
Soft Labeling in Stochastic Shortest Path Problems
Luis Pineda

1,2
and Shlomo Zilberstein

1

1
University of Massachusetts, Amherst, MA

2
Facebook AI Research, Montreal, QC

lpineda,shlomo@cs.umass.edu

ABSTRACT
The Stochastic Shortest Path (SSP) is an established model for goal-

directed probabilistic planning. Despite its broad applicability, wide

adoption of the model has been impaired by its high computational

complexity. Efforts to address this challenge have produced promis-

ing algorithms that leverage two popular mechanisms: labeling
and short-sightedness. The resulting algorithms can generate near-

optimal solutions much faster than optimal solvers, albeit at the

cost of poor theoretical guarantees. In this work, we introduce a

generalization of labeling, called soft labeling, which results in a

framework that encompasses a wide spectrum of efficient labeling

algorithms, and offers better theoretical guarantees than existing

short-sighted labeling approaches. We also propose a novel instanti-

ation of this framework, the SOFT-FLARES algorithm, which achieves

state-of-the-art performance on a diverse set of benchmarks.

KEYWORDS
Markov decision processes; probabilistic planning; short-sighted

algorithms; stochastic shortest path problems

ACM Reference Format:
Luis Pineda and Shlomo Zilberstein. 2019. Soft Labeling in Stochastic Short-

est Path Problems. In Proc. of the 18th International Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS 2019), Montreal, Canada,
May 13–17, 2019, IFAAMAS, 9 pages.

1 INTRODUCTION
The goal of this work is to provide a better understanding and

more effective algorithms for solving Stochastic Shortest Path (SSP)

problems [2]. SSPs are a class of goal-directed Markov Decision

Process [17], where the objective is to minimize the expected cost

of reaching a goal state from a fixed initial state. Many practical

applications involving autonomous agents can be modeled as SSPs,

such as decision systems for fighting wildfires [8], planning in semi-

autonomous vehicles [24], and automated charging of electrical ve-

hicles [9]. Unfortunately, the complexity of solving large SSPs [14]

has impaired the widespread adoption of the model. Developing

effective SSP solvers remains a challenging research problem.

Two techniques have contributed tremendously to progress in

the area of SSP solvers: labeling and short-sightedness. Labeling
techniques identify states for which further computation will not

improve value estimates (a proxy for policy quality) above a given

tolerance. For MDPs and SSPs, the technique was first introduced

by Bonet and Geffner [4]. Their LRTDP algorithm included a labeling

procedure that, starting from some given state, visits all states that

Proc. of the 18th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2019), N. Agmon, M. E. Taylor, E. Elkind, M. Veloso (eds.), May 13–17, 2019,
Montreal, Canada. © 2019 International Foundation for Autonomous Agents and

Multiagent Systems (www.ifaamas.org). All rights reserved.

can be reached using the current policy; if the values of all of these

states have converged up to some tolerance, the algorithm labels all

of them as “solved”. This technique accelerates computation signif-

icantly, by allowing a solver to avoid states for which computation

is no longer productive.

The other influential development, short-sightedness, is a pop-

ular technique for solving planning problems approximately, by
limiting the search to states that are “close” to the initial state. This

can substantially speed up computation in exchange for some degra-

dation in solution quality. In the case of SSPs, the most prominent

short-sighted algorithms are HDP [3] and SSIPP [23]. However, the

disadvantages of typical short-sighted methods are a strong de-

pendence on having a good heuristic and possibly requiring large

horizons to produce plans of good quality.

Recent work by Pineda et al. [16] combined these two ideas by

exploring the use of short-sightedness only during the labeling

phase, and otherwise allowing the planner to explore the state

space freely. Intuitively, this allows the solver to explore deeper

into the relevant parts of the state space, while still resulting in

substantial computational savings. An algorithm based on this idea,

called FLARES, was shown empirically to have advantages over LRTDP,

HDP and SSIPP, producing near-optimal plans orders of magnitude

faster than LRTDP. However, despite showing promising empirical

results, FLARES does not possess any theoretical guarantees such

as optimality or ϵ-consistency—even if allowed infinite computa-

tion time—unless the la beling horizon is chosen appropriately.

