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ABSTRACT
Autonomous agents engaging in automatic negotiations on behalf of

humans or institutions are usually assumed to have full knowledge

of the utility function for the actors they represent. In many cases,

these utility functions are difficult to know apriori for every possible

outcome of the negotiation. Moreover, it may not be necessary for

the agent to know the utility of outcomes that are never offered or

considered during the negotiation. State-of-the-art approaches to

utility elicitation during negotiation assume that the agent can ask

questions from a predefined countable set to reduce its uncertainty

about the utility function. This paper extends that body of work by

lifting the countability assumption providing an optimal algorithm

for selecting the best outcome and utility level about which to ask

the actor. The paper reports the results of comparing the proposed

algorithm with state-of-the-art algorithms using both synthetic

and realistic negotiation scenarios. These evaluations support the

applicability of the proposed approach.
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1 INTRODUCTION
Automatic negotiation is attracting more attention from the re-

search community in recent years especially given the rise of AI,

machine learning systems and the Internet of Things (IoT) that

promise to automate most repetitive aspects of our lives. The main

advantage of automatic negotiation in this context is providing the

means for multiple actors to organize their behavior to achieve

win-win deals allowing for better use of resources and providing

an advantage for the society as a whole. Recent applications of

automatic negotiation include permission management in IoT sys-

tems [2], Wi-Fi channel assignment [7], providing feedback for

student negotiation skills [13], and agriculture supply chain sup-

port [10].

Most of this work assumes that the negotiation agent has per-

fect knowledge of the utility function of the person/entity it is

representing during the negotiation. While this can be the case

in some limited cases, in many real-world scenarios; it is difficult
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and uncommon to have perfect apriori knowledge of this utility

function. Utility elicitation from people always involves some elici-

tation cost (bother cost) [3]. Trying to pin the utility value of every

possible outcome before the negotiation starts entails asking too

many questions leading to high bother cost.
Utility elicitation is studied extensively in the decision support

community [8, 11, 15]. Most of that work focuses on the problem

of eliciting the utility function of an actor for several possible out-

comes of the decision process. Negotiation adds a new complexity

to this problem because – during negotiation – it is not enough to

know the utility value of some outcome for the user in order to

propose/accept it, but it is also essential to judge the probability

that this outcome/offer is also acceptable by the partner(s) in the

negotiation.

Both negotiation and preference elicitation have been studied

for decades. For example, Rubinstein proved his perfect-game equi-

librium for a simplified version of the alternating offers negotiation

protocol in 1982 based on even earlier work [19]. In the same year,

Llewellyn et al. studied the use of standard gambles for utility elici-

tation in the medical domain [16].

More recently, studies start to appear that focus on the combined

problem of utility elicitation during a negotiation [3, 4, 17, 18].

Baarslag and Gerdeng proposed the optimal elicitation algorithm

[3] is based on Pandora’s Rule [20]. It assumes that the actor (user)

can be queried to provide exact utility values for different outcomes.

This is achievable using several possible elicitation strategies that

do not require the assignment of a numeric value to any outcome by

the user. Nevertheless, this form of deep elicitation for each outcome

considered is time-consuming and would lead to high levels of

elicitation bother to the user that can sometimes be avoided. For

example, if a single query assigned a probability distribution to an

outcome that made it dominated by another there is no need to keep

eliciting this dominated outcome until a numeric utility assignment

is achieved. A shallow version of this algorithm that uses a heuristic

to avoid offering outcomes that turn out to have low utilities at

the beginning of the negotiation was recently proposed [18]. One

advantage of this approach though is the reliance on an easy to

calculate aspiration level for the judgment of the expected utility

for outcomes rejected by the partner(s). It is also efficient enough

to be usable when time-pressure is an issue for the negotiation.

The Optimal Query Agent (OQA) [4] avoids the problem of deep

elicitation by assuming that a predefined set of possible queries

are available that can reduce the uncertainty in the probability

distribution of utility values for a given outcome. The system selects

the optimal query at each point as the one maximizing the value of

information which is the difference between the expected expected
utility if the answer to the query is known compared with it if the
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answer is not known. This approach has several advantages: Firstly,

it relies on principled probabilistic reasoning. Secondly, it is possible

to extend to cases where the outcome space has some structure

linking the marginal utility distributions for different outcomes.

Finally, this approach does not assume any specific form for the

queries given to the user. The main disadvantage of this approach

is its high computational cost: O
(
nqno

)
for nq questions and no

outcomes.

Mohammad and Nakadai [17] proposed an efficient value of in-

formation based algorithm (FastVOI) that was shown to achieve the

same utilities as OQA while reducing the computational complexity

to O
(
nq logno

)
.

Both OQA and FastVOI assume that the questions that can be

asked about the utility of different outcomes are predefined and

countable. Moreover, the time complexity of both approaches is

linear in the number of these predefined questions. This paper ex-

tends the value-of-information approach by removing the need for

predefined questions at the expense of having all questions being

about a single outcome. The main contribution of this work is a

proof of optimality for the proposed method for selecting the cut-off

utility value to ask about based on the value-of-information princi-

ple. Moreover, the paper reports extensive evaluation experiments

comparing the proposed algorithm and state of the art elicitation

during negotiation algorithms.

