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ABSTRACT

Efficiently adapting to new environments and changes in dynam-

ics is critical for agents to successfully operate in the real world.

Reinforcement learning (RL) based approaches typically rely on

external reward feedback for adaptation. However, in many sce-

narios this reward signal might not be readily available for the

target task, or the difference between the environments can be

implicit and only observable from the dynamics. To this end, we

introduce a method that allows for self-adaptation of learned poli-

cies: No-Reward Meta Learning (NoRML). NoRML extends Model

Agnostic Meta Learning (MAML) for RL and uses observable dy-

namics of the environment instead of an explicit reward function in

MAML’s finetune step. Our method has a more expressive update

step than MAML, while maintaining MAML’s gradient based foun-

dation. Additionally, in order to allow more targeted exploration,

we implement an extension to MAML that effectively disconnects

the meta-policy parameters from the fine-tuned policies’ parame-

ters. We first study our method on a number of synthetic control

problems and then validate our method on common benchmark

environments, showing that NoRML outperforms MAML when the

dynamics change between tasks.

Videos and source-code are available at https://sites.google.com/

view/noreward-meta-rl/.
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1 INTRODUCTION

Adapting to new environments is a crucial capability for autonomous

robots to operate in the real world. For example, after a robot learns

to walk, its dynamics may change due to hardware failures, its

sensor measurements (e.g. IMU) may drift over time, and more

importantly, the reward signals may no longer be available due

to lack of corresponding sensors after the robot is deployed (e.g.

a tracking system that measures walking distance). How can the

robot learn to adapt even after these changes?

Model Agnostic Meta Learning (MAML) [10] tackles the above

problem by training a meta-policy that is optimized for quick adap-

tation to new tasks. During adaptation, this meta-policy can be

fine-tuned efficiently with a small amount of data that is collected

in the new environment. While MAML is successful at adapting
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policies to different tasks that are defined by reward changes (e.g.

running forward vs. backward), it is less effective when adapting

to other changes [9], such as dynamics changes, sensor drifts, or

missing reward signals.

In this paper, we introduce No-Reward Meta Learning (NoRML)

to address the above challenges. The key insight underlying NoRML

is that we can simultaneously learn the meta-policy and the advan-

tage function used for adapting the meta-policy, optimizing for the

ability to effectively adapt to varying dynamics. The meta-learned

advantage function serves two purposes. First, it allows the policy

to be adapted without external rewards: even if the reward signal

is not present during the adaptation stage, we can use the learned

advantage function to evaluate the current policy and compute

the gradient. Second, the learned advantage gives more expressive

power to the meta-optimization over how the policy can be up-

dated, since it can learn to implicitly shape its reward feedback. As

a result, the meta-policy can better recognize and adapt to subtle

dynamics changes.

Beyond learning to update the policy parameters, one critical

aspect of the meta-RL problem is the sampling distribution induced

by the meta-policy, i.e. how the meta-policy chooses to explore and

collect trajectory samples that are maximally informative about the

unknown task or environment [12, 27]. In the original MAML for-

mulation, the same policy parameters are used for collecting expe-

rience as for the gradient computation, limiting the extent to which

the meta-policy parameters can be used for each individual purpose.

To further increase the expressive power of the meta-optimization,

we propose to decouple these two roles by augmenting the adapta-

tion process with a meta-learned parameter offset. The parameter

offset is added to the initial MAML parameters after sampling and

during gradient adaptation, allowing different parameter vectors

to be used for each while defaulting to the case where they are the

same, akin to how residual networks (ResNets) [13] default to the

identity function. With the combination of the offset policy and

the learned advantage function, NoRML can successfully adapt to

changes in dynamics, sensor drifts, and missing reward signals.

We evaluate NoRML on three control domains with varying

sources of dynamics changes: an illustrative point agent example

with disoriented actions, a cartpole with sensor bias, and a half-

cheetah with wiring errors. In comparison to MAML, NoRML en-

ables adaptation from a single trial, does not require reward signal

for adaptation, and in most cases even leads to improved asymptotic

performance. We find that both the learned advantage function and

the parameter offset are important for good performance.

