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ABSTRACT
Link prediction is one of the fundamental problems in compu-
tational social science. A particularly common means to predict
existence of unobserved links is via structural similarity metrics,
such as the number of common neighbors; node pairs with higher
similarity are thus deemed more likely to be linked. However, a
number of applications of link prediction, such as predicting links
in gang or terrorist networks, are adversarial, with another party
incentivized to minimize its e�ectiveness by manipulating observed
information about the network. We o�er a comprehensive algo-
rithmic investigation of the problem of attacking similarity-based
link prediction through link deletion, focusing on two broad classes
of such approaches, one which uses only local information about
target links, and another which uses global network information.
While we show several variations of the general problem to be
NP-Hard for both local and global metrics, we exhibit a number
of well-motivated special cases which are tractable. Additionally,
we provide principled and empirically e�ective algorithms for the
intractable cases, in some cases proving worst-case approximation
guarantees.
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1 INTRODUCTION
Link prediction is a fundamental problem in social network analysis.
A common approach to predicting a target link (u,�) is to use an
observed (sub)network to infer the likelihood of the existence of this
link using a measure of similarity, or closeness, of u and � ; we call
this similarity-based link prediction [1, 11, 19, 25]. For example, if u
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and� are individuals who have many friends in common, it may be
natural to assume that they are themselves friends. Representational
power of social networks implies very broad application of link
prediction techniques, ranging from friend recommendations to
inference of criminal and terrorist ties.

A crucial assumption in conventional similarity-based link pre-
diction approaches is that the observed (sub)network is measured
correctly. However, insofar as link prediction may reveal relation-
ships which associated parties prefer to keep hidden—either for the
sake of privacy, or to avoid being apprehended by law enforcement—
it introduces incentives to manipulate network measurements in
order to reduce perceived similarity scores for target links.

In order to systematically study the ability of an “adversary” to
manipulate link prediction, we formulate attacks on link prediction
as an optimization problem in which the adversary aims to mini-
mize the total weighted similarity scores of a set of target links by
removing a limited subset of edges from the observed subnetwork.
We present a comprehensive study of this algorithmic problem,
focusing on two important subclasses of similarity metrics: local
metrics, which make use of only local information about the target
link, and global metrics, which use global network information. We
show that the problem is in general NP-Hard even for local metrics,
and our hardness results are stronger for the commonly used Katz
and ACT global similarity metrics (for example, the problem is hard
for these metrics even if there is only a single target link).

On the positive side, we exhibit a number of important special
cases when the problem is tractable. These include attacks on local
metrics when there is a single target link, or a collection of tar-
get nodes (such as gang members) with the goal of hiding links
among them. Additionally, we present practical algorithms for the
intractable cases, including global similarity metrics. In a number of
such settings, we are able to provide provable approximation guar-
antees. Finally, we demonstrate the e�ectiveness of the approaches
we develop through an extensive experimental evaluation.

Related Work. Link prediction has been extensively studied in
multiple domains such as social science [11], bioinformatics [2],
and security [7]. There are two broad classes of approaches for link
prediction: the� rst based on structural similarity [11, 13] and the
second using learning [1, 14, 18, 20]. This work is focused on the
former, which commonly use either local information [9, 28], rely

Session 1F: Agent Societies and Societal Issues 1 AAMAS 2019, May 13-17, 2019, Montréal, Canada

305



on paths between nodes [8, 12], or make use of random walks [4]
(we view the latter two categories as examples of global metrics).

Our work is connected to several e�orts studying vulnerability of
social network analysis (SNA). Michalak et al. [15] suggest consid-
ering strategic considerations in SNA, but do not o�er algorithmic
analysis. Waniek et al. study attacks against centrality measures
and community detection [21, 22]. There is considerable literature
on hiding or anonymizing links on networks (e.g., [23, 24, 26]), but
these approaches allow arbitrary graphmodi�cations and are in any
case heuristic, often proposing randomly swapping or rerouting
edges. In contrast, we provide the� rst comprehensive algorithmic
study of the problem of hiding links by merely deleting observed
edges (i.e., preventing them from being observed), and the�rst
strong positive algorithmic results.

2 PROBLEM FORMULATION
2.1 Similarity Metrics
One of the major approaches for link prediction both in the network
science literature and in practice is via the use of similarity met-
rics [11]. Speci�cally, suppose wewish to knowwhether a particular
link (u,�) connecting nodes u and � exists. A structural similarity
metric Sim(u,�) quanti�es the extent to which the nodes u and
� have shared topological properties, such as shared neighbors,
with the idea that higher similarity scores imply greater likelihood
that u and � are connected. Below, we will distinguish two types
of similarity metrics: local, which only use information about the
nodes and their immediate neighbors, and global, which make use
of global information about the network.

2.2 Attack Model
At the high level, our goal is to remove a subset of observed edges
in order to minimize perceived similarity scores of a collection of
target (and, presumably, existing) links. This could be viewed both
from the perspective of vulnerability analysis, where the goal of
link prediction is to identify relationships among malicious parties
(such as gang members), or privacy, where the “attacker” is not
malicious, but rather aims to preserve privacy of a collection of
target relationships.

To formalize the problem, consider an underlying graph G =

(V ,E) representing a social network, where V is the set of nodes
and E is the set of edges. This graph is not fully known, and instead
an analyst obtains answers for a collection of edge queries Q from
the environment, where for each query (u,�) 2 Q , they observe the
associated edge if (u,�) 2 E, and determine that the edge doesn’t
exist otherwise. The partially constructed graph GQ = (VQ ,EQ )
based on the queries Q is then used to compute similarity metrics
Sim(u

0,� 0
) for any potential edges (u 0,� 0

) < Q .
An attacker has a collection of target links H they wish to hide,

and can remove a subset of at most k edgs in EQ ⌘ E \Q to this
end. While there are many ways to express the attacker’s objective
mathematically, a relatively natural and general approach is to
minimize the weighted sum of similarity scores of links in H :

min
Ea ⇢EQ

ft (Ea ) ⌘
’

(u,�)2H
wu�Sim(u,� ;Ea ), s.t. |Ea |  k, (1)

where wu� is the weight representing the relative importance of
hiding the link (u,�), and we make explicit the dependence of
similarity metrics on the set of removed edges Ea . Henceforth, we
simplify notation by keeping this dependence implicit.