Unfortunately, there is no known principle for choosing the neces-

sary labeling horizon, other than trial and error or prior domain

knowledge. Conversely, standard—non-myopic—labeling can be

used to provide theoretical guarantees, with the potential downside

of requiring the exploration of a very large number of states.

To bridge the gap between these two extremes, the main con-

tribution of this work is a general framework, soft labeling, for
describing short-sighted labeling-based SSPs solvers. Soft labeling

generalizes the purpose of labeling, allowing it to modify the sam-

pling strategy, by reducing the probability of sampling states that

are close to convergence, in a topological sense. We propose, and

build upon, a new measure that we call ϵ-distance, which represents

how close a state is to states with large residual errors. We show

how to leverage this quantity to direct the search to parts of the

state space where computation would be more productive. Further-

more, we present an algorithm based on these ideas, SOFT-FLARES,

that achieves the computational efficiency of FLARES, and can also

provide stronger theoretical guarantees. Our experiments show

that SOFT-FLARES is competitive with state-of-the-art SSP solvers,

both in terms of computation time and policy performance. We

also analyze some of the drawbacks and potential improvements

of our framework, as well as directions on how to overcome these

existing limitations.

Session 2C: Knowledge Representation and Reasoning AAMAS 2019, May 13-17, 2019, Montréal, Canada

467

2 RELATEDWORK
The use of labeling for solving MDPs was first introduced by Bonet

and Geffner [4] through the LRTDP algorithm; the technique has been

further explored in algorithms such as HDP [3], LSDF [6], lr
2
tdp [12],

and, more recently, FLARES [16]. Among these algorithms, this work

is closest to HDP(I) and FLARES. As in our proposed framework, the

former combines labeling and short-sightedness, by searching over

states that can be reached with high probability from the initial state

(or the current state of execution, when an online planning strategy

is used). However, an algorithm using soft labeling, which we show

FLARES is an instance of, is allowed to freely explore the state space,

and the search is only constrained whenever the algorithm attempts

to label a state as solved. In this respect, our work generalizes

the notion of short-sighted labeling introduced by FLARES, and we

propose a framework that encompasses a wide spectrum of labeling-

based algorithms filling the gap between FLARES and LRTDP.

Additionally, short-sightedness in the solution of SSPs has also

been explored by Trevizan and Veloso, with the introduction of the

SSIPP algorithm [23]. Multiple variants of this algorithm exist, partic-

ularly trajectory-based SSIPP [21], SSIPP-FF, and LABELED-SSIPP [23]. As

in the case of HDP(I), all of these variants restrict the search to states

close to the initial state, thus potentially requiring large horizons

to obtain good performance.

Finally, our work also bears similarity to a set of extensions of

RTDP that exploit upper bounds on state values to direct exploration:

BRTDP [15], FRTDP [19], and VPI-RTDP [18]. The main similarity be-

tween these algorithms and our soft labeling framework is in the

introduction of a bias in the transition function used for sampling,

so that exploration is directed to parts of the state space that are

further away from convergence. However, unlike BRTDP, FRTDP and

VPI-RTDP, our framework does not require initial upper bounds for

state values. While this may look like a minor improvement, note

that there are currently no practical methods to efficiently compute

good upper bounds for state values in SSPs. For instance, themethod

proposed in the BRTDP paper requires a pass through every state in

the problem domain, a computational cost that can be prohibitive

in large SSPs with thousands, millions, or even billions of states.

Without an efficient automatic approach to find upper bounds, the

user is left with no choice but to provide some problem-dependent

initial values, possibly requiring specialized domain knowledge. On

the other hand, our framework only requires the user to provide

an initial heuristic (i.e., a lower bound initialization of state values),

which is standard among state-of-the-art SSP solvers.