2 RELATEDWORK

Algorithms for learning to learn [1, 14, 25, 31], or meta learning, aim

to acquire a procedure that can more efficiently and effectively learn

to solve new tasks. We consider meta learning in the context of re-

inforcement learning, i.e. meta reinforcement learning [8, 33]. Prior
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model-free meta reinforcement learning algorithms can generally

be categorized as being recurrence-based [8, 19, 27, 33], gradient-

based [10, 12, 27], or a hybrid of the two [15, 28].We build a gradient-

based meta-RL method that extends the MAML algorithm [10]. Un-

like these prior model-free meta-RL works, we focus on the problem

of learning to adapt to different dynamics, rather than adapting to

different rewards.

Prior model-based RL approaches have considered the problem

of learning to adapt to different dynamics through meta-RL [4, 24]

or through learned priors [11]. Using a learned model is suitable

when sample efficiency is a concern, but achieves lower asymptotic

performance than model-free meta-RL [4]. Recent work by Clavera

et al. [5] used MAML to adapt to different learned dynamics models

within an ensemble, to improve model-based RL. We also consider

the problem of adapting to different dynamics, but in the context of

adapting to different environments, rather than different estimated

models of the same environment. Further, our method improves

upon MAML by not requiring a reward function for adaptation.

Separate from the meta learning literature, many other works

have considered the problem of adapting to varying dynamics

through, e.g. adaptive inverse control [34], self-modeling [2], Bayesian

optimization [6], or online system identification [18, 35]. Our ap-

proach leverages prior experience to learn to adapt a policy with as

little as a single trial without observed reward, and has few assump-

tions about the nature of the dynamics changes. Other methods

have leveraged prior experience to learn a single policy that is

robust to many different dynamics [20–22, 30]. Our experiments il-

lustrate several realistic scenarios where robustness is not sufficient

and adaptation is critical to good performance.

3 PRELIMINARIES

In this section, we overview model-free reinforcement learning,

describe gradient-based meta learning (MAML), and discuss the

potential difficulties that the vanilla MAML algorithm can have in

model-free RL scenarios. We also introduce notation.

3.1 Model-free Reinforcement Learning

We study reinforcement learning problems where the agent makes

a sequence of actions in a stochastic environment in order to max-

imize the cumulative reward. Formally, we define the problem

as a Markov decision process (MDP) which consists of: a state

space S, an action space A, a transition probability distribution

p(st+1 |st ,at ), a reward function R : S×A → R and an initial state

distribution p(s1).

In model-free RL, we aim to directly optimize a policy πθ : S →

P(A), where P(A) is the set of probability distributions on the

action space, and θ ∈ Rn is a vector to parameterize the policy.

The agent interacts with the environment over a finite horizon of

length H and collects a trajectory D = {s1,a1, r1, . . . , sH+1} over

S×A×R. The agent tries to find policy parametersθ that maximize

the expected return. Equivalently, we can instead minimize the

expected loss, which can be written as:

L(θ ,D) = −E(st ,at )∼πθ

[
H∑

t=1

R(st ,at )

]

= −E(st ,at )∼πθ

[
H∑

t=1

rt

]

.

(1)

Policy gradients is a popular model-free algorithm to optimize a

policy. The algorithm approximates the gradient ∇θL(θ ,D) using

the Policy Gradient Theorem [29]:

∇θL(θ ,D) = −E(st ,at )∼πθ

[
Aπ (st ,at )∇θ logπθ (at |st )

]
, (2)

The expectation in Eq. 2 is computed by Monte-Carlo estimation.

where we replaced the reward signal rt with the advantage function

Aπ (st ,at ). To reduce the variance of the gradient estimations, an

advantage function of the following form can be used:

Aπ (st ,at ) =

H∑

t ′=t

γ t
′−t rt ′ −V

π (st ), (3)

where V π (s) is a fitted value function estimator (also called critic)

and γ is a discount factor.

3.2 Gradient-based Meta Learning

Meta learning algorithms optimize for a learning procedure that

can quickly adapt to a particular task. Assuming that the training

and testing tasks share some commonalities and are sampled from

the same distribution, meta learning algorithms aim to learn the

structure underlying the tasks and use this knowledge for fast

learning. The meta-training process usually involves drawing data

from different tasks and optimizing for performance after learning

with a small amount of data.

