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ABSTRACT
Autonomous driving is a challenging domain that entails multiple

aspects: a vehicle should be able to drive to its destination as fast as

possible while avoiding collision, obeying traffic rules and ensuring

the comfort of passengers. In this paper, we present a deep learning

variant of thresholded lexicographic Q-learning for the task of urban

driving. Our multi-objective DQN agent learns to drive on multi-

lane roads and intersections, yielding and changing lanes according

to traffic rules. We also propose an extension for factored Markov
Decision Processes to the DQN architecture that provides auxiliary

features for the Q function. This is shown to significantly improve

data efficiency.
1
We then show that the learned policy is able to

zero-shot transfer to a ring road without sacrificing performance.
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1 INTRODUCTION
Deep reinforcement learning (DRL) [13] has seen some success

in complex tasks with large state space. However, the task of au-

tonomous urban driving remains challenging, partly due to the

many aspects involved: the vehicle is not only expected to avoid

collisions with dynamic objects, but also follow all the traffic rules

and ensure the comfort of passengers. One motivation for the multi-

objective approach is the difficulty in designing a scalar reward

that properly weighs the importance of each aspect of driving so

that the designer’s original intention is reflected. Although there

have been attempts to learn the reward function through inverse

reinforcement learning [1, 29], these methods add additional com-

putational expenses, and require the availability of demonstrations.

Another motivation comes from the problem of exploration [3, 15].

If the agent explores randomly, it might hardly have the chance

of reaching the intersection, so the traffic rules at the intersection

1
Data efficiency as measured by the number of training steps required to achieve

similar performance.
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might never be learned. In contrast, if each aspect is learned sepa-

rately, we would have the flexibility of choosing which aspect to

explore in a given state. In this paper, we consider a multi-objective

RL approach to the problem of urban driving, where each objective

is learned by a separate agent. These agents collectively form a

combined policy that takes all these objectives into account. In addi-

tion to those mentioned above, there are several advantages of the

multi-objective approach: (1) Since each objective only considers

one aspect of driving, the entire task is divided into smaller, simpler

tasks, e.g., smaller state space can be used for each objective. (2) In

a new task where only some of the objectives change, the learned

policy for other objectives can be reused or transferred. (3) For some

of the objectives, the desired behavior might be easy to specify man-

ually. The multi-objective architecture allows these behaviors to be

implemented with rule-based systems without creating integration

issues.

In this paper, we adopt the thresholded lexicographic Q-learning

framework proposed by Gábor et al. [6], and adapt it to the deep

learning setting. We set an adaptive threshold for the Q value of

each objective, and at each state, the set of admissible actions is

restricted by lexicographically applying the threshold to each objec-

tive. Therefore, the policy obtained either satisfies all constraints,

or, if that’s not possible, satisfies the constraints for the more im-

portant objectives. We believe that this paradigm is similar to how

human drivers drive, e.g., a human driver would aim at guarantee-

ing safety before considering other aspects such as traffic rules and

comfort.

Most existing RL approaches for autonomous driving consider a

state space of either raw visual/sensor input [8, 20], or the kinemat-

ics of a few immediately surrounding vehicles [14, 27]. Since road

and lane information is not explicitly considered, the policy learned

using these types of state space in limited scenarios cannot be ex-

pected to be transferable to roads with different geometry. In this

work, we design a hybrid (of continuous and discrete) state space

that not only includes the state of surrounding vehicles, but also

geometry-independent road topology information. We show that

the policy trained in a four-way intersection using the proposed

state space can be zero-shot transferred to a ring road.

As more surrounding vehicles are considered, the complexity of

the problem increases exponentially. However, a human learner is

able to reduce complexity by focusing on a few important vehicles in

a particular situation, presumably because a human learner exploits

some sort of structure of the problem. For example, if a human

learner is following a car too close, he not only knows the fact that

he is following too close, but he also knows: (1) which car he is
following too close; and (2) the car on the other side of intersection

has very little, if anything, to do with the situation. In other words,
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in addition to viewing the state space as a whole, humans are, at

the same time, learning on each individual factored state space (the

car ahead, and the car on the other side of intersection, etc.) as

well, then they use the knowledge learned on the factored state

space to help with the original task. To mimic this behaviour, we

propose to decompose factored MDPs into auxiliary tasks, then the

factored Q functions learned on the factored state space can be used

as additional features for the original Q function. This is shown to

significantly improve data efficiency.

