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ABSTRACT
Contemporary cost-based goal-recognition assumes rationality:

that observed behaviour is more or less optimal. Probabilistic sys-

tems, however, generate probability distributions on the basis of sub-

optimality. We show that, when an observed agent is only slightly

irrational (suboptimal), state-of-the-art systems produce counter-

intuitive results.We present a definition of rationality appropriate to

situations where the ground truth is unknown, define a rationality

measure (RM) that quantifies an agent’s expected degree of subopti-

mality, and present a novel self-modulating probability distribution

formula for goal recognition. Our formula recognises suboptimality

and adjusts its level of confidence accordingly, thereby handling

irrationality—and rationality—in an intuitive, principled manner.
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1 INTRODUCTION
In this paper, we examine—and improve upon—the response of

cost-based goal recognition (GR) when confronted by an agent that

seems less rational than was previously assumed, whether because

they are deliberately deceptive, actually irrational (e.g., mad or

drunk) or simply operating under an unanticipated cost model.
1

GR is the problem of determining an agent’s intent by observing

their behaviour. Traditionally, GR can be categorised into three

types: keyhole recognition, whereby the observed agent behaves

just as if they were not being watched; intended, in which they

actively attempt to reveal their goal; and deceptive or adversarial,
where the agent deliberately misleads or obfuscates [2].

Many contemporary cost-based GR accounts implicitly assume

keyhole recognition and that the observed behaviour is rational

and honest [12, 14, 15, etc.]. On discovering that it is not (i.e., the

behaviour increasingly deviates from any optimal plan), one would

expect such systems to become more “agnostic", that is, less confi-

dent in their predictions until, in the extreme case—confronted by

wildly suboptimal or intentionally deceptive behaviour [7]—they

judge all goals to be “equally probable”.

Contemporary GR models, however, do not achieve this. Techni-

cally, there are three issues. First, it is not immediately obvious how

rationality should be defined in a domain where the ground truth

1
Rationality in this paper is synonymous with cost-sensitivity. We say an optimal plan

is fully rational and define classes of rationality based on the conditions under which

one plan’s cost exceeds another’s. We use “they” as a singular gender-neutral pronoun.

Proc. of the 18th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2019), N. Agmon, M. E. Taylor, E. Elkind, M. Veloso (eds.), May 13–17, 2019,
Montreal, Canada. © 2019 International Foundation for Autonomous Agents and

Multiagent Systems (www.ifaamas.org). All rights reserved.

is unknown. Second, even when observed behaviour is palpably

erratic (i.e., unquestionably irrational), systems persist in assess-

ing it as if it were not. Thus, in the absence of meta-reasoning to

“notice” that the observed agent (for example) favours now this

goal, now that goal, existing GR systems can return apparently

conclusive results (e.g., Goal A with probability 0.75) even though

two or three observations later the result is reversed (e.g., Goal B

with probability 0.8). Third, the probability distribution formulas

that we examine—though highly-respected and based on sound

principles—actually exhibit unexpectedly anomalous outcomes.

In this paper, we analyse the probability distribution formulas

used in support of two state-of-the-art GR frameworks: that of

Ramirez and Geffner [12], which focuses on STRIPS-style task-

planning; and Vered et al. [17], which focuses on motion-planning.

The Ramirez and Geffner framework, in particular, has been used as

the basis for many other models and extensions [e.g., 3, 6, 13, 14]. It

is significant, therefore, to discover (as we do here) that—when faced

with suboptimality in some clear cases—it predicts the most likely

goal with greater confidence as the agent’s perceived behaviour

becomes more irrational (clearly a counter-intuitive result); while,

in a similar situation, the Vered et al. formula returns distributions

that increasingly predict as most probable whichever goal is most
expensive to reach.

Nevertheless, we build on the insights underlying those formulas

to arrive at a more robust model. If the agent’s behaviour is rational

(as GR systems typically expect), our formula returns a result at

the “limit” of the Ramirez and Geffner formula. If the behaviour

is irrational, our formula recognises it as such and, while main-

taining the overall rankings of possible goals, presents them with

decreasing levels of confidence. Using our account, the more irra-

tional the agent’s behaviour, the lower the confidence and the more

probabilities even out to resemble a uniform distribution. Generally

speaking, the new formula is “self-modulating” and requires neither

meta-processing nor intervention. Moreover, it is a parsimonious

elaboration of existing accounts and conceptually simple.

The ability to modulate the outcomes of a GR system confers

practical benefits: (i) by preventing it from naively jumping to

unwarranted conclusions; (ii) by avoiding oscillation between in-

compatible decisions; or (iii) if confidence drops below a given level,

by flagging the possibility of deceptive intent.

In what follows, we first offer an abstract definition of proba-

bilistic GR. We present a definition of rationality for use in domains

where the ground truth is unknown, then examine how two state-

of-the-art GR systems handle apparent irrationality (i.e., suboptimal

plans) and demonstrate anomalies in their outcomes. We define a

measure that can be used to calculate an agent’s expected degree of

rationality based on their past behaviour, then, using that measure,

we present and analyse our self-modulating formula. We conclude

with a brief review of related work.
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2 BACKGROUND
In this section, we set out the cost-based or “plan recognition as

planning" approach to probabilistic GR.

GR involves determining an agent’s goal by observing its be-

haviour. Probabilistic GR is the problem of determining the most
likely goal from a set of possible goals. Whereas traditional GR

infers the goals by comparing observations with plans stored in

a plan library, cost-based GR (in common with other contempo-

rary approaches, such as the use of landmarks [10]) dispenses with

that overhead. Instead, it takes a domain theory as part of the in-

put to the GR problem (along with initial state, candidate goals

and a partial plan or trajectory) and generates a solution using an

off-the-shelf planner. Importantly, the intuition is that a rational

(i.e., cost-sensitive) agent is most likely pursuing a rational (i.e., op-

timal) plan. By comparing the observed plan so-far with the optimal
plan for each goal, a probability distribution can be generated.