3 FORMAL BACKGROUND
We primarily focus on Stochastic Shortest Path problems (SSPs) [2].

An SSP is a tuple ⟨S,A,T ,C, s0,G⟩, where: S is the finite set of all

possible states of the system;A is the finite set of all possible actions
the agent can take; T : S × A × S → [0, 1] is a transition function
specifying the probability T(s,a, s ′) of outcome state s ′ whenever
action a is executed in state s; C : S × A → R is a cost function
that gives the cost C(s,a) incurred whenever the agent executes

action a and the system is in state s ; s0 ∈ S is the initial state of the
system; and G ⊆ S is the non-empty set of goal states, s.t. for every
sд ∈ G, for all a ∈ A, and for all s ′ , sд , the transition function

obeys T(sд ,a, sд) = 1, T(sд ,a, s
′) = 0, and C(sд ,a, sд) = 0.

The objective in an SSP is to bring the system from the initial state

s0 to a goal state sд ∈ G with minimum total cost, in expectation.

The behavior of an agent is described in terms of a policy, π : S →

A, a mapping that assigns an action to every state. Given a policy

π , we can define the value functionV π that represents the expected

total cost incurred when π is executed starting from state s . That is,

V π (s) ≜ E
[∞∑
t=0
C(st ,π (st))|s0 = s,π

]
(1)

A policy π is called proper if following π from any given state has a

probability 1 of reaching a goal; otherwise, it is called improper. An
optimal solution to an SSP, or optimal policy, denoted as π∗, and its

optimal value function, V ∗, are ones that satisfy,

V ∗(s) = min

π
V π (s) (2)

V ∗(s) = min

a

[
C(s,a) +

∑
s ′∈S

T(s,a, s ′)V ∗(s ′)
]

(3)

π∗(s) = argmin

a

[
C(s,a) +

∑
s ′∈S

T(s,a, s ′)V ∗(s ′)
]

(4)

as long as the following two conditions are met [2]: i) there exists

at least one proper policy, and ii) for every improper policy π , and
for every state s ∈ S where π is improper,V π (s) = ∞. Under these
two conditions, the optimal value function for an SSP, V ∗, is the
fixed point of the set of Bellman equations,

V (s) = min

a

[
C(s,a) +

∑
s ′∈S

T(s,a, s ′)V (s ′)
]

(5)

Applying (5) to a state s is commonly referred to as a Bellman
backup. It is also useful to introduce the concept of residual at a
state, defined as

ResV (s) ≜
���V (s) − min

a∈A

[
C(s,a) +

∑
s ′∈S

T(s,a, s ′)V (s ′)
] ���

Finally, a state s is called ϵ-consistent if ResV (s) < ϵ .

4 SOFT LABELING IN SSPS
Labeling in MDPs refers to a mechanism for caching the value of

states that are guaranteed to be ϵ-consistent. This property can be

established by confirming that all the states reachable from a given

state, under the current greedy policy, are also ϵ-consistent [4]. If
so, all of the reachable states can be labeled as solved. This approach

often produces substantial computational savings, allowing search

algorithms to avoid working on states whose value have converged

within an acceptable tolerance.

4.1 Generalizing Labeling
Labeling in SSPs can be interpreted as an outcome selection mech-

anism [10] that continually modifies the transition function used

for sampling states during planning. Specifically, it modifies the

probabilities of sampling successor states guaranteed to remain ϵ-
consistent, making these probabilities equal to zero. In this work we

introduce soft labeling, which generalizes labeling as a probabilistic

factor that modifies the transition function used for sampling. We

begin formalizing the notion of soft labeling by introducing a few

key definitions.

Session 2C: Knowledge Representation and Reasoning AAMAS 2019, May 13-17, 2019, Montréal, Canada

468

Definition 4.1. Deterministic policy graph rooted at a state.
Given an SSP M = ⟨S,A,T ,C, s0,G⟩ and a state s ∈ S, the
deterministic policy graph rooted at state s is a directed graph

Gs,π = (Ss,π ,Eπ), where the set of vertices, Ss,π , is the set of all
states reachable from s by following policy π , and Eπ is a set of

edges {⟨s ′, s ′′⟩ | T (s ′,π (s ′), s ′′) > 0}.

That is, Gs,π is a digraph containing a vertex for every state

reachable from s following policy π , and an edge connecting two

states whenever one is a possible outcome of the other under π .

Definition 4.2. Weighted distance between two states. Let
M = ⟨S,A,T ,C, s0,G⟩ be an SSP and s a state in S. Furthermore,

letG
(w)
s,π be the deterministic policy graph, weighted with a function

w : Eπ → R+
0
that assigns a non-negative weight to each edge.