3 ATTACKING LOCAL SIMILARITY METRICS
Our analysis covers nine representative local similarity metrics
(summarized in the supplement) that are commonly used in the
state-of-the-art link prediction algorithms. We� rst systematically
divide local metrics into two sub-class: Common Neighbor Degree
(CND) and Weighted Common Neighbor (WCN) metrics, depend-
ing on their special structures. Next, we show that attacking all
local metrics is NP-Hard. We follow this negative result with an
approximation algorithm exhibiting a solution-dependent bound.
Finally, we present polynomial-time algorithms for well-motivated
special cases.

We begin by introducing some notation. We denote U = {ui } as
the union of end-nodes, termed target nodes, of the target links inH .
Assume |U | = n. LetW = {w1,w2, · · · ,wm } be the set of common
neighbors of the target nodes, where each wi 2 W connects to
at least two nodes in U . Let N (ui ,uj ) denote the set of common
neighbors of ui and uj . For any node ui 2 V , let d(ui ) be its degree.
We use a decision matrix X 2 {0, 1}m⇥n to denote the states of
edges among the nodes inW and U , where the entry xi j in the
i-th row and j-th column of X equals 1 if there is an edge between
wi and uj ; otherwise, xi j = 0. We will say the attacker erases xi j
(when xi j = 1) to denote the fact that the attacker deletes the edge
betweenwi and uj (thus setting xi j as 0).

3.1 Classi�cation of Local Metrics
We now make a useful distinction between two classes of local
metrics that use somewhat di�erent local information.

De�nition 3.1. Ametric Sim is a CNDmetric if the corresponding

total similarity ft has the form
Õm
r=1Wr

Õ
i, j |(ui ,uj )2H xr i ·xr j

fr (Sr )
, where

fr is a metric-dependent increasing function of Sr , the sum of r th
row of decision matrix X , andWr is an associated weight.

The metrics Adamic-Adar (AA), Resource Allocation (RA), and
Common Neighbors (CN) are CND metrics. We note that the sumÕ
i, j |(ui ,uj )2H xr i ·xr j is over all links inH . For simplicity, we write

the sum as
Õ
i j henceforth.

De�nition 3.2. A metric Sim is a WCN metric if

• it has the form Sim(ui ,uj ) =
|N (ui ,uj ) |

�(d (ui ),d (uj ), |N (ui ,uj ) |)
, where

� is strictly increasing in d(ui ) and d(uj ). That is �(d(ui ) �
t ,d(uj ) � s)  �(d(ui ),d(uj )) for any valid non-negative
integers t and s and any valid value of |N (ui ,uj )|.

• Sim is strictly increasing in |N (ui ,uj )|. That is, Sim(|N (ui ,uj )|�
t)  Sim(|N (ui ,uj )|), for any valid non-negative integer t
and any valid values of d(ui ) and d(uj ).

The WCN metrics include many common metrics, such as Jac-
card, Sørensen, Salton, Hub Promoted, Hub Depressed, and Leicht.

By the above de�nitions, we know a rational attacker will only
delete edges between nodes inW and nodes in U , since deleting
other types of edges will either decrease d(ui ) or d(wi ), causing the
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similarity to increase. Thus, the total similarity ft is fully captured
by the decision matrix X . As a result, attacking local similarities is
formulated as an optimization problem, termed as Prob-Local:

min
X

ft (X ), s.t. Sum(X
0
� X )  k, (2)

where X 0 is the original decision matrix and Sum(·) denotes the
element-wise summation.

3.2 Hardness Results
We start by making no restrictions on the set of target links H .
In this general case, we show that attacking all local metrics is
NP-hard.

T������3.3. Attacking local similarity metrics is NP-Hard.

P����. As attacking local similarity metrics is modelled as an
optimization problem, we consider the corresponding decision prob-
lem: can an attacker delete up to k edges such that the total similar-
ity ft is no greater than a constant �? We note that the minimum
possible ft for all local metrics in a connected graph is 0. Thus, we
consider the decision problem PL , which is to decide whether one
can we delete k edges such that ft = 0.

We use the vertex cover problem for reduction. Let PVC denote
the decision version of vertex cover, which is to decide whether
there exists a vertex cover of size k given a graph G and an integer
k .

Given an instance of vertex cover (i.e., a graph G = (V ,E) and
an integer k), we construct our decision problem PL as follows. We
�rst construct a new graph Q in the following steps:

• For each node �i 2 V , create a node �i for graph Q.
• Add another nodew to Q and connectw to each �i .
• Add n = |V | nodesu1, · · · ,un and add an edge between each
pair of nodes (ui ,�i ).

• Add an edge between (ui ,ui+1), for i = 1, 2, · · ·n � 1.
The set H of target links is then H = {(�i ,�j )} in Q if and only if
(�i ,�j ) is an edge in G. Our decision problem PL is then constructed
regarding this graph Q and target set H .

Now, we show PL and PVC are equivalent. We use CN metrics as
an example and show that the same proof can be applied to other
local metrics by slightly modifying the constructed graph Q.