Model-agnostic meta learning (MAML) [10] takes a gradient-

based approach to the above problem. Formally, given a distribution

over tasks p(T ), where each task defines a specific loss function

LTi , MAML aims to find a good meta parameters θ that, with one

step of gradient descent, can adapt to specific tasks with small

amounts of data. The objective can be described as follows:

argmin
θ

ETi∼p(T)

[
LTi (θi )

]
s.t. θi = θ − α∇θLTi (θ ). (4)

To find a good set of meta parameters, θ , MAML uses gradient

descent on the meta objective in Eq. 4. This requires second-order

derivatives w.r.t. θ . When presented with data for a new test task Tj ,

MAML adapts by simply performing one step of gradient descent

starting from θ . Since the formulation of MAML is quite general,

it can be applied to a range of problems, including model-free RL,

which we describe next.

3.3 MAML on Model-free RL

Applying MAML in the context of model-free reinforcement learn-

ing (MAML-RL), θ parameterizes the meta-policy πθ . To perform

task-specific fine-tuning for a test task, one collects trajectories

(meta rollouts) using the meta-policy πθ on a sampled task Ti and

then uses the policy gradient equations (Eq. 2) to obtain the fine-

tuned (also called adapted) policy πθi . We can write the adapta-

tion step for task Ti explicitly by applying the gradient update

rule in Eq. 4 to model-free RL and replacing the expectation with

Monte-Carlo estimation. More precisely, we collect K trajectories

Dtrain
i = {(s1,a1, r1, s2,a2, r2 . . . sH+1)k : k = 1 . . .K} using the

meta-policy πθ on task Ti and approximate the policy gradient:

θi = θ − α∇θLTi (θ ,D
train
i ) (5)

= θ + α
∑

(st ,at ,rt )∈D
train
i

Aπ (st ,at )∇θ logπθ (at |st ). (6)
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During meta training, one also collects rollouts of the fine-tuned

policies θi for Ti to compute the meta objective in Eq. 4. As stated

in Eq. 4, MAML optimizes the meta-policy parameters θ such that

the expected loss over all tasks after adaptation is minimized. To

this end, we use K trajectories Dtest
i from the adapted policies πθi

to approximate the gradient of the meta-objective:

θ ← θ − β
∑

Ti∼T

∇θLTi (θi ,D
test
i ), (7)

where

LTi (θi ,D
test
i ) = LTi (θ − α∇θLTi (θ ,D

train
i ),Dtest

i ). (8)

The gradient ofLTi (θi ,D
test
i ) can be approximated using the policy

gradient algorithm (c.f. Eq. 6).

The complete MAML algorithm for reinforcement learning is

listed in Algorithm 1. Algorithm 2 lists how to perform fine-tuning

on a specific task, based on an optimized meta-policy. Unlike the

original MAML-RL study [10] where different tasks corresponded to

different rewards, our goal is to handle the setting where a different

task entails a change of the environment, including both dynamics

changes and sensor drifts, andwhere rewards are not present during

adaptation, a scenario that MAML-RL cannot handle effectively.

Algorithm 1 MAML Training [10]

Require: p(T ): task distribution

Require: α : adaptation learning rate

Require: β : meta learning rate

Randomly initialize θ

while not done do

Sample a batch of tasks Ti ∼ p(T )

for all Ti in batch do

Sample K trajectories D train

i using πθ on task Ti .

Compute adapted parameters using D train

i :

θi = θ − α∇θLTi (θ ,D
train

i ).

Sample K trajectories D test

i using πθi on task Ti .

end for

Update θ using all D train

i , and D test

i :

θ ← θ − β
∑
Ti∼T ∇θLTi (θi ,D

test

i )

with LTi (θi ,D
test

i ) = LTi (θ − α∇θLTi (θ ,D
train

i ),D
test

i ).

end while

Algorithm 2 MAML Fine-tuning [10]

Require: Ti : a new test task

Require: θ ,α : from MAML training

Sample K trajectories D using πθ on task Ti .

Compute fine-tuned policy:

θ ← θ − α∇θLTi (θ ,D).