2 RELATEDWORKS
There has been emerging research on autonomous driving using

reinforcement learning. Sallab et al. [20] compared two DRL-based

end-to-end driving models, DQN and DDPG, in TORCS car racing

simulator. Wang and Chan [27] proposed to represent the Q func-

tion as a quadratic function to deal with continuous action space.

Ngai and Yung attempted multi-objective reinforcement learning

for learning takeover maneuver [14], where they scalarized the

learned Q functions of each objective by weighted sum to form a

single policy. The sensor input was quantized into a discrete state

space, and tabular Q-learning was used.

Isele et al. [8] trained a DQN agent that can navigate through

an intersection, where the scenario is somewhat similar to ours.

However, our scenario is much more complex due to several major

differences: (1) Their agent is trained in one single scenario each

time, and the evaluation is done in the same scenario. Our agent

is trained in random scenarios within the map, and evaluated in

random scenarios. (2) Their agent only deals with the intersection

part. The agent starts at one side of the intersection and all it does

is to find a gap to enter, the episode ends as soon as it reaches the

other side of the intersection. Our agent needs to drive safely to the

intersection and if necessary, slow down, yield and change lanes

before entering the intersection. (3) No traffic rules are considered

in their work.

There have also been research that exploits the temporal struc-

ture of the policy (hierarchical RL [5, 16, 23]). Paxton et al. [17]

proposed a method where they designed a set of high level op-
tions [23], and used Monte Carlo tree search and DDPG [10] to

learn the high level and low level policy, respectively.

The idea of thresholded lexicographic ordering can be traced

back to the hierarchical optimization criteria proposed byWaltz [26]

for multi-objective optimization. Gábor et al. [6] extended this idea

to reinforcement learning. Wray et al. [28] and Pineda et al. [18]

considered an adaptive threshold that depends on the learned value

function.

The factored Q functions used in this paper can be thought of as

a form of generalized value function proposed by Sutton et al. [22].

The auxiliary POMDPs used to train the factored Q functions can

be considered a form of unsupervised auxiliary tasks introduced by

Jaderberg et al. [9]. The difference is that we exploit the structure

of factored MDP and factorize the original task itself into auxiliary

tasks, then the learned factored Q functions are used directly as

features (basis functions) for the original Q function.

An overview of multi-objective optmization can be found in [11],

and a summary of multi-objective sequential decision making is

given in [19].

3 BACKGROUND
3.1 Multi-Objective Reinforcement Learning
Multi-objective reinforcement learning (MORL) is concerned with

multi-objective Markov decision processes (MOMDPs) (S,A, P , r,γ )

, where S is a finite set of states; A is a finite set of actions; P (s′ |s,a)

is the transition probability from state s to state s′ taking action a;
r(s,a) = [r1(s,a), r2(s,a), ..., rk (s,a)] and γ = [γ1,γ2, ...,γk ] are the

rewards and discount factors for the k objectives, respectively.
2

Fixing some enumeration from 1 to |S | of the finite state space S ,
we denote vπi as a column vector whose jth element is the value

function of the ith objective evaluated at the jth state sj . Precisely:

vπi = [vπi (s1
),vπi (s2

), ...,vπi (s |S |)]T

vπi (s) = E[

t=∞∑
t=0

γ ti ri (st ,at )|π , s],∀s ∈ S, i = 1, 2, ...,k

MORL aims to find some policy π : S → A, such that

π (s) = argmaxπV
π

Vπ = [vπ
1
, vπ

2
, ...vπk ]

Different definition of order relation on the feasible criterion space
{v|π ∈ S → A} leads to different MORL algorithms, or in other

words, different MORL algorithm implicitly defines such an (partial

or total) order relation. In this paper, we consider a thresholded

lexicographic approach that we deem suitable for autonomous

driving.