First, we show if there is a vertex cover of size k in graph
G, then we can delete k edges such that ft (H ) = 0 in Q. Sup-
pose Vc is a vertex cover with |Vc | = k . Without loss of general-
ity, let Vc = {�1, · · · ,�k }. Then we show that deleting k edges
(�1,w), · · · , (�k ,w) will make ft (H ) = 0. Let (�i ,�j ) 2 H be an
arbitrary target link. Then (�i ,�j ) corresponds to an edge in G. By
the de�nition of vertex cover, we have at least one of �i and �j is
in Vc . We can assume �i 2 Vc . Since �i and �j have only one com-
mon neighborw in Q, deleting (�i ,w)will makeCN (�i ,�j ) = 0. As
(�i ,�j ) is arbitrarily selected, we haveCN (�i ,�j ) = 0 for any target
link (�i ,�j ) 2 H . Thus, we have found k edges whose deletion will
make ft (H ) = 0.

Second, we show if we can delete k edges to make ft (H ) = 0 in
Q, the we can� nd a vertex cover of size k in G. Suppose we found
k edges whose deletion will make ft (H ) = 0. Then each deleted
edge must be (w,�i ) for some i = 1, · · · ,n, since deleting other

types of edges will not decrease ft (H ). Without loss of generality,
we assume the k deleted edges are (w,�1), · · · , (w,�k ). We then
show that Vc = {�1, · · · ,�k } forms a vertex cover in G. Since
8(�i ,�j ) 2 H ,CN (�i ,�j ) � 0, ft (H ) = 0means thatCN (�i ,�j ) = 0
for very target link. As each target link (�i ,�j ) initially has one
common neighbor w , we know at least one of �i and �j is in set
Vc ; otherwise, CN (�i ,�j ) = 1 making ft (H ) > 0. As each (�i ,�j )
corresponds to an edge in G, we know each edge in G has at least
one end node in VC . By de�nition, Vc is a vertex cover of size k .

As a result, PL and PCV is equivalent, proving that minimiz-
ing CN metric is NP-hard. The other local metrics are di�erent
variations of CN metrics. To make the above proof applicable for
other metrics, we need to construct graph Q such that ft (H ) = 0
if and only if there is no common neighbors between each pair of
target link. To achieve this, we can slightly modify the graph Q

constructed previously for CN metric. For CNDmetrics, we can add
some isolated nodes to Q and connectw with each of the isolated
nodes. For WCN metrics, we can add some isolated nodes for each
node �i and connect each isolated node with �i to make sure that
the degree of each �i is always positive. Then the previous proof
holds for other local metrics. ⇤

3.3 Practical Attacks
Since in general attacking even local metrics is hard, we have two
ways of achieving positive results: approximation algorithms and
restricted special cases.We start with the former, and exhibit several
tractable special cases thereafter.

To obtain an approximation algorithm for the general case, we
use submodular relaxation. Speci�cally, we bound the denominator
of each term of ft by constants as if all the budget were assigned
to decrease that single term, arriving at an upper bound ftu for the
original objective ft .

For WCN metrics, let �i j be the denominator of Sim(ui ,uj ). For
each�i j , we bound it by Li j  �i j  Ui j , where Li j is obtainedwhen
k edges are deleted andUi j is obtainedwhen no edge is deleted. Take
Sørensen metric as an example, where Sim(ui ,uj ) =

2 |N (ui ,uj ) |
d (ui )+d (uj )

.
Then d0i +d

0
j �k  d(ui )+d(uj )  d

0
i +d

0
j , where d

0
i and d

0
j denote

the original degrees of ui and uj , respectively. In this way, each
similarity is bounded as

|N (ui ,uj )|

Ui j
 Sim(ui ,uj ) 

|N (ui ,uj )|

Li j
.

Let fWCN
tu =

Õ
i j

|N (ui ,uj ) |
Li j and f

WCN
tl =

Õ
i j

|N (ui ,uj ) |
Ui j . Then

f
WCN
tl  f

WCN
t  f

WCN
tu .

Similarly, for CND metrics, the denominator in each term fr (Sr )
is bounded by fr (S0r ) � k  fr (Sr )  fr (S0r ), where S

0
r denotes

the sum of the r th row of the original decision matrix X
0. Then

f
CND
tl  f

CND
t  f

CND
tu , where f

CND
tl =

Õm
r=1Wr

Õ
i jxr ixr j
fr (Sr )

and f
CND
tu =

Õm
r=1Wr

Õ
i jxr ixr j

fr (Sr )�k
. Due to the similarity between

the structures of fWCN
t and f

CND
t , we will focus on f

WCN
t and

omit the superscriptWCN in the following analysis. The proposed
approximation algorithm and the associated bound analysis are
also applicable for f CND

t .
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Optimizing Bounding Function. We now consider minimizing
ftu . Let S 0 be the set of edges that the attacker chooses to delete.
Then set S 0 is associated with a decision matrix X 0. For any S ⇢

S
0, we have X � X

0, where X is the matrix associated with S

and � denotes component-wise comparison. De�ne a set function
F (S) = ftu (X 0

) � ftu (X ). Clearly, F (;) = 0. Then minimizing ftup
is equivalent to

max
S ⇢EQ

F (S), s.t. |S |  k . (3)

T������3.4. F (S) is a monotone increasing submodular function.

P����. Assume S ⇢ S
0, we need to show F (S)  F (S

0
). It is

equivalent to show ftu (X ) � ftu (X 0
). Let Ci be the ith column of

X . Then |N (ui ,uj )| = hCi ,Cj i, where hCi ,Cj i denotes their inner
product. Now, ftu (X ) =

Õ
i j

wi j hCi ,Cj i
Li j , where the weightswi j and

Li j are constants. Since X � X
0, we have hCi ,Cj i � hC

0
i ,C

0
j i for

every pair of i, j . Thus, ftu (X ) � ftu (X 0
). That is, F (S) is monotone

increasing.
Let an edge e < S

0 be associated with the p-th row and q-th
column entry in X . Let e [ S be associated with a matrix X e , where
the only di�erence betweenX e andX is that xepq = 0while xpq = 1.
Similarly, let e[S 0 be associated with a matrixX

0e . De�ne �(e |S) =
F (e [ S) � F (S) and �(e |S 0) = F (e [ S

0
) � F (S

0
). Then we need to

show �(e |S) � �(e |S 0).