Cost-based GR has been studied with respect to various domains,

including STRIPS-style task-planning [12, 14], continuous motion-

planning [17] and graph-based path-planning [6]. For technical

convenience, we express the various accounts as instances of a

general GR problem, whose components have different meanings

and structures depending on the interpretation given to the domain.

Definition 2.1. A cost-based probabilistic GR problem is a tu-

ple P = ⟨D,O, s0,G, ®o, Prob⟩ where:D is a model of the GR domain

(which defines states, transitions between states and their cost); O
is the set of observable elements inD; s0 is the initial state;G is the

set of candidate goals; ®o is a partial sequence of observations drawn
from O ; and Prob is the prior probability distribution across G.

In this paper, we are particularly concerned with the approaches

taken by Ramirez and Geffner [12] and Vered et al. [17] (denoted

as R&G and V&K , respectively). In each case, D is static and de-

terministic, the initial state is fully observable and the observa-

tion sequence is partial, in that it may not account for the agent’s

complete behaviour, and not noisy. In R&G, which applies GR to

task-planning, D represents a STRIPS-like domain of fluents and

actions ⟨F ,A⟩ where each action has an associated precondition,

add and delete list, all subsets of F . Grounding P to R&G, O is the

set of actions, s0 is a state under D, G is a set such that each д ∈ G
is a conjunction of literals and ®o is a sequence of actions. In V&K,

which is concerned primarily with continuous motion-planning,

the domain is conceived as a multi-dimensional Euclidean space,

D ⊆ Rn,n ≥ 2, representing two- or three- dimensional map or

real-world locations (and capable of representing additional con-

tinuous dimensions such as pose, velocity or colour). Grounding P

to V&K, O is a (potentially infinite) set of points and trajectories

(or transitions) through D, s0 is a state (a subset of D),G is a set of

such states, ®o is a sequence of points and trajectories, obtained as

the range of a time function f : ®t 7→ O , where ®t is a sequence of
time intervals during which the world has been observed.

Generally, a plan π in D is a sequence of elements that imply

changes to the underlying domain, transforming it from one state

to another. In R&G, those elements are actions, which are costed,

and the cost of a plan is the sum of its action costs. In V&K, a

plan is a trajectory costed by reference to the Euclidean distance

metric, so the cost of a plan is, effectively, its length. A plan π =
e1, . . . , em is said to satisfy observations ®o = o1, · · · ,on , if there

exists a monotonic function f : {1, · · · ,n} 7→ {1, . . . ,m} such

that ef (i) = oi for all i ∈ {1, · · · ,n}. That is, the order of elements

(in both the plan and the observation sequence) is preserved.
2
The

optimal (lowest) cost of a plan from s0 to a goalд ∈ G that satisfies

observations is denoted by optc(s0, ®o,д) and when ®o = ∅ we just

write optc(s0,д).3

The solution to P is a posterior probability distribution which

prefers goals whose plans best satisfy the observations ®o, that is,
plans that satisfy the observations at least additional cost when
compared with the cost of an optimal plan for the same goal. In-

tuitively, the more closely observations conform to the optimal

plan for a goal д, the more likely it is that goal д is being pursued.

Models vary, however, about the preferred method of performing

the comparison.

The R&G solution to P derives from Bayes’ Rule and makes two

assumptions: that the probability of a plan is inversely proportional

to its cost and that probabilities for multiple plans for the same goal

can be said to be dominated by the highest of those probabilities.

The first assumption is central to their model and is encapsulated

in the notion of cost difference, that is, the difference between

the cheapest plan for a goal д ∈ G, given the observed actions

already taken optc(s0, ®o,д), and the cheapest plan that could have

reached the goal, if one or more of those observed actions had not
occurred. Following Masters and Sardina [6], we denote the cost

of this negative plan as optc¬(s0, ®o,д). Formally, cost difference is a

function costdif : S ×O∗ × S 7→ R defined, when applied to P, as:

costdif(s0, ®o,д) = optc(s0, ®o,д) − optc¬(s0, ®o,д).4 (1)

Ramirez and Geffner’s key intuition is that any solution to P should

have the property that the lower the cost difference for a particular
goal, the higher its probability.

Concretely, this is achieved by plugging the cost difference pa-

rameters into a Boltzmann equation, as follows:
5

PRG (G |®o ) = α ·
1

1 + e−β (optc
¬(s0, ®o,д)−optc(s0, ®o,д))

, (2)

where α is a normalising constant and β is the rate parameter, that

is, a positive constant that modifies the default distribution in such

a way that, as it approaches zero, the distribution flattens out. It

is this rate parameter that we exploit later on. Seeking a similar

outcome in the continuous domain and concerned particularly

with online motion-planning (i.e., observations are assumed to be

revealed incrementally and GR is an iterative, rather than a one-off,

process), Vered et al. [17] take a different approach. Whereas R&G

derives its formula from Bayes’ Rule, V&K appeals to empirical

evidence to support the use of a ratio between “optimal cost” and

“optimal cost through the observations”. The authors characterise

2
Observations may not always be so closely related to plans; the mapping holds, how-

ever, for the domains under consideration here. A comparable result may be achieved

for other domains by modifying the function. For example, Sohrabi et al. ([2016]) treats

observations as observable fluents (not actions), which map into the states of a plan’s

execution trace rather than mapping to actions in the plan itself.