3.2 Thresholded Lexicographic Q-learning
Assuming lexicographic ordering 1, 2, ...,k on the k objectives of

MOMDP (S,A,T , r,γ ), and τi a local threshold that specifies the

minimum admissible value for each objective, thresholded lexico-

graphic Q-learning finds k sets of policies Πi , i = 1, 2, ...,k that

maximize {Q̂∗
1
(s,a), Q̂∗

2
(s,a), ..., Q̂∗

i (s,a)} in lexicographic order:

Πi
def
=

{
πi ∈ Πi−1

����πi (s) = argmaxa∈{πi−1(s) |πi−1∈Πi−1 }
Q̂∗
i (s,a)

,∀s ∈ S

}
, i = 1, 2, ...,k

(1)

with Π0 being the set of all deterministic stationary policies, and

Q̂∗
i (s,a) is the Q function rectified to τi :

Q̂∗
i (s,a)

def
= min(τi ,Q

∗
i (s,a)) (2)

Here, Q∗
i (s,a) is the maximum expected accumulative reward over

all policies πi−1 ∈ Πi−1 starting from state s and action a. It follows
that

Q̂∗
i (s,a) =

min

(
τi , ri (s,a) + γi

∑
s′

P (s′ |s,a) max

a′∈{πi−1(s) |πi−1∈Πi−1 }
Q∗
i (s′,a′)

)
≥

min

(
τi , ri (s,a) + γi

∑
s′

P (s′ |s,a) max

a′∈{πi−1(s) |πi−1∈Πi−1 }
Q̂∗
i (s′,a′)

)
(3)

2r(s, a) can be generalized to r(s, a, s′).
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Gábor et al. [6] propose to approximate Q̂∗
i (s,a) by treating the

inequality in Eq. 3 as equality, and do the following value iteration:

Q̂∗
i (s,a) :=

min

(
τi , ri (s,a) + γi

∑
s′

P (s′ |s,a) max

a′∈{πi−1(s) |πi−1∈Πi−1 }
Q̂∗
i (s′,a′)

)
(4)

Unfortunately, following a policy π ∈ Πi as in Eq. 1 doesn’t

guarantee that vπi (s) > τi , even if ∃π ′ ∈ Πi−1,v
π ′

i (s) > τi ,∀s ∈ S .
In fact, the policies in Πi can be arbitrarily bad. Therefore the

algorithm is only appropriate for problems that are tolerant to

small local imperfections of the policy, which needs to be kept in

mind when designing the reward function.

3.3 Factored MDP
In almost all real-life domains, the state space of MDPs is very

large. Fortunately, many large MDPs have some internal structures.

The factored MDP framework aims to exploit these internal struc-

tures by representing a state s ∈ S with a set of state variables
s = (s1, s2, ..., sm ). A locally-scoped function is defined as a function

that depends only on a subset of the state variables [7], and the sub-

set is called the scope of the function. There are mainly two types

of structures that are covered in literature: the additive structure
and context-specific structure. As an example of context-specific

structure, consider the driving domain: the traffic signal is not af-

fected by the current speed of the cars travelling at the intersection.

Moreover, reward function might be a sum of a few locally-scoped

rewards, such as the (negative) reward for collision and the reward

for maintaining steady speed, which is an example of additive struc-

ture. In this paper, a method to exploit these structures in DQN is

proposed.

4 APPROACH
4.1 Thresholded Lexicographic DQN
Approximating Q̂∗

i (s,a) directly by Eq. 4 as proposed by Gábor

et al. [6] has a few drawbacks, especially in the DQN setting:

(1) Eq. 4 is only an approximate fix point equation for the true

Q̂∗
i (s,a), because the inequality in Eq. 3 is arbitrarily replaced

by equality.

(2) Since∑
s′

P (s′ |s,a) max

a′∈{πi−1(s) |πi−1∈Πi−1 }
Q̂∗
i (s′,a′ |θ )

is estimated by samples of s′, and

Es′∼P (s′ |s,a)

[
min

(
τi , ri (s,a) + γi max

a′∈{πi−1(s) |πi−1∈Πi−1 }
Q̂∗
i (s′,a′ |θ )

)]
≤ min

(
τi ,Es′∼P (s′ |s,a)

[
ri (s,a) + γi max

a′∈{πi−1(s) |πi−1∈Πi−1 }
Q̂∗
i (s′,a′ |θ )

] )
(5)

where θ is the parameter of the function approximator, the

estimation is biased, similar to the bias introduced by the

max operator in DQN as discussed in [25].