The rest of the paper is organized as follows: Section 2 gives

an introduction to negotiation and details the negotiation protocol

used in this paper. Section 3 gives the formal representation of

negotiation used in this paper and Section 4 presents the elicitation

during negotiation problem and details the value-of-information

approach in the context of negotiation. Section 5 defines the elicita-

tion during negotiation with uncountable single-outcome questions.

Section 6 details the proposed algorithm for solving it and Section 7

evaluates two variants of it. Section 8 discusses the limitations of

the proposed approach and provides directions for future research.

The paper is then concluded.

2 PROBLEM SETTING
A negotiation session is conducted between multiple agents repre-

senting self-interested actors over a set of issues. Issues can have

discrete or continuous values. Every possible assignment of a value

to each issue is called an outcome and during negotiation, it may

also be called an offer or proposal. If an agreement is reached the

agreed upon outcome is called a contract. Each actor (which can

be a human but not be) is assumed to be self-interested with some

internal utility function that assigns a numeric value (assumed to

be normalized to the range 0 to 1 in this work) to every possible

outcome. The actor wishes to maximize the utility she receives

from the negotiation through the behavior of its representing agent.

Every actor also has a predefined reserved value that she gets if the
negotiation was broken either due to timing out or explicitly by

one of the agents.

Negotiation sessions are conducted in rounds in which different

outcomes are offered/judged by the agents according to some ne-

gotiation protocol. Negotiation protocols can be moderated – with

a moderator-agent that facilitates the interaction – or unmoder-

ated. Negotiation sessions can end in an agreement (contract) or

be broken without agreement. Negotiation sessions are usually

time-limited, to provide an incentive for the agents to concede.

The session is broken (times-out) automatically if agents did not

reach an agreement within a predefined real-time or number of

rounds limit and a discount factor may be used to encourage express

agreement.

Negotiations are carried out between agents according to a pro-

tocol. Several negotiation protocols have been proposed over the

years. They can either be mediated [12] or un-mediated [1]. This

work utilizes the un-mediated Alternating Offers Protocol (AOP) [1]

but is not limited to it.

AOP works as follows: An ordering of the agents is defined

which we assume — without loss of generality — is the same as

the agent index i . The first agent starts the negotiation by offering
an outcome ω0

which is visible to all other agents. The next agent

either accepts the offer, ends the negotiation, or proposes a new
offer. This process is continued until one of the following stopping

criteria is met:

• Agreement:All agents accept an offer. In this case, this offer
is declared as the agreed upon contract.
• Timeout: A predefined number of offer exchanges/rounds

(N ) or a preset number of seconds T has passed since the

beginning of the negotiation.

• Failure: Some agent ends the negotiation when it has the

chance to respond to some offer.

3 FORMAL REPRESENTATION
A negotiation scenario is defined – in this paper – by a tuple (ϒ ≡
(A, T , N , R, Ω, {ũa },

{
u0ωa

}
) where:

A ∈ I+ − {1}: Number of agents/actors

T ∈ R
⋃
∞: The allowed time of the negotiation.

N ∈ I
⋃
∞: The allowed number of rounds of the negotiation.

R : A→ [0, 1): Reserved value for agent a. We define ra ≡ R (a)
∀1 ≤ a ≤ A.

Ω ≡
{
ωj

}
: Possible outcomes (can be countable or uncount-

able) where |Ω | ≥ 2

ũa : Ω → [0, 1] ∀1 ≤ a ≤ A: Utility function of actor a with

corresponding cummulative distribution Ũa .
u0ωa : [0, 1] → [0, 1] ∀1 ≤ a ≤ A ∧ ω ∈ Ω: The probability dis-

tribution of utility values for outcome ω as know to agent a
with corresponding cummulative distribution Uωa .

To simplify the notationwe abuse the above definitions ofR, ũa ,ua )
by allowing subscripts to indicate the outcome and allowing jω
to stand for ωj . Moreover, the outcome order may stand for the

outcome in subscripts. This means that the following are equivalent:

Xa
(
ωj

)
≡ Xωja ≡ X jωa ≡ X ja

The agents receive their utility values at the end of the negotia-

tion as follows:

• Agreement on contract ω after n rounds: Each agent a
receives a utility of ũa (ω) − Ca where Ca is the total cost

incurred by the agent a during the negotiation.

• Timeout at time t : Each agent a receives a utility of ra −Ca .
• Failure at time t : Each agent a receives a utility of ra −Ca .
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Hereafter, when the agent considered is clear from the context,

the subscript a will be dropped.

4 ELICITATIONWITH PREDEFINED
QUESTIONS

The standard elicitation during negotiation problem assumes that a

countable set of predefined questions are available to the agent. An

elicitation during negotiation scenario with predefined questions

Ξf inite is defined by the tuple (ϒ ,Qa ,Q
0

a ) where:

ϒ A negotiation scenario.

Qa : {qal } is the set of questions/queries available to the agent

where: qal ≡
({
r ial

}
, cal

)
is one question defined as a tuple

of a set of possible replies

{
r ial

}
and a cost cal for asking the

question qal .