3
Though we recognise the abuse of notation, we use o ∈ ®o to indicate that o occurs

somewhere in ®o and ∅ to represent an empty sequence.

4
In previous work [9], we have shown that the term optc¬(s0, ®o, д) can be replaced in

formula (5) by optc(s0, д) in all but one corner case. Here, however, to avoid conflating

orthogonal issues, we use the formula precisely as given by Ramirez and Geffner [12].

5
We render formula 2 as in [11] but note, the denominator could be re-written as

1 + eβ costdif(s
0
, ®o,д)

. Though omitted for legibility, for all probability distribution

formulas in this paper, values may be multiplied by priors before normalisation.
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(b) Goal-cost equivalence: cost from
end-state to each goal is the same.
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(c) Relative equivalence: progress towards
each goal is the same (w − x = y − z).

Figure 1: Irrationality in aGRdomain.Whatever the goal, observations ®o ′ are uniformly less rational than ®o. Note (a) is a special
case of (b) which is a special case of (c). Though the diagrams imply path-planning, the notions are generally applicable.

their probability formula as an heuristic and, indeed, the supporting

evidence demonstrates that it was the best performing of three

competing heuristics for intent recognition when compared with

human performance [1].

Concretely, the probability distribution acrossG in V&K is based

on a simple ratio between the costs of (a) an optimal plan and (b)

an optimal plan that satisfies the observations:

PVK (G |®o ) = α ·
optc(s0,д)
optc(s0, ®o,д)

. (3)

In the next section, we examine the performance of formulas (2)

and (3) more closely. In doing so, wewill distinguish between scores,
that is, the likelihoods calculated before normalisation (which may

sum to any value) and probability values, that is, the normalised

results (which, after multiplication by a constant α , sum to 1).

3 THE RATIONALITY ASSUMPTION
In this section, we consider how rationality applies in a GR domain.

We analyse the above approaches, identify their limitations with

respect to the rationality assumption and expose some anomalies.

Finally we suggest a mechanism, inspired by V&K, by which we

can measure an agent’s expected degree of rationality based on

their past performance.

3.1 What is Irrational in a GR Domain?
The intuition underlying cost-based GR rests on the assumption of

rationality: the more closely an agent is following an optimal plan

for A, the more likely it is that A is its intended objective. In the

context of a GR problem, however, rationality is not as clear-cut

as it would be in a classical planning or a path-planning problem.

Normally, we would say that the less rational plan is the one that is

more expensive with respect to the real goal but, in a GR scenario,

the ground truth is unknown. The fact that observations seem to

suggest a plan that is irrational (suboptimal) with respect to any one

particular goal actually tells us very little. When an agent pursues

a goal, we expect observations to reflect a more-or-less optimal

plan for that goal. It stands to reason that the closer the agent is

to achieving one goal, the more suboptimal its actions are likely to

become with respect to all the others.

Consider, for example, a cooking domain. There are three candi-

date goals: A, fried eggs, B, boiled potatoes or C, chicken soup. Now,

an agent observed peeling potatoes and filling a pan with water

is on a more or less optimal path for goal B but an increasingly

suboptimal one for goals A and C. Is the plan rational or irrational?

truthful or deceptive? Without knowing the real goal, it seems we

cannot answer the question. Consider an alternative sequence of

observations, however, where the agent is observed heating the

oven: a meaningful action in itself, but irrelevant to all three goals!

In this case, without needing to know the ground truth, we can con-

fidently describe the observed behaviour as irrational: whatever the

goal, it is suboptimal. Similarly, if an agent behaves at one moment

as if attempting to achieve goal A, at the next goal B, and so on

(e.g., by getting out the frying pan, peeling potatoes and opening a

can of soup), now their actions have again become suboptimal with

respect to all goals. This is the behaviour that we are interested in:

behaviour that indisputably betrays irrationality even though the

ground truth is unknown.
6

Definition 3.1. Observation sequence ®o ′ ∈ O∗
is strictly less

rational than ®o ∈ O∗
iff for all д ∈ G, optc(s0, ®o ′,д) > optc(s0, ®o,д).

In words, if one plan (via ®o ′) costs more than another plan (via ®o)
no matter which goal is being pursued, then it is strictly less rational

to select the more expensive plan.

For the purpose of demonstrating the limitations of existing

systems, we now extend the above definition to describe the special

case where an observation sequence is not only strictly less rational

than another observation sequence but less rational by the same
degree for all goals, as follows.

Definition 3.2. Observation sequence ®o ′ ∈ O∗
is uniformly less

rational than ®o ∈ O∗
iff:

(1) ®o ′ is strictly less rational than ®o; and
(2) for all д1,д2 ∈ G, optc(s0, ®o ′,д1) − optc(s0, ®o,д1) =

optc(s0, ®o ′,д2) − optc(s0, ®o,д2).

Under this definition, we distinguish three distinct classes of

uniformly irrational behaviour, illustrated at Figure 1, as follows.

(a) Equivalence. Given two observation sequences such that, no

matter which goal is being pursued, the optimal plan that sat-

isfies them ends up in the same state, the one that costs more

6
This is related to epistemic notions of belief and knowledge under ‘possible world’

semantics [4]: we believe a plan is irrational if it is irrational in every possible world
(i.e., for every goal).
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Figure 2: Loopy paths.

Table 1: Probabilities for Loopy Paths.

