributions that
advance current dynamic DCOP models.
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1 INTRODUCTION
Distributed Constraint Optimization Problems (DCOPs) are prob-
lems where agents need to coordinate their value assignments to
maximize the sum of the resulting constraint utilities [11, 17]. The
model represents a powerful approach to the description and solu-
tion of many practical problems, serving several applications such
as distributed scheduling, coordination of unmanned air vehicles,
smart grid electricity networks, and sensor networks [1, 2, 4, 6, 8–
10, 14, 15, 18]. In many distributed problems of interest, agents
interact in complex, uncertain, and dynamic environments. For ex-
ample, in distributed meeting scheduling, participants could change
their preferences and priorities over time. In disaster management,
new information (e.g., weather forecasts, priorities on buildings to
evacuate) typically becomes available in an incremental manner.
Thus, the information flow modifies the environment over time.
Unfortunately, the classical DCOP paradigm is unable to model
problems that change over time.
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Consequently, researchers have introduced Dynamic DCOPs (D-
DCOPs) [7, 12, 13, 16], where utility functions can change during
the problem solving process. These models make the common as-
sumption that information on how the problem might change is
unavailable. As such, existing approaches react to the changes in
the problem and solve the current problem at hand. However, in
several applications, the information on how the problem might
change is indeed available, or predictable, within some degree of
uncertainty.

Therefore, we introduce (finite-horizon) Proactive Dynamic
DCOPs (PD-DCOPs) [3] and Infinite-Horizon PD-DCOPs (IPD-
DCOPs) [5] which explicitly model how the DCOP will change over
time; (ii) we discuss the complexity of this new class of DCOPs; and
(iii) we develop exact and approximation algorithms with quality
guarantees to solve PD-DCOPs and IPD-DCOPs proactively.

2 PROPOSED MODELS
2.1 PD-DCOPs
A Proactive Dynamic DCOP (PD-DCOP) is a tuple
⟨A,X,D, F,h,T, c,γ ,p0

Y,α⟩, where:
• A = {ai }

p
i=1 is a set of agents.

• X = {xi }ni=1 is a mixed set of decision and random variables. To
differentiate between decision variables and random variables,
we use Y ⊆ X to denote the set of random variables that model
uncontrollable stochastic events.
• D = {Dx }x ∈X is a set of finite domains. Each variable x ∈ X takes
values from the set Dx ∈ D. We also use Ω = {Ωy }y∈Y ⊆ D to
denote the set of event spaces for the random variables such that
each y ∈ Y takes values in Ωy .
• F = { fi }mi=1 is a set of reward functions, each defined over a mixed
set of decision variables and random variables: fi :

∏
x ∈xfi Dx →

R+ ∪ {⊥}, where xfi ⊆ X is scope of fi and ⊥ is a special element
used to denote that a given combination of values for the variables
in xfi is not allowed.
• h ∈ N is a finite horizon in which the agents can change the
values of their variables.
• T = {Ty }y∈Y is the set of transition functions Ty : Ωy × Ωy →

[0, 1] ⊆ R for the random variables y ∈ Y, describing the prob-
ability for a random variable to change its value in successive
time steps. For a time step t > 0, and values ωi ∈ Ωy ,ωj ∈ Ωy ,
Ty (ωi ,ωj ) = P (yt =ωj |y

t−1=ωi ), whereyt denotes the value of
the variable y at time step t , and P is a probability measure. Thus,
Ty (ωi ,ωj ) describes the probability for the random variable y to
change its value from ωi at a time step t − 1 to ωj at a time step
t . Finally,

∑
ωj ∈Ωy Ty (ωi ,ωj ) = 1 for all ωi ∈ Ωy .
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• c ∈ R+ is a switching cost, which is the cost associated with the
change in the value of a decision variable between time steps.
• γ ∈ [0, 1) is a discount factor, which represents the decrease in
the importance of rewards/costs over time.
• p0

Y = {p
0
y }y∈Y is a set of initial probability distributions for the

random variables y ∈ Y.
• α : X\Y→ A is a function that associates each decision variable to
one agent.We assume that the random variables are not under the
control of the agents and are independent of decision variables.
The goal of a PD-DCOP is to find a sequence of h+1 assignments

x∗ for all the decision variables in X \ Y:
x∗ = argmax

x=⟨x0, ...,xh ⟩∈Σh+1
F h (x) (1)

F h (x) =
h−1∑
t=0

γ t
[
F t
x (xt ) + F t

y (xt )
]

(2)

−

h−1∑
t=0

γ t
[
c · ∆(xt , xt+1)

]
(3)

+ F̃x (xh ) + F̃y (xh ) (4)

where Σ is the assignment space for the decision variables of the
PD-DCOP, at each time step. These assignments to values of de-
cision variables maximizes the sum of two terms. The first term
maximizes the discounted net utility, that is, the discounted rewards
for the functions that do not involve exogenous factors (Fx ) and the
expected discounted random rewards (Fy ) minus the discounted
penalties over the first h time steps. The second term maximizes
the discounted future rewards for the problem.

2.2 IPD-DCOPs
At a high level, the Infinite-Horizon Proactive Dynamic DCOP (IPD-
DCOP) model is a straightforward, but essential and significant,
extension of the PD-DCOP model. Both IPD-DCOP and PD-DCOP
models assume that a finite horizonh is given. However, PD-DCOPs
ignore all changes to the problem after its finite horizon h and,
thus, do not optimize for them, while IPD-DCOPs don’t take into
account the discount factor and assume that the Markov chains
will converge to stationary distributions after that horizon and
an optimal solution for those stationary distributions should be
adopted after the horizon.

As agents will keep their optimal solution from horizon h on-
wards, the goal of an IPD-DCOP is to find a sequence of h + 1
assignments x̄∗ for all the decision variables in X:

x̄∗ = argmax
x̄=⟨x0, ...,xh ⟩∈Σh+1

F (x̄) (5)

F (x̄) =
h∑
t=0
F t (xt ) (6)

−

h−1∑
t=0

[
c · ∆(xt , xt+1)

]
(7)

where Σ is the assignment space for the decision variables of the
IPD-DCOP at each time step, ∆ : Σ × Σ→ {0} ∪ N is a function
counting the number of assignments to decision variables that
differs from one time step to the next.

Note that at horizon h, agents solve the problem with the station-
ary distribution of random variables and keep this optimal solution
onwards. This would maximize the expected reward at each time
step after the distributions have converged to the stationary distri-
bution. If choosing any other assignment, then, it will result in a
smaller reward.

3 CONCLUSIONS
In real-world applications, agents often act in dynamic environ-
ments. Thus, the Dynamic DCOP formulation is attractive to model
such problems. Current research has focused at solving such prob-
lems reactively, thus discarding the information on possible future
changes, which is often available in many applications. To cope
with this limitation, we (i) introduce Proactive Dynamic DCOPs (PD-
DCOPs), which model the dynamism in Dynamic DCOPs; (ii) pro-
vide theoretical results on the complexity class of PD-DCOPs; and
(iii) develop an exact PD-DCOP algorithm that solves the problem
proactively as well as an approximation algorithm with quality
guarantees that can scale to larger and more complex problems.
Moreover, we also propose the Infinite-Horizon PD-DCOP (IPD-
DCOP) model, which extends PD-DCOPs to optimize the cumu-
lative reward obtained across an infinite number of time steps. It
exploits the convergence properties of Markov chains and assumes
that the underlying Markov chain in the problem is guaranteed to
converge to the unique stationary distribution.
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