(3) Noise in function approximation can create additional bias

due to the min operator. Consider the safety objectivewhere
the reward is −1 when ego vehicle collides, 0 otherwise. As-

sume that 0 ≥ τi ≥ −1, and s is a safe state, so that ∃As ̸= ∅

s.t. Q̂∗
i (s,a) = τi ,∀a ∈ As . The target for Q̂∗

i (s,a),a ∈ As
computed from the right-hand-side of Eq. 4 is

min

(
τi , ri (s,a) + γi max

a′∈{πi−1(s) |πi−1∈Πi−1 }
Q̂∗
i (s′,a′ |θ )

)
≤

min

(
τi ,γi max

a′∈{πi−1(s) |πi−1∈Πi−1 }
Q̂∗
i (s′,a′ |θ )

)
For the target to be correct,

γi max

a′∈{πi−1(s) |πi−1∈Πi−1 }
Q̂∗
i (s′,a′ |θ ) ≥ τi

must hold, which means that:

∆Q = max

a′∈{πi−1(s) |πi−1∈Πi−1 }
Q̂∗
i (s′,a′) − max

a′∈{πi−1(s) |πi−1∈Πi−1 }
Q̂∗
i (s′,a′ |θ )

≤ τi − max

a′∈{πi−1(s) |πi−1∈Πi−1 }
Q̂∗
i (s′,a′ |θ ) ≤ (1 −

1

γi
)τi

where Q̂∗
i (s′,a′) is the true Q̂∗

i function, and ∆Q is the noise

of function approximation. In other words, the noise in neu-

ral network must be smaller than (1− 1

γi )τi to avoid creating

additional bias. If the look-ahead horizon is long, so that

γi ≈ 1, the margin is very small.

(4) There’s no guarantee the DQN will converge to the true Q

value [24], and the learned Q function is empirically very

inaccurate. Therefore, using a static threshold τi might be

problematic, and an adaptive threshold that depends on the

learned Q function might be preferrable.

Observe that the only purpose of introducing Q̂∗
i (s,a) is to bring

some relaxation to maxa∈{πi−1(s) |πi−1∈Πi−1 } Q
∗
i (s,a) so that all ac-

tions in {a ∈ {πi−1(s)|πi−1 ∈ Πi−1}|Q
∗
i (s,a) ≥ τi } are treated as

equally ‘good enough’ for that objective. So instead of estimating

Q̂∗
i (s,a), which introduces bias through the min operator, we can

estimate Q∗
i (s,a) directly through the following Bellman equation:

Q∗
i (s,a) = ri (s,a) + γi

∑
s ′

P (s′ |s,a) max

a′∈{πi−1(s) |πi−1∈Πi−1 }
Q∗
i (s′,a′)

(6)

where Πi is redefined as:

Πi
def
=

{
πi ∈ Πi−1

����Q∗
i (s,πi (s)) ≥ max

a∈{πi−1(s) |πi−1∈Πi−1 }
Q∗
i (s,a) + τi

or πi (s) = argmaxa∈{πi−1(s) |πi−1∈Πi−1 }
Q∗
i (s,a)

,∀s ∈ S

}
, i = 1, 2, ...,k

(7)

Note that the fixed threshold has been replaced by an adaptive

threshold that depends on the learned Q function, and the algorithm

essentially becomes the Q-learning version of lexicographic value
iteration [18, 28]. Here, τi has a different meaning. It specifies how

much worse than the best action is considered acceptable in each

state.With an adaptive threshold of the form of Eq. 7, it’s guaranteed

that ∀π ∈ Πi ,v
π
i (s) > maxπ ′∈Πi−1

vπ
′

i (s) +
τi

1−γ .
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The update rule implied by Eq. 6 for objective i, i = 1, 2, ...,k is

similar to Q-learning, except that the next action a′ is now restricted

to those allowed by objective i−1 (In the case of i = 1, it degenerates

to Q-learning). Once objective i−1 converges, it becomes regular Q-

learning for an MDP whose action space is dependent on s . During
training, one of the objectives i ∈ {1, 2, ...,k} can be chosen for

exploration at each simulation step. If objective i is chosen for

exploration, objectives j = i + 1, i + 2, ...,k are no longer considered

for action selection. The action selection procedure is described in

algorithm 1.