�(e |S) = ftu (X ) � ftu (X
e
) =

’
j

w jq

Ljq
hCj ,Cqi �

’
j

w jq

Ljq
hC

e
j ,C

e
qi

=
’
j

w jq

Ljq
xpj · xpq �

’
j

w jq

Ljq
x
e
pj · x

e
pq =

’
j

w jq

Ljq
xpj ,

where the sum
Õ
j is over all pairs of (j,q) such that (uj ,uq ) 2 H .

The second equality holds as deleting edge e will only a�ect the
q-th column. The last equality holds since xpq = 1 and xepq = 0.

Similarly, we can obtain �(e |S 0) =
Õ
j
w jq
Ljq x

0
pj . Then �(e |S) �

�(e |S 0) =
Õ
j
w jq
Ljq (xpj�x

0
pj ). Since (xpj�x

0
pj ) � 0, we have �(e |S)�

�(e |S 0) � 0. By de�nition, F (S) is submodular. ⇤

Problem (3) is to maximize a monotone increasing submodular
function under cardinality constraint. The typical greedy algorithm
for such type of problems achieves a (1� 1/e)-approximation of the
maximum. In particular, the greedy algorithm will delete the edge
that will cause the largest increase in F (S) step by step until k edges
are deleted. Suppose the greedy algorithm outputs a sub-optimal
set S⇤, which corresponds to a minimizer X ⇤

u of ftu (X ). We then
take the value ft (X ⇤

u ) as the approximation of ft (X ⇤
), where X ⇤ is

the optimal minimizer of ft . We term this approximation algorithm
as Approx-Local.

Bound Analysis. We theoretically analyze the performance of
our proposed approximation algorithm Approx-Local.1 Let X ⇤, X ⇤

u ,
and X ⇤

l be the minimizers of ft , ftu , and ft l , respectively. De�ne
the gap between ft and ftu as �(X ) = ftu (X ) � ft (X ), which is a
function of the decision matrix X .
1We note that for the CN metric in particular, the set function F (S ) is the actual
objective. Consequently, the greedy algorithm above yields a (1� 1/e)-approximation
in this case.

T������3.5. The gap �(X ) is an increasing function of X .

P����. Consider a particular term of �(X ), which is denoted as
�i j (X ) =

wi j
Li j hC

X
i ,C

X
j i �

wi j

�(d (ui ),d (uj ), hCX
i ,CX

j i)
hC

X
i ,C

X
j i, where

C
X
i denotes the ith column ofX . For simplicity, write �(d(ui ),d(uj ),

hC
X
i ,C

X
j i) as �(X ).

Consider an edge connecting to ui is deleted. This corresponds
to the case when an entry in C

X
i is erased. Denote the resulting

matrix as Y . Then X � Y . The gap at Y is �i j (Y ) = wi j (
hCY

i ,C
Y
j i

Li j �

hCY
i ,C

Y
j i

�(Y ) ).

�i j (X ) � �i j (Y )

wi j
=

hC
X
i ,C

X
j i � hC

Y
i ,C

Y
j i

Li j
+

hC
Y
i ,C

Y
j i

�(Y )
�

hC
X
i ,C

X
j i

�(X )

As � is strictly increasing in d(ui ) and d(uj ), it is increasing in
X . Then we have �(X ) � �(Y ). Thus,

�i j (X ) � �i j (Y )

wi j
�

hC
X
i ,C

X
j i � hC

Y
i ,C

Y
j i

Li j
+

hC
Y
i ,C

Y
j i

�(Y )
�

hC
X
i ,C

X
j i

�(Y )

= (hC
X
i ,C

X
j i � hC

Y
i ,C

Y
j i)(

1
Li j

�
1

�(Y )
) � 0.

The last inequality holds as Li j is the lower bound (i.e., Li j  �(Y )).
As �(X ) is the weighted sum over all pair of target links, we have
�(X ) � �(Y ). ⇤

Theorem 3.5 states that the gap between the total similarity
and its upper bound function is closing as we delete more edges
(i.e., X becomes smaller). We further provide a solution-dependent
bound of g = ft (X ⇤

u ) � ft (X ⇤
), which measures the gap between

the minimum of ft output by our proposed algorithm and the real
minimum.

g  ftu (X
⇤
u ) � ft (X

⇤
)  ftu (X

⇤
u ) � ft l (X

⇤
)  ftu (X

⇤
u ) � ft l (X

⇤

l ).

Such a gap depends on the solutions X ⇤
u and X ⇤

l . We evaluate the
gap through extensive experiments in Section 5.

3.4 Tractable Special Cases
We identify two important special cases for which the attack models
are signi�cantly simpli�ed. The� rst case considers attacking a
single target link and optimal attacks can be found in linear time
for all local metrics. The second case considers attacking a group
of nodes and the goal is to hide all possible links among them. We
demonstrate that optimal attacks in this case can be found e�ciently
for the class of CND metrics.

Due to the space limit, we only highlight some key observations
and present some important results. The full analysis is in the
extended version [27] of the paper.

3.4.1 A�acking a Single Link. When the target is a single link
(u,�), the attacker will focus only on the links connecting u or �
with their common neighbors, denoted as N (u,�) = {wi }si=1. Let
xiu = 0 denotes that attacker chooses to delete the link between
wi and u and xiu = 1 otherwise.