Defining, P : [0, 1]m → [0, 1] as a joint probability distribution

overm real-valued variables with unity domains, a reply can then

be defined as: r ial : P → P (i.e. a mapping from a joint proba-

bility distribution to another). It is assumed that the output joint

distribution has lower spread (i.e. variance) for at least one variable.

Elicitation during round n is the process of selecting one query

qna from Qa , presenting it to the actor a, receiving a reply rna then

applying the transformation defined by that reply to the joint utility

distribution:

una ← rna
(
una

)
.

We assume that all members of a negotiation scenario with

elicitation Ξf inite are constant for the duration of the negotiation

except ûna . A numeric upper script indicates the round number (n)
if not otherwise specified and will be dropped when it is clear from

the context.

We will assume some arbitrary ordering J on the outcomes Ω
where jω ≤ |Ω | is the index of outcome ω in that ordering and

ωj ∈ Ω is the outcome associated with index j in that ordering.

4.1 Value of Information Based Solution
The Value-of-information (VOI) based algorithm for preference

elicitation was first proposed by Chajewska [6] in the context of de-

cision theory. Baarslag and Kaisars [4] proposed a modified version

explicitly designed for elicitation during negotiation. Mohammad

and Nakadai [17] lately proposed a more efficient variant. This

section provides a brief description of this approach using the for-

mulation presented in section 4 as it is the base of the proposed

algorithm.

All VOI variants assume that of an acceptance modelM : Ω →
[0, 1] is available to the agent.We use the same subscript/superscript

rules defined in section 3 with the acceptance model.

A policyΨ ≡
〈
ωj |ωj ∈ Ω

〉
of length D is an ordered sequence

of outcomes (Ψi is the outcome at index i inΨ ). For the rest of this

section, it is assumed that D = N − n (i.e. policy length is exactly

the remaining number of rounds) if not otherwise stated.

Given an elicitation scenario Ξf inite and an acceptance model

M, the expected utility of following a policyΨ will be:

EU (Ψ |M, ũ) =

|Ψ |∑
k=1

M (Ψk ) ũ (Ψk )

k−1∏
j=1

(
1 −M

(
Ψj

) )
. (1)

Because the agent has no access to the true utility of the actor ũ,
it can only calculate the expectation of EU which is known as the

expected expected utility [4, 5]:

EEU (Ψ |M,u) =

∫
u
EU (Ψ |M,u) . (2)

The order of integration and differentiation in Equation 2 can

be exchanged leaving to the following definition for EEU:

EEU (Ψ |M,u) =

|Ψ |∑
k=1

E
[
uΨk

]
M (Ψk )

k−1∏
j=1

(
1 −M

(
Ψj

) )
, (3)

where, E [u] is the expected value of u.
An optimal policy π is a policy that maximizes EEU with respect

to a given acceptance model and utility distribution:

π |M,u ≡ argmax

Ψ
EEU (Ψ |M,u) (4)

The optimal policy of length 1 (⟨ω∗⟩) is easy to calculate:

ω∗ ≡ argmax

ω
E [uω ]M (ω)

Baarslag and Kaisars [4] provided an efficient greedy algorithm

for calculating π |M,u that incrementally finds the optimal policy

of length l given the one of length l − 1.
GivenM,u, the elicitation process of the Optimal Query Agent

(OQA) [4] proceeds by calculating the optimal policy π with the

expected expected utility under this policy (eeu∗), then for each

question q ∈ Q , an optimal alternative policy πqr for each possible

answer r is calculated with the associated eeuqr as:

πqr = argmax

Ψ
EEU (Ψ |M, r (u)) , (5)

The expected expected utility of that question is then calculated

as the weighted average of expected expected utility of following

the optimal policy after getting each answer with the associated

cost subtracted:

eeuq =
∑

r,p,c ∈q
p × eeuqr − c, (6)

where p, r , c are the probability of reply, the reply and its associated
cost respectively. This leads to the following definition of the value
of information for asking question q:

VOI (q) =
∑

r ∈answers(q)

pr × eeuqr − eeu
∗

(7)

where pr is the probability of getting answer r and can either be

given or estimated from the utility distribution u.
The VOI algorithm asks the question q∗ that maximizes eeuq as

long as eeuq∗ > eeu∗ + c which means that asking this question

would entail a positive value of information.

Recently, Mohammad and Nakadai [17] proposed the FastVOI

algorithm for efficient selection of the optimal question q∗ by in-

cremental calculation of eeu∗.
To simplify the notation, we define the cummulative sum and

product at element i in Equation 3 as:
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Pi ≡
i−1∏
j=1

1 −M
(
πj
)
=

i−1∏
j=1

1 −Mk , (8)

Si ≡
i∑

k=1

M (ωk )E [uk ]
k−1∏
j=1

1 −M
(
πj
)
=

i∑
k=1

Mk µkPk (9)

where Mk ≡ M (πk ), and S0 = 0 and P is defined up to and in-

cluding Pn+1 and µk ≡ E
[
uΨk

]
is the expectation of the utility

distribution uω where ω is the k’th element ofΨ .