Algorithm 1 Action Selection

1: function select_action(Q∗, s)
// Q∗

= [Q∗
1
,Q∗

2
, ...,Q∗

k ] is the list of

// learned Q functions for each objective

2: A0(s) := A
3: for i in {1, 2, ...,k} do
4:

Ai (s) :=

{
a ∈ Ai−1(s)

����Q∗
i (s,a) ≥ max

a′∈Ai−1

Q∗
i (s,a′) + τi

or a = argmax

a′∈Ai−1

Q∗
i (s,a′)

}
5: if objective i is chosen to be explored then
6: return random action from Ai−1(s)
7: end if
8: end for
9: return random action from Ak (s)
10: end function

Since the only interface between objectives is the set of accept-

able actions for that objective, not all objectives have to be RL

agents (some of them can be rule-based agents), as long as they

provide the same interface.

4.2 Factored Q Function
Consider the safety objective of self-driving, and the factored rep-

resentation of state s = (se , s1, s2, ..., sm ) , where se is the state vari-

able for ego vehicle, and s1, s2, ..., sm are the state variables for the

surrounding vehicles. Informally, the problem has the following in-

ternal structure: (1) collision is directly related to only a small subset

of vehicles (in most cases, ego vehicle and the vehicle ego is crash-

ing into), so it’s natural to view the reward as a function of some

locally-scoped rewards r (s) = f (r (se , s1), r (se , s2), ..., r (se , sm )) (2) In

some cases, (se |t+1, si |t+1) is only weakly dependent on sj |t , j ̸= i ,
where si |t denotes the value of si at time t . For example, a vehicle

on the right-turn lane doesn’t have much influence on the next

state of a vehicle approaching the intersection from the other side.

Formal formulation of what it means by being ‘weakly’ dependent,
and its effect on the value function, is difficult. However, it’s rea-

sonable to hypothesize that these structures result in some kind of

structure in the value function. In fact, the task of driving safe can

be thought of as the composition of a set of smaller tasks: driving

safely with regard to each individual vehicle. If we learn how to

drive safely with regard to each individual vehicle, we can use the

knowledge to help with the original task of driving safely. In other

Table 1: State Space — Ego State

se ego state

ve ego speed

de distance to intersection

in_intersectione whether in intersection

exist_left_lanee whether left lane exists

exist_right_lanee whether right lane exists

lane_gape lateral offset from correct (turning) lane

words, we can use the Q functions of the smaller tasks as auxiliary

features for the Q function of the bigger original task. This idea can

be formalized as follows.

Viewing (se , si ), i = 1, 2, ...,m as observations from the original

factored MDP, and the locally-scoped rewards r (se , si ) as rewards
corresponding to the observations, we get a set ofm smaller aux-

iliary (partially observable) MDPs. To exploit the structure of the

factored MDP, the Q functions of these smaller MDPs (ignoring

the partial observability) can be used as features for the Q func-

tion of the original factored MDP. To be more specific, instead

of approximating the Q function of the factored MDP Q∗
(s,a |θ )

directly, we learn an approximation of the Q functions of the auxil-

iary MDPs Q∗
((se , si ),a |θi ), and use these auxiliary Q functions as

additional features ϕ(s) = [Q∗
((se , s1),a |θ1), ...,Q∗

((se , sm ),a |θm )]

for Q function of the factored MDP. Now the original Q function

can be approximated using the augmented feature (s,ϕ(s)), so we

have Q∗
((s,ϕ(s)),a |θ ′). The assumption here is that the additional

features ϕ(s) will help with the learning ofQ∗
(s,a). During training,

these factored Q functions in ϕ(s) are updated according to their

own TD errors. Section 4.4 describes this idea in the context of

neural networks.

4.3 State Space
The state space needs to include all the necessary information for

driving (vehicle kinematics, road information, etc.), and should be at

such an abstraction level that policies learned on a particular road

are readily transferable to roads with slightly different geometry.

Our state space consists of three parts:

(1) ego state (table 1);

(2) state of surrounding vehicles relative to ego (table 2);

(3) road structure, expressed by topological relations between

surrounding vehicles and ego (table 3).

Only a subset of the state variables might be needed for each ob-

jective, e.g. the safety objective does not need to consider road

priority information, since the goal of safety is to learn a generic

collision avoidance policy.

A maximum ofm surrounding vehicles are considered. If there

are more vehicles in the scene, only the m closest vehicles are

considered. exist_vehicle
1...m is included in the state space in case

the number of vehicle is fewer thanm. In the experiment of this

paperm = 32.