R&G (β = 1) R&G (β = 0.1) V&K
д1 д2 д3 д1 д2 д3 д1 д2 д3

s1 - - - - - - 0.3333 0.3333 0.3333

s2 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333 0.3610 0.3280 0.3110

s3 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333 0.3700 0.3259 0.3042

v1 0.9693 0.0304 0.0003 0.4200 0.3343 0.2458 0.4517 0.3194 0.2289

v2 0.9842 0.0157 0.0001 0.4656 0.3238 0.2106 0.4162 0.3224 0.2615

v3 0.9842* 0.0157* 0.0001* 0.4789 0.3196 0.2014 0.4060 0.3223 0.2717

v10 0.9842* 0.0157* 0.0001* 0.4820 0.3186 0.1994 0.3929 0.3216 0.2855

Non-sigmoidal distribution (does not change)
v
1−k 0.9842 0.0157 0.0001 0.4820 0.3186 0.1994

Probabilities on each of multiple visits to s and v (see Figure 2). Winners are highlighted. Anomalies are italicised.

(* Values have changed by tiny amounts, concealed by rounding.)

is uniformly less rational. This conforms to our usual under-

standing depicted by ®o ′ and ®o in Figure 1a : a suboptimal plan

between states is less rational than an optimal plan between

the same two states.

(b) Goal-cost equivalence.Given two observation sequences such
that, depending on which goal is being pursued, the optimal

plan that satisfies them ends up in different states from which

the cost to each goal is nevertheless the same, the one that costs

more is uniformly less rational than the other. This situation is

depicted by ®o ′ in Figure 1b.

(c) Relative equivalence. Given two observation sequences such

that the optimal plan that satisfies them ends up in different

states but the cost difference between plans is the same (for

all goals), the one that costs more is uniformly less rational

than the other. This literal rewording of the definition most

obviously arises if the suboptimal path zigzags, as in Figure 1c,

advancing on all goals without favouring any one in particular;

but the definition subsumes examples (a) and (b), above.

3.2 Analysis of the Rationality Assumption
Definitions 3.1 and 3.2 in hand, we now consider the navigational

scenarios depicted in Figures 2 and 3. An agent is observed in a

gridworld domain with three goals G = {д1,д2,д3}. In terms of a

GR problem P, the starting location, goals G and observables O
are all possible grid locations and transitions are costed in terms

of notional edges between adjacent cells, such that horizontal and

vertical transitions cost 1, diagonal transitions cost

√
2.

In Figure 2, the bottom right (red) path shows an agent first

observed at its initial state s , then moving in two loops; that is,

instead of progressing it returns to the cell at s each time. The other

(blue) path depicts an agent setting off on an apparently optimal

path towards goal д1. Having reached location v , however, instead
of continuing on, it loops twice on location v . In turn, Figure 3

shows the agent again on an apparently optimal path towards д1
via cell v but this time it veers off tow , then takes an increasingly

irrational route via x , y and z (final destination unknown).

Table 1 shows probability values for each goal on each visit to s
and v , with an additional result given for the case where the loop

returning to v repeats 10 times. There are three main columns: two

for the R&Gmodel, each with different β values (the lower β results

in a flatter distribution overall); and one for the V&K model (which

has no rate parameter). We note the following results.

First, excepting the corner case when the only observation is

the initial state (shown here as s1),
7
one can observe that PRG as

per Equation (2) evaluates probabilities for paths that repeatedly

return to the initial state as equal for all goals (i.e., equivalent to

priors). If paths track first to v , however, and then loop, whichever
goal was most probable on the first visit becomes more probable at
each subsequent visit!

Now, this anomaly is not just an issue with “looping” behaviours

per se, but with the more general case of uniformly less rational
observed behaviour, which includes meaningless noise, such as

looping (a variation on example (a) above), as a special case. Indeed,

our first key result shows that given two observation sequences ®o
and ®o ′, goal recognition under Equation (2) becomesmore confident
under the uniformly less rational observation sequence ®o ′.

Theorem 3.3. Let ®o, ®o ′ ∈ O∗ be observation sequences s.t. ®o ′ is
uniformly less rational than ®o and let д̂ ∈ G be s.t. PRG (д̂ | ®o ) >
PRG (д | ®o ), for allд ∈ G\{д̂} (i.e., goal д̂ is the best explanation under
the more rational observations ®o). Then, PRG (д̂ | ®o ′) > PRG (д̂ | ®o ).

Proof. The effect is a by-product of normalising scores gener-

ated using the Boltzmann distribution.

(1) Let a = ecostdif(s0, ®o,д). Without loss of generality, take β = 1.

Now formula (2) can be rewritten as:

PRG (G | ®o ) = α ·
1

1 + a
;

and we introduce an alternative non-sigmoidal distribution:

PX (G | ®o ) = α ·
1

a
.

(2) Considering the scores (i.e., likelihood of each goal prior to

normalisation), clearly,
1

1+a <
1

a . Furthermore, lima→∞
1

1+a÷
1

a = 1. Thus, asa approaches infinity, PRG converges towards—

though it never reaches—PX .

7
Owing to the negative reasoning in cost difference equation (1), if there exists a goal

д such that every path to д satisfies the observations, cost difference may evaluate to

−∞ yielding an undefined normalised score [6].
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Figure 3: A Zigzagging Path.

Table 2: Probabilities on a Zigzagging Path.

R&G (β = 1) R&G (β = 0.1) V&K
д1 д2 д3 д1 д2 д3 д1 д2 д3

v 0.9694 0.0303 0.0003 0.4200 0.3342 0.2458 0.4517 0.3194 0.2289

w 0.0008 0.0156 0.9835 0.2484 0.3264 0.4351 0.3176 0.3176 0.3647
x 0.3368 0.6050 0.0581 0.3436 0.3609 0.2955 0.3708 0.3380 0.2911

y 0.9951 0.0049 4.5e-05 0.4943 0.3072 0.1984 0.4233 0.3174 0.2593

z 0.0200 0.3734 0.6066 0.2694 0.3568 0.3737 0.3562 0.3318 0.3120

Probabilities as calculated at points v - z (see Figure 3). Anomalies italicised, as previously.