Then, the weighted distance between s and s ′ ∈ S \ {s}, δ (s, s ′)
is the total weight of the shortest path between s and s ′ in the

weighted deterministic policy graph. When s = s ′, δ (s, s ′) ≜ 0.

This notion of weighted distance allows us to characterize dif-

ferent measures of short-sightedness using a single notation. For

example, the most common—depth-based—form, which considers

the minimum number of actions needed to reach another state, can

be represented by assigning w(⟨s, s ′⟩) = 1 to every edge in G
(w)
s,π .

Additionally, we can represent other forms of short-sightedness

based on trajectory probabilities [23], using

w(⟨s, s ′⟩) = − log
2
T(s,π (s), s ′) (6)

or plausibilities [3], using

w(⟨s, s ′⟩) =
⌊
− log

2

(
T(s,π (s), s ′)

maxs ′′ T(s,π (s), s ′′)

)⌋
(7)

Given a weight function, w , we define the ϵ-distance of state s ,
dϵ (s), as the shortest weighted distance from s to a state that is not

ϵ-consistent.

Definition 4.3. ϵ-distance of a state. LetM = ⟨S,A,T ,C, s0,G⟩
be an SSP, s a state in S, and G

(w)
s,π be the weighted deterministic

policy graph. Furthermore, let V : S → R be a value function. The

ϵ-distance of state s , dϵ (s), is defined as dϵ ≜ mins ′∈Sϵ+s δ (s, s ′),

where Sϵ+s ≜ {s ′ ∈ Ss,π | ResV (s) > ϵ}, and dϵ = ∞ if Sϵ+s = ∅.

Note that dϵ (s) generally depends on the weight function as well

as the current policy and value function. For the sake of clarity,

we omit these details from the notation, but we make sure that

in the rest of the paper the correct conditions are clear from the

context. Figure 1 illustrates the ϵ-distance of a few states on a small

SSP, using a depth-based weight function. Assuming ϵ = 0.1, the

red edges illustrates the path to the state at the shortest weighted

distance from A (G), usingw(⟨s, s ′⟩) = 1, which results in dϵ (A) = 2.

The blue path shows the corresponding path (to state H) whenw is

defined as in (6), resulting in dϵ (A) = 0.46.

We can use the concept of ϵ-distance to provide a concise defini-

tion of the typical criterion for labeling states in SSPs solvers [4]: a
state s should be labeled only if dϵ (s) = ∞ under the current value
function V and a greedy policy over V (irrespective of the weight
function used). Additionally, the depth-based short-sighted labeling

criterion [16] can be described as: a state s should be labeled only
if dϵ (s) ≥ t , where t is an input parameter and the ϵ-distance is

A

B

C

Res(B)=0.09

Res(F)=0.01

D

E

F

GRes(C)=0.09

Res(D)=0.09

Res(E)=0.09 Remaining
states

Res(G)=0.5

p = 0.9

p = 0.1

p = 0.9

p = 0.1

p
=

0.
9

p = 0.1

Res(A)=0.05

H

Res(H)=0.2p = 0.9

p = 0.1

Figure 1: Illustration of the ϵ-distance of a state under a
given policy, for two different distance functions.

conditioned on the current value function V , a greedy policy π over
V , andw(e) = 1 for every edge in the deterministic policy graph.

Both of these labeling criteria consider states solved once they

are labeled. In practice, this means that trial-based algorithms using

labeling (e.g., LRTDP or FLARES) stop trials as soon as they encounter

labeled states. We can describe this process via a sampling func-
tion, σ : S × A × S+ → [0, 1], such that σ (s,a, s ′) represents the
probability that a trial continues in state s ′ if action a is chosen

when visiting state s . We use the notation S+ ≜ S ∪ {ŝ}, where ŝ
is a dummy state that represents that the current trial stops. Note

that σ only affects the algorithm’s choice of explored states, not

the computation of values using (5).

Building on this notation, we can represent labeling-based sam-

pling via

σ (s,a, s ′) =

{(
1 − L(s ′)

)
· T (s,a, s ′) if s ′ ∈ S∑

x ∈S L(x) · T (s,a,x) if s ′ = ŝ
(8)

where the label, L, is a factor that alters the probability of a trial

continuing at a given successor state.