Given these definitions, it is clear that EEU = Sm (see Equa-

tions 3, 9) and that the list of outcomes sorted by {µk } constitute
the optimal policy π [17].

5 PROPOSED PROBLEM
In this paper, we define the elicitation with uncountable single out-
come questions problem Xiinf inite by the tuple: (ϒ ,Qa ) where ϒ is

a negotiation scenario and Qa is the uncountable set of all possible

questions of the form “Is ũ (ω) > x?” for x ∈ (0, 1) and ω ∈ Ω. For
the rest of this paper, this kind of question will be represented as:

“ω?x”. It has two possible answers: yes represented as “ω ≻ x”, or
no represented as “ω ≺ x”.

Research literature about preference elicitation in decision sup-

port inspired the choice of this type of question [8, 11, 15]. Research

about effective elicitation strategies goes back for decades and is

carried out under names like search procedures [15], utility elicita-

tion procedures [9], and preference elicitation strategies. There are

two general kinds of elicitation strategies in the literature: prob-

ability equivalence (PE) and certainty equivalence (CE) methods.

Both rely on the notion of a gamble. A gamble is defined by a tuple

(ω∗,ω∗,p) which means getting outcome ω∗ with probability p and

ω∗ with probability 1−p. In the special case when p = 1, the gamble

can be represented by its only possible outcome ω∗.
In both PE and CE methods, the agent is asked to compare two

gambles ω and (ω∗,ω∗,p) (i.e., getting ω with certainty or the gam-

ble between ω∗ and ω
∗
with probability p of getting the later). For

PE methods, the actor is asked to specify a value for p to make the

two gambles equivalent given ω∗,ω∗,ω while for CE methods; she

is asked to estimate a value forω that makes the gambles equivalent

given ω∗,ω∗,p.
Different strategies within the PE and CE frameworks differ in

how they select these gambles. The most widely used PE method

utilizes extreme gambles where ω∗ and ω∗ are chosen to be the

absolute and worst outcomes respectively and are assigned a utility

of one and zero. These gambles are sometimes called standard gam-
bles [6]. Other possibilities include adjacent gambles and assorted

gambles [9]. CE methods like fractile and chaining methods differ

in how they select the endpoints (ω∗ andω∗) as well as the probabil-
ities used in the gambles. For a recent survey, please refer to [9]. The
proposed question form is equivalent to a single PE standard gamble.

Given the above definition, the solution toΞinf inite is a selection
of an outcome ω∗ and cutoff utility level xω∗ defining the question

with the maximum value of information. Each such question will

have precisely two answers (yes and no).

6 PROPOSED SOLUTION
Given that we know the initialized optimal policy π , Mohammad

and Nakadai [17] showed that the change in EEU if the expected

utility of outcome πk changed from µk to µ ′k – without a change

to the acceptance model – can be found as:

δEEU =


MkPk µ

′
k −MkPk µk j = k

Mk

(
Pj µ
′
k − Pk µk + Sj−1 − Sk−1

)
j < k

Mk
1−Mk

(
Pj+1µ

′
k − Pkuk + Sj − Sk−1

)
j > k

, (10)

where j is the new location of πk in the optimal policy after the

change.

Let u+k , u
−
k be the new utility distribution for outcome πk given

the question q: “Is ũ (πk ) > x?” for 0 < x < 1 after receiving an-

swers yes and no respectively. The following expectation (µk |πk ?x ,
µ−k , µ

+
k ) can then be defined:

µ−k =
∫
1

0
u−k (x)dx

µ+k =
∫
1

0
u+k (x)dx

µk |πk ?x = µ−kUπk (x) + µ
+
k
(
1 −Uπk (x)

) (11)

where µk |πk ?x is the expected value for the expected utility of

outcome πk before receiving the answer (not to be confused with

the EEU of the question).

Proving the following Lemma (Appendix A.1) is easy.

Lemma 6.1. Before receiving an answer to the question πk ?x , the
agent can expect no change in the expected utility of that outcome
after receiving the answer. (Section 8):

∀x ∈ (0, 1) ,πk ∈ π µk |πk ?x = µk .

Define δEEU |πk ?x , δEEU |πk ≻x , δEEU |πk ≺x as the change in

expected expected utility for the optimal policy after asking “Is
ũ (πk ) ≻ x?”, and after getting yes and no as answers. Define

π |πk ≻x , π |πk ≺x as the optimal policy after getting the “yes” and
“no” answers respectively and j+, j− as the new indices of πk in

π |πk ≻x , π |πk ≺x after getting the corresponding answers.

