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ABSTRACT
Mechanism design is the task to design algorithms, toward desired
objectives, that is robust to potential manipulation by strategic
players. Traditionally, it is assumed that the mechanism designer
and the players in the economy share some common knowledge.
However, as pointed out by Wilson, such common knowledge is
“rarely present in experiments and never in practice”, and “only
by repeated weakening of common knowledge assumptions will
the theory approximate reality.” In the work, we mainly focus on
designing resilient mechanisms that work properly even in such a
less foreseeable environment.

Bayesian auction design is a very flourishing topic in the field
of mechanism design, where an important simplifying assumption
is both the seller and the players know the exact distributions of
all players’ valuations. In this work we first consider the query
complexity of Bayesian mechanisms, where we only allow the seller
to have limited oracle accesses to the players’ value distributions
via simple queries. Then we further weaken the assumption by con-
sidering an information structure where the knowledge about the
distributions can be arbitrarily scattered among the players. In both
of these two unstructured information settings, we design mech-
anisms that are constant approximations to the optimal Bayesian
mechanisms with full information.

Finally, we study an envy-free allocation problem that the un-
structured beliefs need to be taken into consideration. In particular,
we model an environment where each player is unaware of the
bundles (or allocated items) of other players, but still knows he
does not receive the worst bundle. We present both conceptual and
algorithmic results for this new envy-free allocation domain.
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1 BAYESIAN AUCTION DESIGN
Bayesian auction design has been extremely flourishing since the
seminal work of [30]. One of the main focuses is to generate rev-
enue, by sellingm heterogenous items to n players. Each player
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i has a private value for each item j, vi j ; and each vi j is indepen-
dently drawn from some prior distribution Di j . When the prior
distribution D ≜ ×i jDi j is of common knowledge to both the seller
and the players (the common prior assumption), optimal Bayesian
incentive-compatible (BIC) mechanisms have been discovered for
various auction settings [9, 30], where all players reporting their
true values forms a Bayesian Nash equilibrium.

Following [33], a lot of effort has been made to remove the com-
mon prior assumption. When there is no common prior but the
seller knows D, many (approximately) optimal dominant-strategy
incentive-compatible (DSIC) Bayesian mechanisms have been de-
signed [5, 10, 11, 14, 15, 24, 27, 34], where it is each player’s domi-
nant strategy to report his true values. In prior-free mechanisms
[21, 25] the distribution is unknown and the seller learns it from
the values of randomly selected players. In [8, 20, 22, 26, 29] the
seller observes independent samples from the distribution before
the auction begins. In robust mechanism design [6] the players
have arbitrary probabilistic belief hierarchies about each other and
in [18, 19] the players have arbitrary possibilistic belief hierarchies.
In crowdsourced Bayesian auctions [1] each player privately knows
all the distributions. Parametric mechanisms [2, 3] assume the seller
knows some specific parameters about the distributions. Recently,
[8] studies auctions where the seller knows some approximate
distribution that is close to the true prior.

2 QUERY COMPLEXITY OF BAYESIAN
AUCTIONS

In the literature, the complexity for the seller to carry out such
mechanisms is largely unconsidered. Most existing Bayesian mech-
anisms require that the seller has full access to the prior distribution
D and is able to carry out all required optimizations based onD, so
as to compute the allocation and the prices. Unfortunately the seller
may not be so knowledgeable or powerful in real-world scenarios.
If the supports of the distributions are exponentially large (inm and
n), or if the distributions are continuous and do not have succinct
representations, it is hard for the seller to write out “each single bit”
of the distributions or precisely carry out arbitrary optimization
tasks based on them. Thus, a natural and important question to ask
is how much the seller should know about the distributions in order
to obtain approximately optimal revenue.

To answer the above question, in this section, we study the
query complexity [17] of Bayesian mechanisms, where the seller
does not know anything about the distribution, but some powerful
institutes, say the Office for National Statistics, may actually have
such information all figured out and stored in its database. We only
allow the seller to have limited oracle accesses to the players’ value
distributions, via quantile queries and value queries. That is, the seller
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queries the oracle with specific quantiles (respectively, values), and
the oracle returns the corresponding values (respectively, quantiles)
in the underlying distributions. These two types of queries happen a
lot in market study. Indeed, the seller may wish to know what is the
price he should set so that half of the consumers would purchase
his product; or if he sets the price to be 200 dollars, how many
consumers would buy it.

Main Results. For monotone subadditive auctions, we prove log-
arithmic lower-bounds for the query complexity for any DSIC
Bayesian mechanism to be of any constant approximation to the
optimal revenue. For single-item auctions and multi-item auctions
with unit-demand or additive valuation functions, we prove tight
upper-bounds via efficient query schemes, without requiring the
distributions to be regular or MHR. Thus, in those auction settings
the seller needs to access much less than the full distributions in
order to achieve approximately optimal revenue.