P����������3.6. For CND metrics, Sim(u,�) =
Õs
i=1

xiuxi�
�(d (wi ))

,
where � is a non-decreasing function of d(wi ).
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To minimize a CND, the attacker will remove edges incident to
common neighbors w in increasing order of degree d(w). In fact,
this algorithm is optimal and has a time complexity O(|N (u,�)|).

ForWCNmetrics, consider a tuple (u,w,�)wherew is a common
neighbor ofu and� . We divide the links surrounding (u,�) into four
sets: E1 = {(u,w)}, E2 = {(�,w)}, E3 = {(u, s)}, and E4 = {(�, s)},
where s denotes a non-common neighbor ofu and� . As the attacker
deletes links from EQ , there are four possible states of the tuples
between u and � . In state 1, both (u,w) and (w,�) are deleted. In
state 2, (u,w) is deleted while (w,�) is not. In state 3, (w,�) is
deleted while (u,w) is not. In state 4, neither (u,w) not (w,�) is
deleted. We use integer variables �1,�2,�3 to denote the number of
tuples in state 1, 2, 3, respectively. Furthermore, let �4 and �5 be the
number of deleted edges from E3 and E4, respectively. In this way,
the vector (�1,�2,�3,�4,�5) fully captures an attacker’s strategy.

P����������3.7. A WCN metric can be written as Sim(u,�) =
f (�1,�2,�3,�4,�5) such that f is decreasing in �2 and �3 and f is
increasing in �4 and �5.

Our analysis shows that in an optimal attack, �⇤1 = �
⇤
4 = �

⇤
5 = 0

and �⇤2 + �
⇤
3 = k . That is, the attacker will always choose k edges

from E1 [ E2 to delete. The following theorem then speci�es how
the attacker can optimally choose edges.

T������3.8. The optimal attack on WCN metrics with a single
target link selects arbitrary�⇤2 links from E1 and (k��⇤2) links from E2
to delete with the constraint that for any selected links (u,w1) 2 E1
and (�,w2) 2 E2, w1 , w2. The value of �⇤2 is the solution of a
single-variable integer optimization problem.

The time complexity of solving the single-variable integer opti-
mization problem is bounded in O(k).

3.4.2 A�acking A Group of Nodes. We consider the special case
where 1) the target is a group of nodes U and the links between
each pair of nodes inU consist the target link set H ; 2) each link in
H has equal weight. In this case, optimal attacks on CND metrics
can be found in polynomial time.

P����������3.9. For CND metrics, the total similarity ft has the
form

Õm
i=1 fi (Si ), where Si is the sum of the ith row of X and fi (Si )

is a convex increasing function of Si .

Proposition 3.9 states that ft for CND metrics can be written
as a sum of independent functions, where each function fi is a
convex increasing function. We then propose a greedy algorithm
termed Greedy-CND to minimize f

CND
t . In essence, Greedy-CND

takes as the input S0, which is the row sum of the initial decision
matrix X , and decreases an entry in S0 whose decreasing causes
the maximum decrease in f

CND
t step by step until an upper bound

of k edges are deleted. This algorithm turns out to be optimal, as
we prove in the extended version of the paper.

4 ATTACKING GLOBAL METRICS
In this section, we analyze attacks on two common global similarity
metrics: Katz and ACT. We begin with attacks on a single link and
show that� nding optimal attack strategies is NP-hard even for a
single target link.

Let A 2 {0, 1}N⇥N and D be the adjacency matrix and degree
matrix of the graph GQ , respectively. The Laplacian matrix is de-
�ned as L = D �A. The pseudo-inverse of L is L† = (L � E)

�1 + E,
where E is an (N ⇥N )matrix with each entry being 1

N . We use a bi-
nary vector y 2 {0, 1}M to denote the states of edges in EQ , where
�i = 0 i�the ith edge in EQ is deleted. Finally, y  y0 (A  A

0) is a
component-wise inequality between vectors (matrices).

4.1 Problem Formulation for Katz Similarity
The Katz similarity is a common path-based similarity metric [8].

For a pair of nodes (u,�), Katz similarity is de�ned as

Katz(u,�) =
1’
l=1

�
l
|path

l
u,� | = (�A + �2A2 + �3A3 + · · · )u� ,

where |pathlu,� | denotes the number of walks of length l between
u and� , � > 0 is a parameter and (·)u� denotes the entry in the uth
row and�th column of a matrix. By de�nition, the adjacency matrix
A is fully captured by the vector y. Thus, Katz(u,�) is a function
of y, written as Katzu� (y). As one would expect, it is an increasing
function of y.

L����4.1. Katzu� (y) is an increasing function of y.

P����. Let A and A0 be the corresponding adjacency matrices
of y and y0. If y  y0, we have A  A

0. Now, consider the jth term
of the Katz similarity matrix K , which is � jAj . As every entry in
A is non-negative and � > 0, we have � jAj

 �
j
A
0j , for every j.

Thus, Katzu� (y)  Katzu� (y0). ⇤

As a result, deleting a link will always decrease Katzu� (y), and
the attacker would therefore always delete k links in EQ (if EQ has
at least k links). Thus, minimizing Katz for a particular target link
(u,�) is captured by Prob-Katz:

min
y

Katzu� (y), s.t.
M’
i=1

�i = M � k, y 2 {0, 1}M .

4.2 Problem Formulation for ACT
The second global similarity metric we consider is based on ACT,
which measures a distance between two nodes in terms of random
walks. Speci�cally, for a pair of nodes (u,�), ACT(u,�), is the ex-
pected time for a simple random walker to travel from a node u
to node � on a graph and return to u. Since ACT(u,�) is a distance
metric, the attacker’s aim is to maximize ACT(u,�), de�ned as

ACT(u,�) = VG (L
†
uu + L

†
�� � 2L†u� ),

where VG is the volume of the graph [4].
Directly optimizing ACT(u,�) is hard. Indeed, deleting an edge

may either increase or decrease ACT(u,�), so that unlike other
metrics, ACT is not monotone in y. Fortunately, Ghosh et al. [5]
show that when edges are unweighted (as in our setting), ACT(u,�)
can be de�ned in terms of E�ective Resistance (ER): ACT(u,�) =
VGER(u,�). It is also not di�cult to see that both the volume VG
and ER can be represented in terms of y.