In order to deal with complex roads with multiple lanes, topo-

logical relations between ego and each surrounding vehicle also

need to be included. Inspired by the lanelet model introduced by
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Table 2: State Space — Surrounding Vehicles

s1...m surrounding vehicles

exist_vehicle
1...m whether vehicle exists

v1...m relative speed to ego

d1...m distance to intersection

in_intersection
1...m whether in intersection

exist_left_lane
1...m whether left lane exists

exist_right_lane
1...m whether right lane exists

x1...m , y1...m relative position to ego

θ1...m relative heading to ego

has_priority
1...m whether has right-of-way over ego

ttc1...m time-to-collision with ego

signal
1...m brake/turn signal

Table 3: State Space — Topological Relations with Ego

merge merging into the same lane

crossing routes intersecting each other

left in left lane

right in right lane

ahead ahead in the same or succeeding lane

behind behind in the same or previous lane

irrelevant none of the above

Figure 1: Illustration of topological relations. With respect
to the green vehicle, vehicle 2, 4, 7 are crossing, vehicle 8 is
merge, vehicle 5 and 6 are irrelevant. Vehicle 1 is to the left of
the green vehicle, and the latter is to the right of the former.
Vehicle 3 is behind the green vehicle, and the latter is ahead
of the former.

Bender et al. [4], we define seven topological relations between

vehicles (table 3), which are illustrated in figure 1. These relations

capture the interconnection between roads through vehicles in the

scene and their intended path, without explicitly modelling the

road structure.

4.4 Network Architecture
The state s = (se , s1, s2, ..., sm ) ∈ S contains the state variables ofm
surrounding vehicles si , i = 1, 2, ...,m (including their topological

Figure 2: Neural network architecture with built-in invari-
ance to the order of surrounding vehicles in the state. We
first pass s1, s2, ..., sm through a few shared layers to get
the corresponding features. Then these features are merged
through addition and activation. After that, the network is
fully-connected.

relations with ego). Since swapping the order of two surrounding

vehicles in the state doesn’t change the scene, the Q value should

remain the same:

Q((se , s1, ..., s
u
i , ..., s

v
j , ..., sm ),a) = Q((se , s1, ..., s

v
j , ..., s

u
i , ..., sm ),a)

where sui denotes the uth possible instantiation of dom(si ). To build
this invariance into the neural network, the network needs to be

symmetric with respect to each si . In other words, the weights

connecting Q(s,a) to each si should be the same (shown in Figure

2).

If factored Q function is used, thenm additional heads for these

value functions are needed (Figure 3). During each update, m Q

functions are improved simultaneously in addition to the original Q

function, each of which corresponds to learning to avoid collision

with each of them surrounding vehicles, in the case of the safety
objective. Since the agent utilizes a single scene to learn multiple

aspects within the scene, better data efficiency can be expected.

5 EXPERIMENT
SUMO (Simulation of Urban Mobility [2]) traffic simulator is used

as the simulation environment for our experiment. We wrote a

RL interface similar to OpenAI Gym on top SUMO to provide the

state and action space.
3
Given a map, the set of all possible routes

a vehicle can travel is predefined. The vehicle needs to control

throttle and lane change behavior. The action space is a discrete set

of 9 actions:

(1) max_deceleration;
(2) med_deceleration;
(3) min_deceleration;
(4) maintain_speed;
(5) min_acceleration;

(6) med_acceleration;
(7) max_acceleration;
(8) change_to_right_lane;
(9) change_to_left_lane

3
Source code can be found at https://gitlab.com/sumo-rl/sumo_openai_gym
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Figure 3: Neural network architecture with factored Q func-
tion. The shared layer branches off for the factored Q func-
tions (auxiliary branch), which ismerged back in higher lay-
ers.

The vehicle kinematics follows a point-mass model, and lane

changes are instantaneous. Speed is assumed to be maintained

during lane changes. The learning scenario is a typical urban four-

way intersection of a major road and a minor road with random

traffic. Traffic coming from the minor road needs to yield to the

major road, and turns need to be made from the correct lane(s).

5.1 Objectives
We consider four objectives in this paper. In lexicographic order,

the objectives are:

(1) lane_change: rule-based; all it does is to rule out invalid lane
change actions, namely: lane change to the left/right when

there’s no left/right lane, and lane change in intersections.