3 INFORMATION ELICITATION FOR
BAYESIAN AUCTIONS

An even more challenging situation is that the distributions are
actually known by the players themselves that participate in the
auctions (like long-time competitors in the market), then they have
their own stakes about the final allocation and prices. For example,
the seller might be the government that decides how to allocate
spectrum licenses to telecom firms and the firms indeed know
more than the government about the value of a specific block of
frequencies. In this section, we consider a framework for auctions
where the knowledge about the players’ value distributions are
arbitrarily scattered among the players and the seller must elicit
and aggregate pieces of information from all players to gain a good
understanding about the distributions, so as to decide how to sell
the items [16]. We adopt an information elicitation approach [28]
to address the above challenge and show that the seller can use
the players as the oracle and get the truthful distributions, while
keeping them also truthful about their own values.

We introduce directed knowledge graphs to succinctly describe
the players’ knowledge. Each player knows the distributions of his
neighbors, different items’ knowledge graphs may be different, and
the structures of the graphs are not known by anybody. Our goal
is to design 2-step dominant strategy truthful (2-DST) information
elicitation mechanisms whose expected revenue approximates that
of the optimal BIC mechanism. A 2-DST mechanism [1] is such
that, (1) no matter what knowledge the players may report about each
other, it is dominant for each player to report his true values; and (2)
given that all players report their true values, it is dominant for each
player to report his true knowledge about others.

Main Results. In such an unstructured information setting, we
design mechanisms for auctions with unit-demand and additive
valuations that aggregate the players’ knowledge, generating rev-
enue that are constant approximations to the optimal Bayesian
mechanisms with a common prior. Our mechanisms are 2-DST and
the revenue increases gracefully with the amount of knowledge the
players collectively have. Moreover, we show that for single-item
auctions, if the knowledge graph has nice combinatorial structures
(but may still be very sparse), then nearly optimal revenue can be
generated by leveraging such structures.

4 MAXIMIN-AWARE ALLOCATIONS OF
INDIVISIBLE GOODS

In the last few years or so, there has been a tremendous demand
for fair division services to provide systematic and fair ways of
dividing a set of indivisible m goods such as tasks, courses, and
properties among a group of n players without money transfer, so
that the players do not envy each other. To capture the fairness
of an allocation, envy-freeness (EF) [23] (as well as its relaxations,
such as envy-freeness up to one good (EF1) [7] and envy-freeness
up to any good (EFX) [12]) is often used to ensure that each player
should not envy or prefer the allocated goods of other players.

In this section, we study an envy-free allocation domain where
the planner of the division tasks wishes to withhold allocation in-
formation of others from the user or the user simply does not know
the allocation of others in the system. First, in many private fair
allocations of goods such as tasks or gifts, the planner requires the
system to preserve anonymity as not to give away the received
bundles of other players. Second, due to the large number of (un-
related) players and items that could be potentially be involved
in the division tasks (e.g., on the Internet such as MTurks), it is
not meaningful for the planner to provide such information due to
various reasons.

Proportionality (PROP) [32], maximin share (MMS) [7], and epis-
temic envy-free (EEF) [4] are three widely studied and well accepted
fair allocation notions, all of which are defined for unaware play-
ers. However, MMS allocations only guarantee each player’s best
minimum value, and the value of some player’s bundle can still be
the least compared with others, which may cause significant envy;
and PROP and EEF allocations (and their relaxations, e.g., removing
any item) barely exist and cannot be properly approximated.

Motivated by this domain, we focus on answering the following
questions [13]. When indivisible goods are to be allocated among
unaware players, what is the appropriate envy-free notion and how
efficiently can the allocation be found subject to the envy-free notion?

Main Results. First, we introduce a novel fairness notion of max-
imin aware (MMA), which guarantees that the player’s bundle value
is at least as much as her value for some other player’s bundle, no
matter how the remaining goods are distributed, i.e., there is al-
ways somebody who gets no more than her. We also provide two
relaxations of MMA: MMA1 and MMAX.We show that MMA1 (and
MMAX) potentially has stronger egalitarian guarantee than EF1
and such an allocation is guaranteed to exist for a broader class of
valuations than MMS and EFX. Second, we present a polynomial-
time algorithm that computes an allocation such that every player
is either 1

2 -approximate MMA or exactly MMAX for additive valua-
tions. Interestingly, the allocation returned by our algorithm is also
1
2 -approximate EFX when all players have subadditive valuations,
which improves the existence result of [31].
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