We begin by investigating the e�ect of deleting an edge on ER(y).
We use a well-known result by Doyle and Snell [3] to this end.
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L���� 4.2 ([3]). The e�ective resistance between two nodes is
strictly increasing when an edge is deleted.

The following lemma is then an immediate corollary.

L����4.3. ER(y) is a decreasing function of y.

As a result, maximizing ER(y) would always entail deleting all
allowed edges. Let t be the maximum number of edges that can be
deleted. Then, maximizing ER(y) can be formulated as Prob-ER:

max
y

ER(y), s.t.
M’
i=1

�i = M � t , y 2 {0, 1}M .

However, while ER(y) increases as we delete edges, volume VG =
2
ÕM
i=1 �i decreases. Fortunately, since volume is linear in the num-

ber of deleted edges, we reduce the problem of optimizing ACT to
that of solving Prob-ER by solving the latter for t = {0, . . . ,k}, and
choosing the best of these in terms of ACT. Similarly, hardness of
Prob-ER implies hardness of optimizing ACT. Consequently, the
rest of this section focuses on solving Prob-ER.

4.3 Hardness Results
We prove that minimizing Katz andmaximizing ER between a single
pair of nodes by deleting edges with budget constraint are both
NP-hard.

T������4.4. Minimizing Katz similarity and maximizing ACT
distance is NP-hard even if H contains a single target link.

P����. We consider the decision version of minimizing Katz,
termed as PK , which is to decide whether one can delete k edges to
make Katz(u,�)  q given a graph Q and a target node pair (u,�)
in Q. Similarly, we consider the decision version of maximizing ER,
termed as PE : which is to decide whether one can delete k edges to
make ER(u,�) � q given a graph Q and a target node pair (u,�) in
Q.

We use the Hamiltonian cycle problem, termed PH , for reduction.
PH is to decide whether there exists a circle that visits each nodes
in a given connected graphG exactly once (thus called Hamiltonian
circle).

By the de�nition of Katz similarity, Katz(u,�) is minimized when
the graph is a string with u and� as two end nodes and all others as
inner nodes in that string; that is the graph over that set of nodes
is a Hamiltonian path with u and � as end nodes. We denote the
minimum value of Katz(u,�) in this case asminK . Similarity, by
the de�nition of e�ective resistance, ER(u,�) is maximized when
the graph is also a Hamiltonian path over that set of nodes with u
and � as the two end nodes. We assume that all edges have equal
resistance. We denote the maximum value of ER(u,�) in this case
asmaxE .

We then set q = minK in the decision problem PE and set q =
maxE in PE . As a result, the two decision problems PE and PK are
then both equivalent to the following decision problem, termed PS :
given a graph Q and two nodes u and� in Q, can we delete k edges
such that the remaining graph S forms a string (i.e., a Hamiltonian
path) with u and � as two end nodes?

Now the reduction. Given an instance of Hamiltonian circle (i.e.,
a graph G = (V ,E)), we construct a new graph Q from G in the
following steps:

• Select an arbitrary nodew in G. Let N (w) = {l1, l2, · · · , lW }

be the neighbors ofw , whereW = |N (w)|.
• Add two nodes u and � .
• Add edge (u,w) and edges (�, li ), 8li 2 N (w).

The resulting graph is then the graph Q in decision problem PS ,
where the budget k =W + |E | � |V |. We now show that problem
PH and problem PS are equivalent.

First, we show if there exists a Hamiltonian circle in G, then we
can delete k =W + |E |� |V | edges such that the measurement (Katz
or ER) between u and � in graph Q is q. Assume the Hamiltonian
circle travels tow through edge (li ,w) and leavesw through edge
(w, lj ). We then 1) delete (W � 1) edges (�, lt ) for each lt 2 N (W )

and lt , li ; 2) delete all |E | � |V | edges in G that do not appear in
the Hamiltonian circle; 3) delete edge (w, li ). Thus, we deleted a
total ofW + |E | � |V | edges. After deleting all these k edges, in the
remaining graph S, there exists a Hamiltonian path betweenw and
li . As u only connects tow and � only connects to li , the remaining
graph forms a Hamiltonian path between u and � . As a result, the
measurement between u and � equals q.

Second, we show if we can remove k = W + |E | � |V | edges
from Q such that the remaining graph S forms a Hamiltonian path
betweenu and� , then we can� nd a Hamiltonian circle in the graph
G. Suppose in the reaming string, � connects to li andw connects
to lj . As u connects only tow in graph Q, u must connect tow in
S. From the construction of Q, the total number of edges of Q is
|E | +W + 1. After deleting k edges, the remaining number of edges
is |V | + 1. Excluding the two edges (u,w) and (�, li ), we know there
are |V | � 1 edges among the node set V of the original graph G. As
the remaining graph is connected, there must exist a Hamiltonian
path betweenw and li . As (w, li ) is an edge in the graph G, we have
found a Hamiltonian circle in G, consisting of the Hamiltonian path
betweenw and li plus the edge (w, li ).

Thus, decision problem PS is NP-complete; minimizing Katz and
maximizing ER (ACT) are NP-hard. ⇤

4.4 Practical Attack Strategies
While computing an optimal attack on Katz and ACT is NP-Hard,
we now devise approximate approaches which are highly e�ective
in practice.