4 NO-REWARD META LEARNING

Consider an agent with a single task (i.e. a fixed reward function)

such as running forward. Intuitively, if the dynamics change such

as calibration errors or motor malfunctions, an agent should not

need reward supervision in order to adapt its behavior: the dynam-

ics change is recognizable from the state-action transitions alone.

Similarly, a human can adapt to a new terrain without external

reward feedback. However, model-free RL requires such rewards.

Our goal is to develop a model-free meta-RL algorithm that can

learn to quickly adapt a policy to dynamics changes and sensor

drifts without external rewards. To do so, the meta learning algo-

rithm needs to develop its own internal notion of reward, to learn

to explore in a way that is maximally informative of the current

conditions, and to be able to learn to recognize changes in dynamics

and adapt appropriately.

In this section, we introduce our meta reinforcement learning

algorithm, termed No-Reward Meta Learning (NoRML), that aims

to address these challenges. NoRML consists of two additional

components to the original MAML-RL formulation: a learned ad-

vantage function that internalizes the reward in a way that allows

for reward-free adaptation (which we discuss next), and a learned

parameter offset that enables better exploration (which we discuss

in Section 4.2). The entire meta-training algorithm and meta-test

procedure of NoRML are summarized in Algorithms 3 and 4. Note

that we use the term “change of the environment” and “different

tasks” interchangeably in the following discussion.

4.1 Learned Advantage Function

We introduce a learned advantage function Aψ (st ,at , st+1) to re-

place the estimated advantage Aπ (st ,at ) in Eq. 6. The reason is

twofold. First, the learned advantage function can be used to eval-

uate a trajectory even if the reward signal is not present during

adaptation. Thus, it solves the problem of missing reward signals.

Second, it is a generalized function form for the advantage function,

which considerably increases the expressiveness of the policy gradi-

ent for fine-tuning, giving the meta-optimization more control over

how it can update the policy. Aψ is a feed-forward neural network

that takes in consecutive states and action (st ,at , st+1). We initial-

ize the weightsψ of the advantage network randomly and train it

end-to-end. More specifically, during the meta-training process, we

adjust its weights according to the gradient of the meta objective

(See Alg. 3 for more details). Note that the learned advantage Aψ is

only used during fine-tuning, while the reward-based advantage

Aπ is still used to compute the outer gradient during meta training.

Since Aψ takes in (st ,at , st+1) as input, this allows Aψ to detect

changes in the dynamics p(st+1 |st ,at ), and provide a more in-

formed "evaluation" of the actions, compared to using only (st ,at ).

An additional benefit of using Aψ is that we eliminate the need to

estimate the value function to calculate the observed advantage. In

MAML, it is difficult to estimate a value function from only a few

roll-outs, limiting the effectiveness of the resulting policy gradient.

Aψ directly transforms the policy gradient and can provide accu-

rate information to the fine-tune step even when the sample size is

small.

Given the learned advantage functionAψ , TheMAML adaptation

step for the task Ti is modified to be the following:

θi = θ − α∇θL
NoRML

Ti
(θ ,Dtrain

i ) (9)

= θ + α
∑

D train
i

Aψ (st ,at , st+1)∇θ logπθ (at |st ), (10)
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where D train

i = {(st ,at , st+1)k : k = 1 . . .K , t = 1 . . .H } is gener-

ated based on K trajectories using the meta-policy πθ on task Ti
(i.e. D train

i contains KH state transitions).

We would like to emphasize that this learned advantage function

differs fundamentally from approximating Aπ (st ,at ) using a fitted

value function. In the latter case, the learned advantage function is

trained to predict the actual observed advantage values Aπ (st ,at )

in Eq. 6. In contrast, our learned advantage function Aψ is opti-

mized to transform or reshape the policy gradient ∇θ logπθ (at |st )

in a way that achieves more effective adaptation in a single fine-

tune step. As a result, the output of our advantage network can be

significantly different from the estimated advantage values (in a

sense, Aψ is not a true advantage function).

Algorithm 3 NoRML Training

Differences between MAML and NoRML are highlighted.

Require: p(T ): distribution over tasks

Require: α , β : step size hyperparameters

Require: θσ : initial log standard deviation of meta-policy

Randomly initialize θµ and set θ =
[
θTµ θ

T
σ

]T

Randomly initializeψ

Initialize θoffset to [0 . . . 0]
T

while not done do

Sample a batch of tasks Ti ∼ p(T )

for all Ti do

Sample K trajectories without rewards using πθ on task Ti
and store all state transitions as a set D train

i = {(st ,at , st+1) :

∀k < K ,∀t ≤ H }.