The state space only has three state variables: exist_left_lanee ,
exist_right_lanee and in_intersectione ; thus, it’s trivial to

learn even if it were implemented as a RL agent.

(2) safety: RL-based; it ensures that collision doesn’t happen.

−1 reward if collision occurs, or if time-to-collision with

at least one surrounding vehicle is less than 3s and is still

decreasing; 0 reward otherwise.
4
The state space includes

everything except lane_gape and has_priority
1..m . Factored

Q functions are learned on the auxiliary MDPs

(dom(se , si ),A,γ , ri ) , i = 1, 2, ...,m

Where ri is just the locally-scoped version of r : −1 if ego

collides with vehicle i or the time-to-collision with vehicle
i is less than 3s and is still decreasing; 0 reward otherwise.

Since up tom = 32 vehicles are considered, up to 32 instances

of auxiliary POMDPs (which share the state space with the

original factored MDP) can be running at the same time. If

vehicle i goes out of scene or crashes with ego vehicle, the

episode ends for instance i of the auxiliary task. Adaptive

4
This is only a simplified description of the actual reward used. Since we use a simple

calculation for time-to-collision, sometimes it’s not suitable to make the reward de-

pendent on the (inaccurate) estimates of time-to-collision. In these cases, the reward

is set to 0. For the intricacies of the reward function, please refer to the source code.

threshold is used, and τ is set to −0.2 during training; then

it’s manually fine-tuned on the training set before testing.

(3) regulation: RL-based; it makes sure that traffic rules are

followed. We consider two traffic rules: (a) to make turns

from the correct lane(s); (b) to yield according to right-of-

way. A reward of −1 is given for failure to yield right-of-way,

−0.02 for failure to proceed when having right-of-way, and

up to −1 for staying in the wrong lane (e.g. staying in the left-

turn lane, if the assigned route is straight). The state space is

comprised of has_priority
1...m , lane_gape , in_intersectione ,

ve and de . Change of right-of-way or change of road is con-

sidered end of episode, since these changes would happen

regardless of the actions chosen. τ is set to −0.2 during train-

ing.

(4) comfort&speed: rule-based; prefers acceleration unless speed
limit is reached, while avoiding extreme actions (e.g. maxi-

mum acceleration) and lane changes.

5.2 Training
The agent is trained on two intersecting roads with random sur-

rounding traffic. Traffic enters the scene with a random probability

in each episode. An episode ends either when ego collides with

other vehicle(s) or when the timeout is reached. Each surrounding

vehicle has a normally distributed maximum speed, and is con-

trolled by SUMO’s rule-based behavioral model, which attempts to

mimic human drivers. The intersection part of the map is shown

in Figure 1. The north/south-bound traffic needs to yield to the

east/west-bound traffic. In each episode, ego vehicle is randomly

assigned one of the possible routes within the map. Each RL-based

objective is trained using double DQN [25] with prioritized expe-

rience replay [21]. To speed up training, 10 simulation instances

run in parallel, adding experience to the experience replay buffer.

Asynchronous [12] update is performed on the Q functions of each

objective.

Three models are trained for comparison, which we later refer

to as DQN, TLDQN, and TLfDQN respectively:

(1) Scalar-valued DQN: The neural network architecture is as

shown in Figure 2, with 4 shared layers and 2 merged layers.

Each layer has 64 hidden units. The reward function is a

weighted sum of the rewards used for the multi-objective

case. The weights are chosen in a way that try to reflect the

relative importance of each objective.

(2) Thresholeded lexicographic DQN: The safety objective uses
the same neural network architecture as above. The regulation
objective uses a 4-layer fully connected network with 64 hid-

den units in each layer.

(3) Thresholded lexicographic DQN with factored Q function:

The safety objective uses the neural network architecture

as shown in Figure 3, but with only the auxiliary branch.

The auxiliary branch has 4 shared layers, each with 64 hid-

den units; the merged layer is a fixed min layer that takes

the minimum of the factored Q functions for each action.

Q(s,a |θ ) = mini Q((se , si ),a |θ ) The regulation objective

uses the same network structure as above.
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Figure 4: Learning curve of DQN, TLDQN and TLfDQN. The
dark curves are the moving averages.

