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ABSTRACT
In face-to-face communication, humans subconsciously emit so-
cial signals which are picked up and used by their interlocutors
as feedback for how well the previously communicated messages
have been received. The feedback is then used in order to adapt
the way the coming messages are being produced and sent to the
interlocutor, leading to the communication to become as efficient
and enjoyable as possible. Currently however, it is rare to find con-
versational agents utilizing this feedback channel for altering how
the multimodal output is produced during interactions with users,
largely due to the complex nature of the problem. In most regards,
humans have a significant advantage over conversational agents
in interpreting and acting on social signals. Humans are however
restricted to a limited set of sensors, “the five senses”, which con-
versational agents are not. This makes it possible for conversational
agents to use specialized sensors to pick up physiological signals,
such as skin temperature, respiratory rate or pupil dilation, which
carry valuable information about the user with respect to the con-
versation. This thesis work aims at developing methods for utilizing
both social and physiological signals emitted by humans in order to
adapt the output of the conversational agent, allowing for an increase
in conversation quality. These methods will primarily be based on
automatically learning adaptive behavior from examples of real
human interactions using machine learning methods.
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1 INTRODUCTION
Speech based virtual assistants, such as Alexa, Google Assistant and
Siri have established themselves as a ubiquitous part of our daily
lives [6]. A similar tendency can also be noted for virtual agents and
social robots (both examples of conversational agents), which are
becoming increasingly prevalent in our daily environments – even
more so for public environments and institutions such as schools
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and care facilities for the elderly, as can be seen by the increasing
amount of research in those domains [9, 12, 17, 18]. In those circum-
stances the importance of efficient and enjoyable communication
is even higher. Some elderly people have a hard time adjusting to
interacting with robots. When faced with a robot which is speaking
too fast in a loud environment and is completely oblivious to the
confusion the users express through their non-verbal language,
the forthcoming disasters are inevitable. In such cases, the elderly
person (involuntarily) expresses confusion through non-verbal sig-
nals, which is something humans easily pick up and use to alter
the production of the coming messages (or if noticing a complete
failure, repeat or rephrase it).

The reignited developments in the field of machine learning dur-
ing the last decade have made it possible to train statistical models
based on large datasets from human behavior. This in turn can
allow for training models based on real examples of how humans
adapt their production of system output, while conditioned on using
the above mentioned signals, producing the same sorts of adapta-
tions humans would employ in similar situations, leading to more
efficient and enjoyable interactions.

This paper attempts to outline the necessary steps toward devel-
oping and evaluating a real-time system for conversational agents
which has been trained on human examples and previous interac-
tions, in order to learn how to adapt to its interlocutor based on
various input signals with the purpose of improving interaction
quality in terms of efficiency and enjoyment while conversing with
the system. The main research question for this thesis work is:
What methods can be used in order to create a model for
multimodal conversational agents engaging in face-to-face
interactions allowing adaption of conversational behavior
based on social and physiological signals with the purpose
of improving efficiency and enjoyment?.

The scope of this work is constricted in several ways. It assumes
that existing methods for generating multimodal system output
already are available, such as speech synthesizers, and the rendering
of facial expressions. The intention is to develop methods that use
already existing methods in combination with each other to create
a coherent output based on perceived input signals.

2 RELATEDWORK
Martins et al. recently conducted a survey of the field of adaptive
social robots. The authors chose to divide the literature into three
main categories; (a) adaptive systems with no user model, (b) systems
based on static user models and (c) systems based on dynamic user
models [25]. These categories will also be used below.
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(a) Adaptive systems with no user model are usually reactive
systems, reacting to a certain parameter in real time. For example
Lubhold et al. presents a system with a robot adapting its pitch to
the user’s pitch, following the concept of entrainment [24]. Hirsh-
field et al. used neurophysiological measurements to inform the
system of which gesture to use [14]. A basic method of conversa-
tional adaptation to the user is mimicry which has been explored
by several researchers [7, 32, 38]. Researchers have also investi-
gated using the emotional state of the user as an input parameter to
adaptive social robot [5, 10].

(b) Systems based on static user models are given a model of
the user at the beginning of the interaction, or creates one through
a calibration processes, and adapts to the user according to this
model through out the whole interaction. Torrey et al. adapted the
level of detail of help provided in a cooking task based on the user’s
previous experience [31]. Kistler et al. explored cultural adaptation
by the means of the agent’s proxemics behavior [21].