From Equation 10 and the fact that µ+k ≥ µk ≥ µ−k , we get:

δEEU |πk ≻x =


MkPk

(
µ+k − µk

)
j = k

Mk

(
Pj µ
+
k − Pk µk + Sj−1 − Sk−1

)
j < k

, (12)

δEEU |πk ≺x =


MkPk

(
µ−k − µk

)
j = k

Mk
1−Mk

(
Pj+1µ

−
k − Pk µk + Sj − Sk−1

)
j > k

,

(13)

Solving the elicitation with uncountable single outcome questions
problem (Section 5) amounts to finding the solution to the following

optimization problem:

k∗,x∗πk = argmax

k,x
VOI (πk ?x),

s .t . 1 ≤ k ≤ |π | ∧ αk < x < βk ∧ VOI (πk∗?x
∗
πk ) ≥ c,

(14)

where c is the cost for asking a question, (αk ≡ argmaxx uπk (x) , 0,

βk ≡ argminx uπk (x) , 0) are the limits of uπk ’s support, and:

VOI (πk ?x) = δEEU |πk ≻x
(
1 −Uπk (x)

)
+ δEEU |πk ≺xUπk (x).

(15)
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6.1 General Solution
This section provides a general solution to the problem represented

by Equation 14 assuming no specific form for uk .

Lemma 6.2. For any value of x , if both answers to the question
“πk ?x” do not change the index of πk in the optimal policy, the VOI of
this question is exactly zero.

j+ = j− = k → VOI (πk ?x) = 0

Lemma 6.2 follows directly from Lemma 6.1 (see Appendix A.2).

From Equations 12, 13 and Lemma 6.2, there are only three cases

that need to be considered when solving the optimization problem

defined in Equation 15 for every value of k , namely: j+ < k = j−,
j+ < k < j−, j+ = k < j−.

The objectives f (x) = VOI (πk ?x) of the three optimization

problems can be formulated – by plugging the appropriate terms

from Equations 12 and 13 into Equation 15 – as:

Problem 1 The j+ < k and k < j− case:

f (x) =
(
1 −Uπk (x)

) (
z +MkPj+µ

+
k

)
+Uπk (x)

(
y +MkPj−+1µ

−
k

)
Problem 2 The j+ < k and k = j− case:

f (x) =
(
1 −Uπk (x)

) (
z +MkPj+µ

+
k

)
+Uπk (x)MkPk

(
µ−k − µk

)
Problem 3 The j+ = k and k < j− case:

f (x) =
(
1 −Uπk (x)

)
MkPk

(
µ+k − µk

)
+Uπk (x)

(
y +MkPj−+1µ

−
k

)
wherey ≡

Sk−1−Sk+Mk (Sj−Sk−1)
1−Mk

and z ≡ Sk−1−Sk+Mk
(
Sj−1 − Sk−1

)
.

The above analysis immediately suggests the following algo-

rithm: For each outcome πk , solve the three problems (Problem i
above for i ∈ {1, 2, 3}) and find the optimal values (x iπk for Problem

i) value and corresponding VOI values voiik . Let i
∗
be the solution

index leading to maximal VOI value (i.e. i∗ ≡ argmaxi voi
i
k ).

The optimal cutoff utility value to ask about for outcome πk is

then x i
∗

πk . Append πk ?x
i∗
πk to the viable question set if x i

∗

πk ≥ c and

αk < x i
∗

πk < βk .

The question to ask (solution to Equation 14) is then πk∗?x
i∗
πk∗

where πk∗ , and x
i∗
πk∗ are the outcome and corresponding optimal

cutoff utility hat correspond to the maximum voii
∗

k in the viable

question set.

To find the optimal solution, all combinations of j+ and j− must

be checked leading to O
(
|Ω |2

)
operations. It is possible to find an

approximate solution by stopping the search for different j− values
for the each j+ at the first solution above the cost and halting the

search for different j+ values with the same condition. Section 7

evaluates the accuracy of this approximation.

6.2 Efficient Solution (Uniform Distribution)
The algorithm outlined in Section 6.1 gives a general solution the the

proposed elicitation problem (Section 5) for any utility distribution.

Nevertheless, solving the three optimizations involved can prove

difficult especially for utility distributions that do not lead to convex

optimization problems. In this section, we provide a closed-form

solution when u0ω is the uniform distributionU.

Practically, a uniform distribution is a natural representation

of uncertainty when only limits on the utility value are known.

Secondly, the uniform distribution can represent complete igno-

ranceU(0, 1) which models the case when the agent starts with no
knowledge of the actor’s utility function.

Moreover, computationally the uniform distribution assumption

simplifies the problem considerably and is guaranteed by just as-

suming it for the initial utility distributions u0ω . Consider again the

form of the questions used in this paper. Answers to ω?x corre-

spond to multiplying uω with a step function. This means that, if

u0ω was a uniform distribution, unω , will always be a uniform dis-

tribution independent of the questions asked. Geometrically, the

uniform distribution assumption on u0ω amounts to assuming that

the real utility function ũω lies somewhere in a hyper-rectangle

with faces parallel to the axes representing utility values for differ-

ent outcomes. Asking any question of the form ω?x removes a part

of this hyper-rectangle leaving another hyper-rectangle with faces

parallel to the axes in which the true utility function ũω still lies.

Under the assumption of a uniform distribution, the three op-

timization problems can be reduced to the following quadratic

problem with linear constraints (see Appendix A.3 for derivation):

x∗πk = argmax

x
ax2 + bx + c,

s .t . αk < x < βk ∧ VOI (πk∗?x
∗
πk ) > c,

(16)

where the values of a,b, c can be found using Table 1 for Problems

1, 2, 3.