(3) Now,
1

a is precisely (by definition) inversely proportional to

a, whereas 1

1+a is not. Calculating the difference between

them, we get:

1

a
−

1

a + 1
=

(a + 1) − a

a(a + 1)
=

1

a2 + a
;

which, proportionally, is a decrease of:

1

a2 + a
÷

1

a
=

1

a2 + a
×
a

1

=
1

a + 1
.

So the proportional decrease is greatest when a is lowest.

(4) Recall that a = ecostdif(si , ®o,д) and PRG (д̂ | ®o ) > PRG (д | ®o )
was given. Therefore,

1

e costdif(si , ®o,д̂)+1
> 1

e costdif(si , ®o,д)+1
for all

д ∈ G\{д̂}. So, from 3, the proportional decrease
1

a+1 is more

for д̂ than for other goals. Therefore, PRG (д̂ | ®o ) < PX (д̂ | ®o ).
(5) Since ®o ′ is less rational than ®o (as given),

costdif(s0, ®o ′,д) > costdif(s0, ®o,д), for all д ∈ G, and hence

ecostdif(s0, ®o
′,д) > ecostdif(s0, ®o,д) (i.e., a increases). From points

2 and 4, we get PRG (д̂ | ®o) < PRG (д̂ | ®o ′) < PX (д̂ | ®o ′). �

The above anomaly occurs whenever cost difference increases

uniformly for all goals (i.e., whenever one observation sequence is

uniformly less rational than another). The alternative observation

sequence does not need to be wildly suboptimal; even the slightest

suboptimality generates the same anomalous result.

Note that, although the above result at first appears to contradict

R&G’s principle—that lower cost difference should result in higher

probability—actually, it does not. That principle applies to the total

distribution across goals with respect to one GR problem, whereas

Theorem 3.3 examines the situation across two different problems
(because we have substituted for observations ®o the less rational
®o ′). So, we do not challenge the R&G principle. Nevertheless, Theo-

rem 3.3 states that: when we change to a uniformly less rational

observation sequence (a new GR problem), although the relative

order across goals is maintained (the R&G principle applies) their

specific probability values change in counter-intuitive ways.

The discrepancy exposed by Theorem 3.3 arises out of the use

of a sigmoidal equation which is then normalised. As soon as we

substitute a non-sigmoidal equivalent, the problem is resolved (as

proved above and illustrated in the final row of Table 1).

Thus, replacing the R&G formula with its non-sigmoidal counter-

part corrects an inconsistency. As a sidenote, we observe that, while

this may make only a minor difference to the probability values

produced under R&G, such a correction has important ramifications

elsewhere. In previous work on GR in path-planning, we proposed

an observation-free (or “single-observation”) cost difference for-

mula [6, 8]. Using the Boltzmann equation to arrive at the scores, it

was necessary to add a large constant to results in order to generate

probability values close to parity with those based on the more

conventional cost difference formula. Using the Boltzmann, our

results maintained only the same rankings as Ramirez and Geffner’s

model; substituting its non-sigmoidal counterpart, however, the

probability values returned by their formula would be identical to
R&G (excepting one corner case described there).

8

Turning now to V&K, whereas R&G maintains rankings but

increases the probability of the most probable goal, faced with

irrational paths, this distribution has the effect that the furthest
goal inevitably becomes more probable than any of the other goals

(see highlighted anomalies in Tables 1 and 2).

Theorem 3.4. Let ®o, ®o ′ ∈ O∗ be observation sequences such that
®o ′ is uniformly less rational than ®o and let д1,д2 ∈ G be such that
optc(s0,д1) > optc(s0,д2) (i.e., the optimal cost of achieving д1 is
greater than that of achievingд2). Then, there exists a c such that when
optc(s0, ®o ′,д1) − optc(s0, ®o,д1) ≥ c , PVK (д1 | ®o ′) > PVK (д2 | ®o ′ ).

Proof. (Sketch) The numerators for PVK (·) formula (3) are dif-

ferent but constant, based on the optimal cost to each goal. Under

the uniformly less rational observations, by Definition 3.2, the cost

of the denominator increases equally for all goals. Thus, all scores

decrease, but the score with the largest numerator decreases most

slowly. Since optc(s0,д1) > optc(s0,д2), the score for д1 has the

largest numerator, and the proposition follows. �

One impact of Theorem 3.4 is that the cost difference princi-

ple is not maintained: lower cost difference does not imply higher

probability. Furthermore, the fact that, as the size of the denom-

inator increases, it is the most distant/expensive goal that begins
to be favoured, is again anomalous: the underlying intuition for

8
We attributed that problem to the use of negative exponentials and loss of precision [6,

p.757]. It appears, however, that we were experiencing the effect described in Theorem

3.3 but in reverse. Whereas here we add to the cost difference (because paths are

suboptimal), there we deducted from cost difference (because the single-observation

formula dispenses with large portions of the observed path) so the sigmoidal effect

described here skewed results in the opposite direction.

Session 2C: Knowledge Representation and Reasoning AAMAS 2019, May 13-17, 2019, Montréal, Canada

444



cost-based GR is that “cheaper is better” yet here the goal’s score

increases precisely because its attainment costs more.

Observe also that V&K always returns a comparatively flat dis-

tribution: even on the first visit to v on an optimal path to д1, it
yields P(д1) < 0.5. In a practical application, where the user might

be waiting for the probability of a goal to exceed some threshold

before triggering an event, that trigger might never be reached.