5.3 Results
The three models are first evaluated on the same intersecting roads

they’ve been trained on, with random traffic; then their zero-shot

transfer performance is evaluated on a ring road (Figure 8) they’ve

never seen during training. The vehicle can enter the ring road

through either right or left turn. Traffic entering the ring road

needs to yield to traffic already on the ring road.

Figure 4 shows the learning curve of DQN, TLDQN and TLfDQN.

The x-axis is the training step, and the y-axis is the (squared) rate of

safety (collisions) and traffic rule (yielding and turning) violations

combined. Timeouts are counted as yielding violations. TLDQN

and DQN are trained for 30 hours, while TLfDQN is only trained

for 18 hours since it has already converged. We see that TLfDQN

is able to reach a good policy within 500, 000 training steps, as

compared to 3 million training steps for TLDQN, improving the

data efficiency by 6 times. It should be noted that the training time

of TLfDQN per training step is longer than TLDQN (26 minutes as

compared to 14 minutes), mostly due to the computational overhead

of the 32 additional targets for the factored Q functions, one for

each surrounding vehicle in the scene. However, the overhead can

potentially be alleviated by parallelizing the computation of the

target. Within 30 hours of training, scalar-valued DQN is not able to

learn an acceptable policy, indicating the effectiveness of the multi-

objective approach. Different weightings for the objectives in the

reward function were tried for scalar-valued DQN, no significantly

better result was observed.
5

Figure 5 shows the learning curves with a breakdown of different

types of violation. Ideally, we would like to show how the agent

performs on each objective. However, many violations are inter-

correlated, e.g., safety violations are usually preceded by failure to

yield; improperly stopping in the middle of the road leads to low

safety violation rate; high safety violation rate often leads to lower

turning violation rate, because the agent simply collides before even

reaching the intersection. Therefore, we group the more serious

violations — safety, failure to yield and timeouts, into one category;

and the less serious violation — failure to change to correct lane,

into another category. The blue curves show the first category, and

5
A good weighting scheme for the reward might exist, but nevertheless hard to find;

and to test a set of new weights, the agent has to be re-trained.

Table 4: Violation Rate after 30 Hours of Training

Model Collision Yielding Turning

DQN 32.9% 8.5% 16.4%

TLDQN 10.9% 0.9% 7.6%

TLfDQN 3.6% 1.0% 2.4%

TLfDQN (transfer) 3.5% 0.4% N/A

the green curves show both categories. Note that failure to change

to correct lane doesn’t necessary imply a bad policy, because in

some scenarios, the road is just too crowded for lane changes. We

see in the figure that in both categories, TLfDQN performs the best.

It’s worth noting that it might seem that the scalar-valued DQN

briefly achieves better performance before getting worse. However,

the videos indicate that the lower collision rate is due to the agent

learning an incorrect policy that stops abruptly in the middle of the

road and waits until all the traffic clears before moving.

Videos of the learned policy of our multi-objective RL agent can

be found online
6
. Figure 6 and Figure 7 are some snapshots of

the videos. Ego vehicle is colored as green, and vehicles that have

right-of-way over ego are colored as orange. In Figure 6, the ego

vehicle is assigned a left-turning route, so it needs to first change

to the left lane, then take a left turn. The ego vehicle learns to slow

down (notice the braking lights) until a gap is found, and then

change lane to the left. In Figure 7, the ego vehicle slows down

to yield for traffic on the major road, then proceeds to complete

the left turn after the road is clear. The vehicle is not yielding for

the right-turning vehicle because there’s no conflict between them.

Figure 8 shows the zero-shot transfer performance on a ring road.

The agent is able to drive through the ring road safely and yield to

traffic already on the ring road before entering. The performance

of the three models after 30 hours of training evaluated on 1, 000

random episodes is shown in Table 4.

6 CONCLUSIONS
We’ve shown in the context of autonomous urban driving that a

multi-objective RL approach — thresholded lexicographic DQN

might be effective for problems whose objectives are difficult to

express using a scalar reward function due to the many aspects

involved. The proposed method of learning factored Q functions,

and using them as auxiliary features during training is shown to

improve data efficiency. Combining these ideas, we trained an au-

tonomous driving agent that is, most of the time, able to safely

drive on busy roads and intersections, while following traffic rules.
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