Lemma 6.3. The unconstrained version of Equation 16 has a single
and finite global maximumx+πk which is shown in Table 1 for Problems
1, 2, 3 (see Appendix A.3 for the proof).

Based on Lemma 6.3, we know that the objective function will

have its unconstrained global maximum within the range (αk , βk )
or it will be monotonically increasing or decreasing within that

range.

The solution to Equation 16 can then be found in three steps:

Firstly, find the solution to the unconstrained version x+πk and the

corresponding VOI (Table 1). Secondly, set the tentative optimal

solution x++πk as:

x++πk =


αk x+πk ≤ αk
x+πk βk > x+πk > αk
βk x+πk ≥ βk

Finally, set x∗πk = x++πk if the two constraints of Equation 16

are satisfied, otherwise, the problem has no solutions. Notice that

for our problem, the cases where x++πk ∈ {αk , βk } correspond to

asking questions for which the answer is definitely “yes” and “no”
respectively which is never a good idea. That is why these questions

are not included in Qa and only the case βk > x+πk > αk will

actually lead to a solution.

The elicitation algorithm, in this case, will be the same as the one

reported in Section 6.1 using the optimization algorithm detailed

in this section for solving Problems 1, 2, 3.

7 EVALUATION
This section compares the proposed algorithm against baseline

and state-of-the-art elicitation during negotiation algorithms. Two
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Table 1: Parameters of the quadratic problem (Equation 16) and the solution to the unconstrained version using the assumption

u0πk = U (αk , βk ) (where y = Sk−1−Sk+Mk (Sj−Sk−1)
1−Mk

, z = Sk−1 − Sk +Mk
(
Sj−1 − Sk−1

)
)

Problem a b c x+πk VOI (πk ?x
+
πk )

Problem 1

Mk

(
Pj−+1−Pj+

)
2(βk−αk )

y−z
βk−αk

2zβk+MkPj+ β
2

k−2yαk−MkPj−+1α 2

k
2(βk−αk )

z−y

Mk

(
Pj−+1−Pj+

) c − a
(
x+πk

)
2

Problem 2

Mk

(
Pk−Pj+

)
2(βk−αk )

2z−MkPk (αk+βk )
2(αk−βk )

βk
(
2z+MkPj+ βk+MkPkαk

)
2(βk−αk )

2z+MkPk (βk−αk )

2Mk

(
Pk−Pj+

) c − a
(
x+πk

)
2

Problem 3

Mk (Pj−+1−Pk )
2(βk−αk )

2y+MkPk (αk+βk )
2(βk−αk )

αk (2y+MkPk βk+MkPj−+1αk )
2(αk−βk )

2y+MkPk (αk+βk )
2Mk (Pk−Pj−+1)

c − a
(
x+πk

)
2

baseline algorithms are used: A full knowledge algorithm that knows

the utility function of the actor (called ideal as it represents the ideal
case) and a random elicitation algorithm that selects an outcome

ω and cutoff utility value xω randomly to construct questions for

the user. Two state-of-the-art algorithms are used: the VOI based

FastVOI [17] agents; and Pandora [3] which casts the elicitation

problem as a Pandora’s box problem and uses an optimal algorithm

for solving it. The optimal and approximate variants of the proposed

system are called Optimal, and Approximate hereafter.

7.1 Realistic Scenarios
The first set of scenarios that we used for comparison are taken

from the ANAC competition [14] which started in 2010 and is still

running annually. The main advantage of using scenarios from

this competition is that they were designed to represent real-world

situations and have a large variation in relative competitiveness

and other attributes. We used ten bilateral negotiation scenarios

from 2012 and 2013 competitions, namely: Fifty-fifty (a zero sum

scenario with 11 outcomes), Laptop (A scenario with high num-

ber of win-win outcomes with 27 outcomes), Flight-booking (An

integrative scenario having both good and bad possibilities with

36 outcomes), Barter (80 outcomes), Outfit (128 outcomes), Itex
vs Cyperess (180 outcomes), Dog Chasing (270 outcomes), House
Keeping (384 outcomes), England/Zimbabwe ( 576 outcomes), and

Ice-cream (1001 outcomes).

In the first experiment, each scenario was run 10 times with the

negotiation agent assigned to one of the two sides randomly with

21 different elicitation costs from 0 to 0.1 (210 runs). The initial

utility distributions for all outcomes were uniform over the total

utility range (0 to 1). The other agent accepted any of the outcomes

in the top 25% of its utility value with a probability proportional to

that utility. The elicitation agent did not know this information but

had an acceptance model that assigned a probability of acceptance

equaling the utility for the opponent. This simplified opponent and

opponent model were chosen following [4].

Fig. 1 shows the results of this experiment. Fig. 1-a shows the

effect of elicitation cost on the final utility obtained by the agent.

VOI based algorithms achieve higher utilities than the random for

all costs and Pandora for all costs, and all of these differences are

statistically significant except at costs less than 0.010. Moreover,

the proposed approach outperforms FastVOI at most of the costs.