Summary of Findings
The above analyses identify problematic cases in which both GR

models yield unintended outcomes. The R&G model is relatively

consistent and easy to understand but, faced with an apparently

“irrational” agent, it oscillates between goals depending on the most

recent observation. Used with higher β values, it is also beguilingly

decisive, able to return, in the zigzagging example (Table 2), P(д3) =
0.98 then half a dozen steps later P(д1) = 0.99! Additionally, the

more irrational the agent, the more confidently the distribution

points towards the most probable goal (Theorem 3.3), apparent in

the looping example (Table 1 at v), most obviously for β = 0.1,

where probabilities start from a lower (flatter) base.

V&K, on the other hand, appears inconsistent and indecisive.

Even when the agent seems clearly on the optimal path towards a

particular goal (Table 2 at v), it assigns that goal a probability less

than 0.5, scarcely outscoring its much more suboptimal competi-

tion. Moreover, faced with an irrational agent that seems not to

be targeting any particular goal, it is biased to prefer the most dis-

tant/expensive goal, no matter where the agent is currently located.

At first, it oscillates (note atw , it has “swung” from д1 to prefer д3,
in agreement with R&G). As the path becomes more suboptimal,

however, the ratio on which V&K depends becomes so diluted that

the most distant/costly-to-reach goal (which supplies the largest

numerator) again dominates (Table 2, locations x,y and z).
In fairness, both the above accounts were developed under the

assumption of rationality. It is a “soft” assumption, however, in

that we aim for a GR framework able to accommodate suboptimal

behaviour. Indeed, both models derive their probability distribu-

tions based on the degree of suboptimality that they encounter. It

appears, therefore, that rationality ought to be accommodated in

the framework natively; and that is our objective in this paper.

3.3 Measuring the Degree of Irrationality
We have seen that probabilities generated by V&K’s formula (3),

when confronted by an even marginally suboptimal plan, can seem

illogical in the way that it biases towards the most distant goal.

Nonetheless, the score on which the probabilities are based degrades
(behind the scenes) in an interesting and useful way.

The ratio optc(s0,д) ÷ optc(s0, ®o,д) used under the V&K model

balances optimal cost from start to goal against optimal cost through

the observations. Thus, a perfectly rational observed plan, where

optc(s0, ®o,д) = optc(s0,д), yields a score of 1; but as the observed
behaviour becomes increasingly erratic (i.e., suboptimal for all
goals, that is, “strictly less rational”), the denominator increases (for
all goals) while the numerator (for all goals) remains the same.

Note that if a plan is optimal (or close to optimal) for some
goal, it is not an erratic or irrational one, and the maximum score

approaches 1. Only when the plan is suboptimal for all goals is the

maximum score diminished. It turns out, then, that the maximum

score at any point in the plan provides a good measure of the degree

to which optimality has (in general) become “diluted”.

Definition 3.5. Relative to a GR problem, P, the rationality
measure (RM) is given by:

RM(s0,G, ®o) = max

д∈G

optc(s0,д)
optc(s0, ®o,д)

. (4)

Notice that the RM is based on “strictly less rational" behaviour

(Definition 3.1), a more general, cumulative measure than the notion

of being “uniformly less rational” (Definition 3.2). Although it mea-

sures suboptimality across all goals, observations are not necessarily

suboptimal for each goal by the same amount. By taking the maxi-

mum score, we always assess rationality based on the “best” possible

interpretation. So, given two observation sequences ®o and ®o ′, where
®o ′ is uniformly less rational than ®o, RM(s0,G, ®o

′) < RM(s0,G, ®o)
(the more irrational the observations, the lower all the scores be-
come; so the lower the maximum score becomes). Thus, the RM for

uniformly less rational observations is always lower. The reverse
does not apply, however. Observations with a lower RM are not
always uniformly less rational. “Uniformly less rational” observa-

tions involve the same amount of unnecessary work for all goals;

observations with a low RM also do a lot of unnecessary work but

may still be tracking (albeit suboptimally) towards one particular

goal.

Our model for GR (below) uses the RM “on-the-fly” to provide a

snapshot of the agent’s degree of rationality, based on their imme-

diate history but the measure has other potential uses. For example,

it could also be used from problem to problem, as follows. Once

the RM for a particular agent has been established (on the basis

of the current, or past, problem), it provides a means of predicting

how suboptimal that agent’s behaviour is likely to be in future.

Though beyond the scope of this paper, this may have an impact

on the sort of (suboptimal) planner that might be used to generate

plans with which to compare observations, should the same agent

be encountered a second time. If the RM is very low (i.e., highly

suggestive of irrationality) then this might be used to flag the need

for additional (perhaps human) surveillance on future sightings.

4 A SELF-MODULATING APPROACH TO GR
We now present our self-modulating account which uses the RM,

in combination with a non-sigmoidal variation of R&G, to lift the

rationality assumption.

Our objective is to obtain a probability distribution—a solution

to a GR problem P = ⟨D,O, s0,G, ®o, Prob⟩—that preserves the intu-
ition behind R&G that the lower the cost difference, the higher the

probability but which modulates its level of confidence relative to

the degree of rationality observed so far.

To achieve this, we propose the following formula:

P(G | ®o) = α ·
1

eβ costdif(s0, ®o,д)
, (5)

where β = RM(s0,G, ®o)
γ
, and γ is a positive constant.