4.4.1 A�acking Katz Similarity. To attack Katz similarity, we
transform the attacker’s optimization problem into that of maximiz-
ing a monotone increasing submodular function. We begin with the
single-link case (i.e., H is a singleton), and subsequently generalize
to an arbitrary H . We de�ne a set function f (Sp ) as follows. Let
Sp ✓ EQ be a set of edges that an attacker chooses to delete. Let
Ap be the adjacency matrix of the graph GQ after all the edges in
Sp are deleted. De�ne

f (Sp ) = �Ap + �
2
A
2
p + �

3
A
3
p + · · ·

Since there is a one-to-one mapping between the set Sp and the
matrix Ap , the function f (Sp ) is well-de�ned. We note that f (Sp )
gives the Katz similarity matrix of the graph G after all the edges
in Sp are deleted. We further de�ne a set function

�u� (Sp ) = (K � f (Sp ))u� ,
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where K = f (;) (the Katz similarity matrix when no edges are
deleted) and (·)u� denotes the uth row and �th column of a matrix.

Clearly, when Sp = ;, �u� (Sp ) = 0.
Then, Prob-Katz is equivalent to

max
Sp ⇢Et

�u� (Sp ), s.t. |Sp | = k (4)

T������4.5. The set function �u� (Sp ) is monotone increasing
and submodular.

P����. To prove that �u� is monotone increasing, we need
to show that 8Sp ⇢ Sq ⇢ Q , �u� (Sp )  �u� (Sq ). It is equiva-
lent to show (f (Sp ))u� � (f (Sq ))u� . We note that (f (Sp ))u� and
(f (Sq ))u� are the Katz similarity betweenu and� after the edges in
Sp and Sq are deleted, respectively. Theorem 4.1 states that the Katz
similarity will decrease as more edges are deleted. Since Sp ⇢ Sq ,
we have f (Sp ) � f (Sq ). Thus, �u� (Sp )  �u� (Sq ).

Next, we prove �u� is submodular. Let e 2 Et \ Sq be an edge
between node i and node j in the graph. Let G be an n ⇥ n matrix
whereGi j = G ji = 1 and the rest of the entries are 0. Then we have
the set Sp [ e is associated with Ap � G and Sq [ e is associated
withAq �G . For a set S , let �(e |S) = f (S [ e)� f (S). Then we need
to show

�(e |Sp )  �(e |Sq ).

Denote the tth item of �(e |S) as �(t )
(e |S). In the following, we

will� rst prove �(t )
(e |Sp )  �(t )

(e |Sq ) by induction. Assume that
the inequality holds for t = s (it’s straightforward to verify the case
for t = 1 and t = 2). That is

�
s
[(Ap �G)

s
� (Ap )

s
� (Aq �G)

s + (Aq )
s
]  0. (5)

When t = s + 1, we have

(�(s+1)
(e |Sp ) � �(s+1)

(e |Sq ))/�
s+1

= (Ap �G)
s+1

� (Ap )
s+1

� (Aq �G)
s+1 + (Aq )

s+1

= (Ap �G)
s
Ap � (Ap )

s+1
� (Aq �G)

s
Aq + (Aq )

s+1

�[( Ap �G)
s+1

� (Aq �G)
s+1

]G

 (Ap �G)
s
Ap � (Ap )

s+1
� (Aq �G)

s
Aq + (Aq )

s+1

The inequality comes from the fact that (Ap �G) � (Aq �G) when
G � 0. Furthermore, since Sp ⇢ Sq , we have Ap = Aq + F for some
F � 0. Thus,

(�(s+1)
(e |Sp ) � �(s+1)

(e |Sq ))/�
s+1

 (Ap �G)
s
(Aq + F ) � (Ap )

s
(Aq + F )

� (Aq �G)
s
Aq + (Aq )

s+1

= [(Ap �G)
s
� (Ap )

s
� (Aq �G)

s + (Aq )
s
]Aq

+ [(Ap �G)
s
� (Ap )

s
]F

 0

By induction, we have �(t )
(e |Sp )  �(t )

(e |Sq ) for t = 1, 2, 3, · · · .
Note that when � is chosen to be less than the reciprocal of the
maximum of the eigenvalues of Aq � G, the sum will converge.
Thus, �(e |Sp )  �(e |Sq ). ⇤

Next, for the multi-link case, the total similarity ft =
Õ
i, j wi jKi j .

Let F (S) be a function of the set of deleted edges, de�ned as

F (S) = �AS + �
2
A
2
S + �

3
A
3
S + · · · ,

where AS denotes the adjacency matrix after all edges in S are
deleted. Note that F (S) gives the Katz similarity matrix when edges
in S are deleted. Further de�ne �i j (S) = (K

0
� F (S))i j , where K0 is

the original Katz similarity matrix. Let Gt (S) =
Õ
i, j wi j�i j (S). By

de�nition, we have Gt (S) =
Õ
i, j wi jK0

i j � ft . Thus, minimizing ft
is equivalent to

max
S ⇢EQ

Gt (S), s.t. |S |  k .

The following result is then a direct corollary of Theorem 4.5.

C��������4.6. Gt (S) is monotone increasing and submodular.

P����. This is an immediate conclusion of two results. First,
�i j (S) is monotone increasing and submodular in S as proved in
Theorem 4.5. Second, a positive linear combination of submodular
functions is submodular [16]. As Gt (S) is the sum of �i j (S), Gt (S)
is monotone increasing and submodular. ⇤

As a result, minimizing the total Katz similarity is equivalent
to maximizing a monotone increasing submodular function under
cardinality constraint. We can achieve a (1� 1/e) approximation by
applying a simple iterative greedy algorithm in which we delete one
edge at a time that maximizes the marginal impact on the objective.
We call this resulting algorithm Greedy-Katz.