(c) Systems based on dynamic user models combines the methods
from the two previous categories such that it makes use of a user
model, but alters it continuously during the interaction. Several
researchers have been using reinforcement learning in order to
achieve this [13, 22, 36]. Additionally there are a few commercial
robots within this category [1–3].

This work primarily lies within category (c) as the intended
systemwill try to build a dynamic user model from the input signals
and use this to condition the generation of the output signal.

Vinciarelli et al. define social signals as “Social signals are spoken
and wordless messages like head nods, winks, uh, and yeah utter-
ances, which are sent by means of body gestures and postures, facial
expressions and gaze, vocal expressions and speech”. These social
signals carry communicative intentions, such as affective and cog-
nitive state, illustrators (for example pointing at a referred object),
etc [34]. Cognitive load and its negative impact on conversations
with dialog systems is for example an important aspect to take into
consideration [23]. Various methods of estimating cognitive load
from various multimodal signals has been extensively researched
[4, 20, 23, 37]. Furthermore researchers have attempted to estimate
user’s affective state [8, 22, 29] so that it can be used as an input
to conversational systems. Measuring physiological signals using
non-invasive methods is an active research field. For example mea-
suring heart rate using a consumer grade digital camera [33] or
using thermal cameras in order to measure the respiratory rate by
measuring the changes in temperature around the nose [16].

In order to generate facial expressions and gestures one can
look into the field of motion synthesis. Pham et al. and Karras et
al. have proposed methods for generating facial expressions in a
virtual agent using speech as input to the model [19, 28]. Holden
et al. describes how to model style variation in motion synthesis
using convolutional neural networks (CNN) [15]. Several authors
explore the concept of various embeddings, such as for example
Wang et al. where the authors present global style tokens (GST)
which encode speaking style [35]. Conditional variation autoen-
coders (CVAE) have been investigated in order to predict (but also
generate) plausible head motion sequences based on input audio
[11] Similarly Sadoughi and Busso used conditional generative
adversarial networks (GAN) for the same task [30].

3 METHOD
The problem can be formulated as three distinct parts; (1) methods
intended to capture multimodal human-human interactions con-
taining both social and physiological signals, and how the receiver
of these feedback signals acts on them, (2) defining which of these
signals are the most relevant, and whether they provide sufficient
information for the purpose of improving the current dialog and
lastly (3) implementing a system which can learn from examples
how humans adapt using those signals for altering the generation
of actions throughout the various modalities (e.g. facial expressions,
prosody, etc.).
(1) Data collection We need to be able to capture human-human
interactionswhere these social and physiological signals are present.
It is also of importance that these data capturing methods are un-
obtrusive and non-invasive. If the system is going to be able to
be used in a public environment, it should not require the user
to wear a special device on their body. To this end two methods
have been developed in the scope of this project; A high-quality
multi-sensory data recording framework for capturing rich syn-
chronized multimodal data from a limited amount of participant
interacting with each other [27], and a method that can be seen as
the opposite to the other, as it is intended to collect multimodal data
using crowdsourcing from a large amount of participants being
exposed to stimuli [26].
(2) Social and physiological signal perception In order to be
able to feed relevant social and physiological signals as control
parameters into the systems model, these have to first be defined
and evaluated making sure that they can successfully be used for
generating adaptive behavior. Facial expressions, gestures, gaze, body
posture and various prosodic features will primarily be investigated,
either separately or together. As for the physiological signals, there
are a number of interesting signals that will be investigated, such
as respiratory rate, heart rate, skin temperature, etc. The relevant
signals are those that can be used as proxies for underlying psycho-
logical states, such as cognitive load, valance or confusion.
(3) Generation of adaptive behavior The final part of this work
is considered with combining the previous efforts in order to be
able to generate adaptive conversational multimodal behavior based
on input signals from the user. Building on previous work and by
exploring the use of for example DNNs, GANs and CVAEs in the
context of learning how humans produce adaptive behaviors in
conversations, conditioned on the social and physiological signals,
it is hopefully possible to produce output which is achieving the
goal of improving the interaction with the system, i.e. increasing
the efficiency and enjoyment.

An important and crucial aspect is how to evaluate the adaptive
behavior generation. The final system will be compared with a
baseline system which does not adapt to the user. In a series of
within subject experiments, users will interact with both systems
and evaluate enjoyment, social presence and other related measures.
These interactions will also be evaluated by third-party observers.
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