Formula (5) maintains an R&G-like awareness of the goal the

agent seems to be approaching but, as the agent becomes irrational
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with respect to all goals (i.e., apparently cost-insensitive and pos-

sibly deceptive), the formula self-regulates and lowers its level of

confidence accordingly. By doing so, it accommodates the rational-

ity assumption in the process of performing GR. More concretely,

while the agent behaves rationally (with respect to at least one of

the goals), a confident prediction is returned, at the limit of those

we have seen from R&G (β = 1); but the more irrational the agent

becomes (i.e., their observed behaviour is increasingly suboptimal

with respect to all goals in the domain), a less confident prediction

is given, resembling the more subdued distributions of V&K or R&G

(β = 0.1) (i.e., with lower β value).

Importantly, our formula (5) substitutes for R&G’s Boltzmann

equation a non-sigmoidal distribution (which does not suffer from

the discrepancy captured by Theorem 3.3). It does, however, draw

on a seldom-discussed feature of the R&G model: the β parameter.

4.1 The rate parameter in R&G
The solution to a GR problem under R&G is achieved using the

Boltzmann probability distribution—formula (2)—tempered by a

rate parameter β . As seen in Tables 1 and 2, while the value of

β makes no difference to the relative ranking of goals within a

probability distribution, it does have considerable impact on the

shape of that distribution. Indeed, as briefly discussed in Ramirez’s

PhD thesis [11, p.63] (though mostly ignored in the papers):

This [parameter] allows plan recognition system de-
velopers to soften the implicit assumption of the agent
being rational as in preferring those plans that mini-
mize their total cost. The smaller the value of β the more
will the distribution resemble a uniform distribution ...

Thus, formula (2) already includes a parameter to control the

level of confidence in the observed agent’s rationality; but the choice

of a value for β (given a value of 1 in the thesis and in code linked

from [12]) is left to be set by the GR system developer, presumably

on the basis of domain knowledge or special information about the

particular agent under observation. Our approach, in Equation (5),

is for the formula to self-adjust this parameter “on-the-fly” based

on the RM, which, recall, we derive by maximising the score (not

the probabilities) from V&K.

4.2 Properties of the Self-Modulating Formula
Formula (5), via the now dynamic β , synthesises the accounts dis-
cussed above to achieve the following properties and features.

(1) In place of the Boltzmann, this exponential distribution pre-

cisely enforces the intuition that the lower the cost difference,

the higher the probability. Furthermore, unlike formula (2), it

is closed under scaling and so returns consistent probability

values when one sequence of observations is strictly less ra-

tional than another; also, it guarantees probabilities (before

modification by the β parameter) always at the limit of those

calculated under formula (2) (see proof of Theorem 3.3).

(2) The β parameter self-adjusts by reference to the agent’s

current degree of suboptimality, given by RM (formula 4).

(3) The confidence parameter γ regulates how quickly confi-

dence should drop if irrational behaviour is detected. If γ is

high, the less suboptimal the observations need to be before

the probability distribution flattens out.

(4) Our formula (5) ostensibly requires three calls to a plan-

ner per goal—for optc(s, ®o,д), optc¬(s, ®o,д) and optc(s,д)—
whereas the R&G distribution requires only the first two.

However, the additional call (required for the RM formula 4)

depends on the domain, not on the observations, so can

be precalculated and cached. Taking this approach, self-

modulation can be achieved without time penalty. (Our main

focus was nonetheless on capturing the intended meaning

more accurately, above achieving computational efficiency.)

In the following, P(·) stands for our self-modulating formula; β ®o
represents the β value for observations ®o from Equation (5); and

P
β=x
RG represents Equation (2) with β = x .
First, we formalise the observation at (1) above, which follows

from lima→∞[1/(1 + a) ÷ 1/a] = 1 in the proof of Theorem 3.3.

Observation 1. limcostdif(s0, ®o,д)→∞ P
β=β ®o
RG (·) ÷ P(·) = 1.

Next, themore rational an agent’s behaviour (i.e., the observation

sequence ®o ), the higher the β in our account and, thus, the more

closely probabilities approach those at the limit of R&G (β = 1).

Theorem 4.1. Let ®o, ®o ′ ∈ O∗ be two observation sequences such
that ®o ′ is strictly less rational than ®o. Then, 1 ≥ β ®o > β ®o ′ .

Proof. (Sketch) β is based on the RM (formula 4) which max-

imises the ratio at formula (3). Across goals, numerators remain

constant. As observed costs increase, all denominators increase and

all values decrease: therefore the maximum must decrease. �

Now, when an agent behaves fully rationally—that is, navigates

optimally with respect to some goal—our probability distribution

is at the limit of R&G (β = 1) because, when observations conform

to optimal behaviour, β = 1 in Equation (5). Moreover, see next

that even when our account diverges from R&G (β = 1), it still

maintains the same relative rankings across goals.

Theorem 4.2. For all observations ®o ∈ O∗ and goals д1,д2 ∈ G,
P(д1 | ®o ) > P(д2 | ®o ) iff PRG (д1 | ®o ) > PRG (д2 | ®o ).

Proof. (Sketch) The differences between formulas (2) and (5)

have no impact on probability rankings. Specifically:

(1) subtracting +1 from the denominator of every score does not

change their relative order; and

(2) β is a multiplicative constant. Changing its value (including

by the introduction of γ ) effects a monotonic transformation,

again maintaining the relative order of probabilities. �

Thus, our formula is aligned with the underlying assumption of

the R&G framework with respect to the rationality of the observed

agent and never alters the qualitative outcome: goal rankings are
maintained. Critically, though, as the following important result

states, the more erratic the observations (i.e., the more suboptimal

for all goals), the more even the probability distribution becomes.

Theorem 4.3. Let ®o, ®o ′ ∈ O∗ be two observation sequences such
that ®o ′ is strictly less rational than ®o ∈ O∗. Then, for every two goals
д1,д2 ∈ G such that P(д1 | ®o ′) , P(д2 | ®o ′) (i.e., whenever the two
goals are distinguishable):

|P(д1 | ®o ′) − P(д2 | ®o ′)| < |P(д1 | ®o ) − P(д2 | ®o )|.
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Table 3: Probabilities Revisited.