This definition of labeling generalizes existing forms of labeling,

which can be recovered from (8) with appropriate definitions of

L. For example, to recover the labeling used in LRTDP, L should be

defined as

L(s ′) ≜ [dϵ (s
′) = ∞] (9)

where dϵ (s
′) is conditioned on V , the greedy policy over V , and an

arbitrary weighting functionw ; [·] denotes an Iverson bracket. For

the depth-based short-sighted labeling criterion used in FLARES, the

label is

L(s ′) ≜ [∀s ′′ ∈ Ss ′,π ∩ {s ′′ : δ (⟨s ′, s ′′⟩) ≤ t)}, dϵ (s
′′) ≥ t] (10)

where dϵ (s
′′) is conditioned on V , its associated greedy policy π ,

and the weight functionw(⟨s, s ′⟩) = 1. While this labeling function

might seem overly complicated, in later sections we show that

we can generalize this behavior by means of a generic procedure

for estimating ϵ-distances, while letting the labeling functions be
dependent only on the estimated value of dϵ (s

′).

4.2 Soft Labeling
Algorithm 1 presents a generic trial-based solver based on the

soft labeling framework described above. The algorithm receives a

Session 2C: Knowledge Representation and Reasoning AAMAS 2019, May 13-17, 2019, Montréal, Canada

469

labeling function, L, a weight function used to compute distances,

w , the residual tolerance to be used, ϵ , the number of trials to

perform, n, and a vector with additional parameters, θ (e.g., the

horizon t in FLARES).

The algorithm starts by initializing ϵ-distances of all states (line
1)
1
. Typically, ϵ-distances should be initialized so thatL(s) = 0 (e.g.,

by setting dϵ (s) to −∞), but we allow room for other possibilities,

such as keeping ϵ-distances computed during previous calls to the

solver on the same input problem. The algorithm functions in a

manner very similar to LRTDP, with the following differences:

• The label s .SOLVED is replaced by a random sample [x ∼
Bernoulli(L(s)) = 1] (lines 13 and 18), which is consistent

with the probabilistic interpretation of L and will become

more relevant when we introduce soft versions of L.

• The states sampled during the trials (line 12) are sampled

according to (8) (function SAMPLE-FROM-SIGMA).

• The call to CHECK-SOLVED(s) is replaced with a call to function

ESTIMATE-ϵ-distance(s) (line 17) . The objective of this func-
tion is to explore states in Ss,π , where π is the greedy policy

on the current value estimates, and estimate ϵ-distances for
s (and possibly for other states in the graph). The function re-

ceives the distance function to be used,w , and any additional

parameters necessary, θ .

This generic SOFT-LRTDP algorithm generalizes LRTDP and FLARES, as

long as ESTIMATE-ϵ-distance(s) is instantiated appropriately. For ex-

ample, for obtaining LRTDP, it needs to explore all states in s ′ ∈ Ss,π ,

and set dϵ (s
′) ← ∞ iff Res

V (s ′) ≤ ϵ for all s ′. For obtaining FLARES,

we can implement ESTIMATE-ϵ-distance as a short-sighted version

of CHECK-SOLVED(s) that: i) limits the search to depth 2t , and ii) sets

dϵ (s
′) = t for any s ′ found up to depth t iff all states explored satisfy

Res
V (s ′) ≤ ϵ . Moreover, our framework allows extensions of FLARES

that use other distance measures, such as trajectory probabilities

or plausibilities.

Although reformulating existing algorithms in this light is some-

what interesting, it does not immediately result in drastically differ-

ent solution methods for SSPs. However, as we show next, the real

power of this framework is that it directly implies a family of label-

ing mechanisms that achieve the computational efficiency of FLARES,

while still maintaining theoretical guarantees of performance. The

main insight is to realize that there is nothing forcing us to use an

indicator function for L; in fact, we can use any arbitrary function

L : S → [0, 1]. We refer to the resulting outcome selection ap-

proach as soft labeling because it allows the labeling function, L, to
deter—but not prevent—a state from being explored. Furthermore,

as we show in our experiments, the flexibility in the choice of label-

ing function can also be leveraged when using approximate solvers,

by biasing the search towards states where computation can be

more productive, resulting in faster planning without significant

impact on policy quality.