The difference is statistically significant only for costs less than

0.035 (t-test with Bonferroni’s conservative multiple-comparisons

correction). Comparing the mean utility obtained at all costs re-

veals a similar picture with the proposed algorithm (both variants)

achieving higher utilities than random (p < 1e−10, t = 32.898) Pan-
dora (p < 1e − 10, t = 18.375), and FastVOI (p < 1e − 10, t = 7.0846)

and lower than ideal (p < 1e − 10, t = 40.301). The same test failed

to find a difference in the utility achieved by the optimal and ap-

proximate variants of the proposed algorithm (p = 0.304, t = 1.03).

Separately analyzing each scenario, gives the same pattern of per-

formance except for the smallest scenario Fifty-fifty for which the

improvement above FastVOI was not statistically significant for the

approximate variant.

Fig. 1-b compares the elicitation time of different algorithms.

It is clear that VOI based methods are much slower than random
and Pandora with the approximate variant of the proposed method

(Approximate) being faster than FastVOI for low elicitation costs

but more time-consuming than it for costs above 0.04. The exact

version of the proposed method (Optimal) is always slower than
FastVOI.

Fig. 1-c compares the number of questions asked by each elicita-

tion algorithm. The proposed method generates fewer questions

than other algorithms at low elicitation costs. This difference dis-

appears once the elicitation cost reaches 0.015 after which, the

proposed method tends to ask more questions leading to slightly

higher utilities (Fig. 1-a) compared with FastVOI. It is also possible

to directly compare the value of information per question for the

proposed method and FastVOI (Fig. 1-d). In line with the theoretical

analysis, the proposed method chooses questions with higher value

of information compared with FastVOI at all costs. Fig. 1-e shows
the total value of information of all questions, and it is clear , again,

that the proposed method outperforms FastVOI on this front. The

difference between the exact and approximate variants is clearly

insignificant in terms of utility, and value of information.

7.2 Randomly Generated Scenarios
Realistic scenarios differed in both the number of outcomes and

relative competitiveness of the negotiation which makes it difficult

to assess the effects of problem size (|Ω |) on the performance. The

second experiment used randomly generated negotiation scenarios

to evaluate this effect. The setup was identical to the first experi-

ment but with utility functions sampled randomly from uniform

distributions over a variable number of outcomes (10, 50, 100, 500,

and 1000). A hard time-limit of 12 × |Ω | seconds was imposed on

all sessions. Fig. 2 shows the results of this experiment.
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(a) Utility

(b) Total Elicitation Time

(c) N. Questions

(d) VOI Per Question

(e) Total VOI

Figure 1: The performance of different elicitation algo-
rithms on realistic negotiation scenarios.

Fig. 2 reports the results of this experiment. With small outcome

spaces (10 outcomes), all elicitation algorithms behaved similarly

achieving performance comparable to ideal (except for random).

With an increased number of outcomes, the proposed algorithms

could consistently achieve higher accuracies compared with other

(a) Utility

(b) Elicitation Time/Outcome

Figure 2: The performance of different elicitation algo-
rithms on randomly generated negotiation scenarios.

elicitation algorithms (differences were statistically significant for

all settings except at 10 and 50 outcomes). Again, there was no dis-

cernible difference in the utility obtained by the exact and approxi-

mate variants of the proposed algorithm (Optimal and Approximate
in Fig. 2).

Fig. 2-b compares the elicitation time per outcome of different

methods. VOI based methods were, in general, more than three

orders of magnitude slower than random and Pandora with the

proposed algorithm being faster than FastVOI at outcome spaces

with less than 500 outcomes and slower than it for outcome spaces

with 1000 outcomes. Among VOI based methods, only FastVOI
scaled well with the number of outcomes. The proposed method has

a clear quadratic behavior with Approximate providing a constant
speedup compared to Optimal.

8 DISCUSSION AND LIMITATIONS
The results reported in Section 7 support the theoretical analysis of

Section 6. The proposed method can ask more relevant questions to
the user (Fig. 1-d, Fig. 1-e) with higher expected value of informa-

tion. Moreover, this improvement in the questions asked is reflected

as a slight increase in the actual utility obtained by the agent after

the negotiation compared with other elicitation algorithms (Fig. 1-a,

Fig. 2-a). The increase in utility is small especially for realistic and

small synthetic problems. The price paid for removing the need

to pre-define the questions and this improved performance is an

increase in the required elicitation time for problems with large

outcome spaces (Fig. 2-b) or high elicitation cost (Fig. 2-b). The ap-

proximate variant of the proposed algorithm was shown to achieve

almost the same utility, total VOI, and relative VOI compared to the

exact version at double the speed.

One limitation of the solution presented in this paper — and

almost all elicitation during negotiation in the literature [3, 4, 18] —

is the inability to use the internal structure of the utility function to
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guide the elicitation process. Another problem with the proposed

methodology is that it implicitly assumes that the opponent will

not walk away from the negotiation at any step.

Handling these limitations and analyzing the sensitivity of the

proposed method to variations in opponent modeling quality, the

initial uncertainty level, the bidding and acceptance strategies

among other factors will be directions for future research.