Compute adapted parameters using D train

i :

θi = θ + θoffset − α
∑
D train
i

Aψ (st ,at , st+1)∇θ logπθ (at |st ).

Sample K trajectories D test

i using πθi on task Ti .

end for

Update θ , θoffset, andψ using all D train

i , and D test

i :


θ

θoffset

ψ


←



θ

θoffset

ψ


− β

∑
Ti∼T ∇[θT θToffsetψ

T ]
T LTi (θi ,D

test

i )

with ∇LTi (θi ,D
test

i ) =
∑
D test
i

Aπ (st ,at )∇ logπθi (at |st ).

end while

Algorithm 4 NoRML Fine-tuning

Require: Ti : a task

Require: θ , θoffset,ψ,α : from NoRML training

Sample K trajectories without rewards using πθ and store all

state transitions as a set D = {(st ,at , st+1) : ∀k < K ,∀t < H }.

Compute fine-tuned policy:

θ ← θ + θoffset − α
∑
D Aψ (st ,at , st+1)∇θ logπθ (at |st ).

4.2 Offset Learning

Since one policy gradient step may be insufficient to adapt an

exploratory meta-policy into a policy for the new task, we introduce

a simple, yet effective, technique to decouple the meta-policy from

the adapted policies: a learned offset θoffset that is added to the

policy parameters θ when calculating an adapted policy:

θi = θ + θoffset − α
∑

D train
i

Aψ (st ,at , st+1)∇θ logπθ (at |st ). (11)

Note that the policy offset θoffset is shared for all tasks. Hence, it does

not influence task-specific adaptation. The adaptation step is still

based on trajectories sampled from the meta-policy πθ , and the

policy gradient is still computed with respect to the meta policy

parameters θ . Similar to the learned advantage function, the param-

eter offset is optimized end-to-end together with the meta-policy,

as shown in Algorithm 3. Fig. 1 shows a geometric interpretation

of of MAML and NoRML.

5 EXPERIMENTAL SETUP

In this section, we describe the comparisons and implementation

details of our experiments.

5.1 Comparisons

We compare NoRML to two existing approaches: vanillaMAML [10]

and Domain Randomization [21, 23, 32] (DR). Domain randomiza-

tion aims to learn a single robust policy by varying the environment

for each rollout. We implement domain randomization by setting

the adaptation learning rate α and the policy offset θoffset to zero

(and disabling meta learning of these parameters) in our MAML

implementation. Hence the meta-policy is directly used to compute

the average loss across tasks/randomizations. This eliminates other

factors that could influence experimental results and ensures that

we are doing a fair comparison.

In addition, we also perform an ablation study for different com-

ponents of NoRML. We refer to them as NoRML w/o offset, which

uses a learned advantage function but does not include offset as a

trainable parameter, and NoRML w/o LAF, which, like MAML, uses

ground-truth external reward but also includes the offset.

For a fair comparison, all algorithms are trained for the same

number of iterations and with the same number of timesteps col-

lected per iteration. For all experiments, we randomly sweep the

following three hyperparameters: the outer learning rate β , the

adaptation learning rate α , and the initial value of the policy stan-

dard deviation θσ . We then plot the learning curves using the best

hyperparameters found.

5.2 Implementation Details

We represent our policy as a multivariate diagonal Gaussian dis-

tribution and use a fully-connected, feed-forward network to map

states st to a distribution over action πθ (at |st ). The neural network

outputs the mean of the Gaussian policy, and we used standalone

variables to represent the standard deviations of each dimension:

πθ (at |st ) = N(f (st |θµ ), diag(e
θσ )2) (θ =

[
θTµ θ

T
σ

]T
). We found

this to greatly improve training stability, compared to having the

network output both the mean and log standard deviation. We use

a two-layer fully connected network with tanh activation function

for the policy network (50 neurons per layer). Similarly, the learned

advantage function Aψ uses a fully-connected, two-layer neural

network with rectifying linear units (50 neurons per layer).
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