R&G (β = 0.1) Self-Mod γ = 2
д1 д2 д3 д1 д2 д3 β

s2 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333 0.2642

s3 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333 0.1196

v1 0.4200 0.3342 0.2458 0.9842 0.0156 0.0001 1

v2 0.4656 0.3237 0.2106 0.5752 0.2906 0.1342 0.1649

v3 0.4789 0.3196 0.2015 0.4295 0.3283 0.2422 0.0649

v10 0.4820 0.3186 0.1994 0.3383 0.3335 0.3281 0.0050

(a) Loopy Paths.

R&G (β = 1) Self-Mod γ = 2
д1 д2 д3 д1 д2 д3 β

v 0.9694 0.0303 0.0003 0.9842 0.0156 0.0001 1

w 0.0008 0.0156 0.9835 0.1267 0.2458 0.6275 0.2262

x 0.3368 0.6050 0.0581 0.3514 0.3886 0.2500 0.1716

y 0.9951 0.0049 4.5e-05 0.6018 0.2674 0.1308 0.1526

z 0.0200 0.3734 0.6066 0.2894 0.3513 0.3637 0.0715

(b) Zigzagging Path.

Proof. (Sketch)

(1) Since ®o ′ is strictly less rational than ®o, by Definition 3.1, for

all д1 ∈ G, optc(s0, ®o ′,д1) > optc(s0, ®o,д1).
(2) From Theorem 4.1, β in Formula (5) is reduced when the cost

of the observation sequence increases.

(3) When β is reduced, a monotonic transformation diminishes

the difference between probabilities. �

4.3 Comparison of Results
In Tables 3a and 3b, we compare the probabilities returned by

our self-modulating formula (5) with the original “static” R&G

formula (2). Referring to Table 3b, observe that, at location v , when
the agent appears to be on an optimal path to д1 (though on a

suboptimal path to д2 and д3), “Self-Mod" (5) maintains β = 1 and

therefore yields a confident prediction. But, as the path becomes

increasingly suboptimal, the distribution obtained by formula (5)

evens out so that, by location z, the most and least likely goals are

separated by just 0.07 (compared with 0.58 using static R&G).

Notice that Self-Mod always maintains the same rankings as

R&G but, referring now to Table 3a, we clearly see that whereas a

looping path causes Self-Mod to return a less confident prediction

(the more the path loops, the more the distribution flattens out),

the opposite is true of R&G, which counter-intuitively increases in

confidence with every loop. Thus, using formula (5), the validity

of the assumption with respect to the rationality of the observed

agent has been accounted for.

Thus, our self-modulating formula provides the performance we

set out to achieve: as the agent becomes more erratic (suboptimal),

it yields a distribution closer to uniform. Practically, faced with

apparently irrational behaviour, a GR system using our approach

judges goals more equally, displaying a reduced level of confidence.

5 RELATEDWORK
We briefly reflect on other extensions to, and adaptations of, [12].

First, as previously noted, the term optc¬(s0, ®o,д) in cost difference

formula (1) can be replaced by optc(s0,д). We have shown elsewhere

that this alternative formulation, also considered by E-Martin et al.

[3], yields an identical result to the original term in all cases barring

those where observations conform to the optimal way of attaining

multiple goals and the only optimal way of attaining one of them [9].

The simpler formula is less demanding computationally (no need

to reason negatively about observations and the term is reusable if

probabilities are to be checked multiple times) and more robust (if

the initial state s0 is the only observation, it yields prior Prob).

In relation to apparent irrationality, like us, Sohrabi et al. [14]

deal with unreliable observations. Their focus, however, is not

suboptimality but the possibility that observations may be either

noisy or missing. Interestingly, their solution—when applied to

increasingly suboptimal paths—skews results so as to penalise the
most distant goal (which V&K favours). This is because an irrational

path is “noisy" for all goals to approximately the same extent; but

the optimal path to a distant goal inevitably has more missing

observations than the optimal path to a goal nearby.

In recent work, Vered and Kaminka [16] introduce heuristics to

speed up the recognition process. As usual, rationality is assumed:

if an agent behaves irrationally with respect to a particular goal

(e.g., in a path-planning context, by turning away from it), that goal

is pruned from future consideration. In [17], the authors explicitly

consider rationality/irrationality and observe that humans perform-

ing goal recognition are particularly susceptible to its dictates (more

so, in fact, than their formula). Indeed, as Jian et al. [5] have shown,

when drawing a path with the intent to deceive, people immediately

subvert the rationality assumption, typically settling on massively

suboptimal (e.g., spiralling or zigzagging) paths.

6 CONCLUSION
We have lifted perhaps the strongest assumption in current state-

of-the-art approaches to GR, that of the rationality of the observed

agent. As a result, we can handle agents ranging from the strictly

rational to the arbitrarily irrational in a principled manner.

We first analysed two well-respected contemporary approaches

and identified situations in which they yield unexpected results

(when faced with plans that appear irrational). By synthesising both

approaches via a measurement of the agent’s expected degree of

suboptimality, we devised an alternative model for GR. Importantly,

the synthesis is principled and conceptually simple. The proposed

model respects the intuition that, typically, a plan’s probability is

inversely proportional to its cost, but degrades gracefully if the

underlying assumption of rationality is compromised.

In future work, there is scope to consider how confidence could

be restored if, after a period of irrationality or erratic behaviour,

the observed agent seems once again to be “back on track”.
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