4.3 Theoretical Properties
The use of soft labeling leads to theoretical properties that can-

not be obtained with deterministic short-sighted labels, such as

1
In practice this should be done lazily, i.e., whenever a state’s ϵ -distance needs to
be used the first time. We explicitly include it here to highlight the prominent role

ϵ -distances play in the algorithm.

Algorithm 1: A generic soft labeling trial-based algorithm

based on RTDP.

SOFT-LABELED-RTDP
input :M = ⟨S, A, T, C, s0, G⟩, L, w, ϵ, n, θ
output :an action to execute

1 ∀s ∈ S, dϵ (s) ← INITIALIZE-ϵ -DISTANCE(s)
2 i ← 0

3 while i < n do
4 i ← i + 1
5 s = s0
6 visited← EMPTY-STACK

7 while true do
8 visited.PUSH(s)
9 if s ∈ G then break

10 BELLMAN-UPDATE(s)
11 a ← GREEDY-ACTION(s)
12 s ← SAMPLE-FROM-SIGMA(s, a, T, L, d)
13 if [x ∼ Bernoull i(L(s)) = 1] then
14 break

15 while visited , EMPTY-STACK do
16 s ← visited.POP()
17 d← ESTIMATE-ϵ -distance(M, s, w, θ)
18 if [x ∼ Bernoull i(L(s)) = 0] then
19 break

20 return GREEDY-ACTION(s0)

those used by FLARES. In particular, Theorem 4.4 below shows con-

ditions under which SOFT-LRTDP can produce optimal policies, by

operating similarly to RTDP. Further, Theorem 4.5 shows conditions

on ESTIMATE-ϵ-distance under which the algorithm converges to

ϵ-consistent values with high probability, thus operating similarly

to LRTDP. Note that, crucially, the use ofψ in Theorem 4.5 implies

the existence of a wide spectrum of short-sighted labeling strategies

that allow SOFT-LRTDP to bridge the gap between RTDP and LRTDP.

Theorem 4.4. Given, i) a labeling function L such that ∀s ′ ∈
S,L(s ′) < η < 1, for some fixed η, and ii) an implementation of
ESTIMATE-ϵ-distance(s) that only changes state values through Bellman
backups, and iii) an admissible initial value function, then repeated
trials of Algorithm 1 eventually yield optimal values over all states
reachable by a greedy policy on the states values.

Proof. This follows from the optimality of asynchronous value

iteration and RTDP [1]. Conditions i-iii) ensure that SOFT-LRTDP oper-

ates like RTDP, with the only difference being the sampling proba-

bilities used during the trials. Restricting L(s ′) < η < 1 guarantees

that repeated trials can visit states in any optimal policy infinitely

often. □

Theorem 4.5. Consider, i) a labeling function L such that
L(s ′) = 1 iff dϵ (s ′) = ∞; ii) an implementation of function
ESTIMATE-ϵ-distance(s) that sets dϵ (s ′) = ∞ iff Sϵ+s ′ = ∅, only changes
state values through Bellman backups, and with probabilityψ > 0 it
explores all states inSs,π ; and iii) an admissible initial value function.
Then, under conditions i-iii) and for any 0 < p < 1, there exists a
value Np > 0 s.t. the probability that Np trials of Algorithm 1 yield

Session 2C: Knowledge Representation and Reasoning AAMAS 2019, May 13-17, 2019, Montréal, Canada

470

ϵ-consistent values over all states reachable by the greedy policy is
higher than p.