CONCLUSIONS
Utility elicitation during negotiation is an interesting and impor-

tant research direction that is starting to gain more attention from

researchers in automatic negotiation recently. This paper presents

a value-of-information based solution to this problem that does not

require prior knowledge of a discrete set of questions but can auto-

matically select questions with optimal VOI value from all possible

standard gambles. The paper presents a proof of optimality and both

a general algorithm valid for any disjoint probability distribution

over utility values and an efficient version for the special case of

uniform priors. The proposed algorithm was evaluated against the

baseline and state of the art elicitation algorithms and was shown

to select better questions and achieve higher utilities at the expense

of increased processing time for large outcome spaces.

APPENDIX A
A.1 Proof of Lemma 6.1
After receiving an answer to the question πk ?x , the agent should
update uπk as follows:

In case of a no, the new distribution is u−k where:

u−k (y) =

{ uπk (y)
Uπk (x )

0 ≤ y ≤ x

0 x < y ≤ 1

.

The division by the cumulative distributionU at x is required to

normalize the distribution u+k .

Similarly, in case of a yes answer, the new distribution is u+k
where:

u+k (y) =

{ uπk (y)
1−Uπk (x )

0 ≤ y ≤ x

0 x < y ≤ 1

.

From Equation 11:

µk |πk ?x = Uπk (x)
∫
1

0
u−k (x)dx+̂

(
1 −Uπk (x)

) ∫
1

0
u+k (x)dx

= Uπk (x)
∫ x
0
u−k (x)dx+̂

(
1 −Uπk (x)

) ∫
1

x u+k (x)dx

= Uπk (x)
∫ x
0

uπk (x )
Uπk (x )

dx

+
(
1 −Uπk (x)

) ∫
1

x
uπk (x )

1−Uπk (x )
(x)dx

=
∫ x
0
uπk (x) =

∫
1

x uπk (x) = uπk □

A.2 Proof of Lemma 6.2
The case considered is j+ = k = j−. Substituting from Equations 12

and 13 into Equation 15:

VOI (πk ?x) = δEEU |πk ≻x
(
1 −Uπk (x)

)
+ δEEU |πk ≺xUπk (x)

=
(
1 −Uπk (x)

)
MkPk

(
µ+k − µk

)
+Uπk (x)MkPk

(
µ−k − µk

)

Let z ≡ Uπk (x),

VOI (πk ?x) = MkPk

(
µ+k − µk − zµ

+
k + zµk + zµ

−
k − zµk

)
= MkPk

(
(1 − z) µ+k + zµ

−
k − µk

)
= MkPk

(
µk |πk ?x − µk

)
From Lemma 6.1:

VOI (πk ?x) = MkPk
(
µk |πk ?x − µk

)
= 0 □

A.3 Proof of Lemma 6.3
In this appendix, we show the proof for the case of Problem 1.

We start by the general form of Problem 1 after letting λ ≡
Uπk (x) for brevity:

f (x) = (1 − λ)
(
z +MkPj+µ

+
k

)
+ λ

(
y +MkPj−+1µ

−
k

)
. (17)

For a uniform distribution:

λ =
x − αk
βk − αk

, (1 − λ) =
βk − x

βk − αk
.

We know that uπk = U (αk , βk ) which leads directly to:

µ+k =

∫
1

x

uπk (x)

1 − λ
dx =

βk + x

2

,

µ−k =

∫
1

x

uπk (x)

λ
dx =

αk + x

2

.

Substituting into Equation 17:

f (x) = (1 − λ)
(
z +MkPj+µ

+
k

)
+ λ

(
y +MkPj−+1µ

−
k

)
=

βk−x
βk−αk

(
z +MkPj+

βk+x
2

)
+

x−αk
βx−αk

(
y +MkPj−+1

αk+x
2

)
=

2zβk−2zx+MkPj+
(
β 2

k−x
2

)
+2yx−2yαk+MkPj−+1

(
x 2−α 2

k

)
2(βk−αk )

With simple algebraic manipulation, we arrive at Equation 16

and derived the values for a,b, c in the first row of Table 1.

Now consider thea terms in Table 1: The denominator (2 (βk − αk )),
andMk are always positive. Moreover, for any two product terms

Pi , Pj ; i < j → Pi > Pj . This can easily be seen from the defini-

tion of product terms in Equation 8 because 1 −M
(
πj
)
≤ 1. By

construction, j+ < k < j− < j− + 1, which leads to:

a < 0

f (x) is a quadratic function with a strictly negative coefficient of

x2 which means that it opens down. Therefore, the unconstrained

optimization problem argmaxx f (x) has a single global maximum

which can be found by completing the square:

f (x) = ax2 + bx + c = (x − h)2 + k,

where h = −b
2a and k = c − ah2.

For Problem 1:

h =
−b

2a
= −1×

y − z

βk − αk
×

2 (βk − αk )

2Mk
(
Pj−+1 − Pj+

) = z − y

Mk
(
Pj−+1 − Pj+

)
The global maximum for f (x) will then occur at x+πk = h at

which the value of information VOI
(
πk ?x

+
πk

)
= f

(
x+πk

)
= k).

That proves Lemma 6.3 for Problem 1. The proof for Problems 2

and 3 follow exactly the same steps and will not be reported for

lack of space. □
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