4.4.2 A�acking ACT. From the analysis of minimizing Katz sim-
ilarity, it is natural to investigate submodularity of the e�ective
resistance or ACT as a function of the set of edges. Unfortunately,
counter examples show that the e�ective resistance is neither sub-
modular nor supermodular.

Our� rst step is to approximate the objective function ER(u,�)
based on the results by Von Luxburg et al. [17], who show that
ER(u,�) can be approximated by 1

d (u) +
1

d (�) for large geometric
graphs as well as random graphs with given expected degrees.
Consequently, we use the approximation ER(u,�) ⇡ ERap (u,�) =
1

d (u) +
1

d (�) . Then the total e�ective resistance is approximated as

ER(H ) ⇡ ERap (H ) =
Õ
i j wi j (

1
d (ui )

+ 1
d (uj )

) =
Õn
i=1

Wi
d (ui )

, where
Wi > 0 is some constant weight associated with each ui . Let Di be
the original degree of nodeui and zi be an integer variable denoting
the number of deleted edges connecting to ui . Then maximizing
ERap (H ) is equivalent to

max
z

n’
i=1

Wi
Di � zi

, s.t.
n’
i=1

zi  k, zi 2 [0,k]. (6)

We assume that deleting edges would not make the graph dis-
connected. That is 8i 2 [1,n], k < Di .

We formulate the above problem as a linear integer program.
Speci�cally, let �i j be the decrease in ERap (H ) after j edges con-
necting to node ui are deleted. As any such j edges will cause the
same decrease, the value of each �i j for j = 0, 1, · · · ,k could be
e�ciently computed in advance. We use a binary variable hi j = 1 to
denote that the attacker chooses to delete such j edges; otherwise,
hi j = 0. Then problem (6) is equivalent to

max
h

n’
i=1

k’
j=0

(
Wi
Di

� �i j )hi j , s.t.
n’
i=1

k’
j=0

hi j  k,8i,
k’
j=0

hi j  1,
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The above problem is a linear program of (k + 1) ⇥ n binary
variables with (n + 1) linear constraints. A numerical solution [6]
gives the number of edges incident to each node that needs to be
deleted.

5 EXPERIMENTS
Our experiments use two classes of networks: 1) randomly gen-
erated scale-free networks and 2) a Facebook friendship network
[10]. In the scale-free networks, the degree distribution satis�es
P(k) / k

�� , where � is a parameter.
Baseline algorithms. We compare our algorithms with two base-

line algorithms. We term the� rst one as RandomDel, which ran-
domly deletes the edges connected to the target nodes. The second
baseline, termed GreedyBase, is a heuristic algorithm proposed in
[23]. This algorithm will try to delete the link whose deletion will
cause the largest decrease in the number of “closed triads" as de-
�ned in [23]. Our experiments show that while the performance of
GreedyBase varies regarding di�erent metrics, RandomDel performs
poorly for all metrics (Fig. 1). Henceforth, we only compare our
algorithm with GreedyBase for global metrics (Fig. 2 and Fig. 3).

For local metrics, we evaluate Approx-Local in the general case.
We consider a target set of size 20. We select RA (CND metric)
and Sorensen (WCN metric) as two representatives, for which the
results are presented in Fig. 1. All similarity scores are scaled to 1.0
when no edges are deleted. Due to space limit, we only present the
results on one scale of the scale-free network (n = 1000,� = 2.0)
and Facebook network(n = 786,m = 12291). Amore comprehensive
set of experiments is presented in the extended version.

We note that deleting a relatively small number of links can
signi�cantly decrease the similarities of a set of target links. The
gap between the upper and lower bound functions, which re�ects
the approximation quality of Approx-Local, is within 20% of the
original similarity.

For global metrics, we evaluate Greedy-Katz and Local-ACT re-
garding a set of target links (|H | = 20) on di�erent scales of net-
works. As shown in Fig. 2 and Fig. 3, the performances are sig-
ni�cantly better than those of the baseline algorithm. Additional
results for the special cases are provided in the extended version.

6 CONCLUSION
We investigate the problem of hiding a set of target links in a
network via minimizing the similarities of those links, by deleting
a limited number of edges. We divide similarity metrics associated
with potential links into two broad classes: local metrics (CND and
WCN) and global metrics (Katz and ACT). We prove that computing
optimal attacks on all these metrics is NP-hard.

For local metrics, we proposed an algorithm minimizing the
upper bounds of local metrics, which corresponds to maximizing
submodular functions under cardinality constraints. Furthermore,
we identify two special cases, attacking a single link and attacking
a group of nodes, where the� rst case ensures optimal attacks for
all local metrics and the latter ensures optimal attacks for CND
metrics. For global metrics, we prove that even when attacking
a single link, both the problem of minimizing Katz and that of
maximizing ACT are NP-Hard. We then propose an e�cient greedy

(a) scale-free, RA (b) Facebook, RA

(c) scale-free, Sørensen (d) Facebook, Sørensen

Figure 1: Approx-Local vs. GreedyBase onCND (e.g., RA) and
WCN (e.g., Sørensen) metrics in general case.

(a) scale-free (b) Facebook

Figure 2: Greedy-Katz vs. GreedyBase on Katz similarity.
Solid lines: Greedy-Katz. Dotted lines: GreedyBase

(a) scale-free (b) Facebook

Figure 3: Local-ACT vs. GreedyBase on ACT distance. Solid
lines: Local-ACT. Dotted lines: GreedyBase

algorithm (Greedy-Katz) and a principled heuristic algorithm (Local-
ACT) for the two problems, respectively. Our experiments show
that our algorithms are highly e�ective in practice and, in particular,
signi�cantly outperform a recently proposed heuristic. Overall, the
results in this paper greatly advance the algorithmic understanding
of attacking similarity-based link prediction.
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