Proof. Under conditions i-iii) there is a probability ψ that a

call to ESTIMATE-ϵ-distance operates exactly like the CHECK-SOLVED

function of LRTDP. Suppose SOFT-FLARES never terminates under these

conditions when n →∞. Then, there must be a state si such that

ESTIMATE-ϵ-distance(si) is called an infinite number of times. Also

note that, following Bonet and Geffner [4], there is a finite number

of calls to CHECK-SOLVED(si) after which S
ϵ+
si = ∅. This maximum

number of calls to CHECK-SOLVED(si) is bounded by

C = ϵ−1
∑
s ∈S

V ∗(s) − h(s) (11)

where h(s) is the initial admissible value function. Becauseψ > 0,

we can then bound the probability that after n calls to function

ESTIMATE-ϵ-distance(si), S
ϵ+
si , ∅. Let X be the random variable

representing the total number of calls to ESTIMATE-ϵ-distance(si)
that are equivalent to CHECK-SOLVED(si). Then, by applying Chernoff
bound,

Pr (X ≤ C) ≤ exp

{
− (nψ −C)2/2nψ

}
(12)

Thus, for any 0 < q < 1, as long as Nq −
√
2Nqψ log 1/q > C , then

Nq calls ensure Pr (X ≤ C) < q. Together with conditions i-ii), this

implies that after Nq calls to ESTIMATE-ϵ-distance, si will be labeled
L(si) = 1 with probability higher than q. Moreover, since q can be

arbitrarily small and the number of states is finite, this implies that

for any probability p < q there is a number of SOFT-FLARES trials, Np ,

after which L(s0) = 1. □

Next, we provide a short-sighted implementation of

ESTIMATE-ϵ-distance(s), which, coupled with appropriate labeling

functions, satisfies the conditions of Theorem 4.5. This implemen-

tation is outlined in Algorithm 2.

Algorithm 2 closely follows the labeling procedure of FLARES,

with some major differences. First, as in Algorithm 1, all boolean

label checks have been replaced by Bernoulli trials with probability

L(s) (lines 7 an 19). Second, labeling is done by modifying the ϵ-
distances of states, instead of assigning hard labels (lines 26 and 28).

Third, the short-sighted horizon, h, is set to infinity with probability
ψ , allowing Ss,π to be explored fully.

In more detail, the algorithm works as follows. Given a state

s , Algorithm 2 expands all states in Ss,π up to distance 2h, and
checks if all of these are ϵ-consistent (lines 15-16); the notion of

distance to use is specified by the function w (see line 20). If all

of the states found are ϵ-consistent, the algorithm then modifies

ϵ-distance estimates according to the distance—from s—at which
the state was first found (lines 23-28). If it turns out that Ss,π lies

completely within the horizon 2h (when variable all is true), then
dϵ (s

′) is set to ∞ for all states found, since this condition is the

usual requirement for correctly hard-labeling states.

Note that, in the case where only finite ϵ-distances can be as-

signed (line 28), our distance estimate slightly departs from Def-

inition 4.3. A more accurate estimate would be dϵ (s
′) ← 2t − d ,

considering that there are ϵ-consistent states at distances t to 2t
from the initial state s . Similarly, we could also have assigned ϵ-
distances for all states found up to distance 2t , instead of only for

those at distance ≤ t (line 27). However, we took the more con-

servative approach shown here because it is equivalent to a more

Algorithm 2: A depth limited procedure to compute ϵ-
distances.

ESTIMATE-ϵ -distance
input :M = ⟨S, A, T, C, s0, G⟩, s, w, ϵ, ψ , t

1 no-high-res← true
2 open← EMPTY-STACK

3 closed← EMPTY-STACK

4 all← true
5 z ∼ Bernoull i(ψ)
6 h ← [z = 0] · t + [z = 1] · ∞

7 if [x ∼ Bernoull i(L(s)) = 1] then
8 open.PUSH(⟨s, 0⟩)

9 while open , EMPTY-STACK do
10 ⟨s, d ⟩ ← open.POP()

11 if d > 2h then
12 all← false
13 continue

14 closed.PUSH(⟨s, d ⟩)
15 if s .RESIDUAL() > ϵ then
16 no-high-res← false

17 a ← GREEDY-ACTION(s)
18 for s′ ∈ {s′ ∈ S | T(s, a, s′) > 0} do
19 if

(
[x ∼ Bernoull i(L(s)) = 0]

∨ h = ∞
)
∧ s′ < closed then

20 open.PUSH
(〈
s′, d +w (⟨s, s′⟩)

〉)
21 else if dϵ (s′) , ∞∧ s′ < closed then
22 all = false

23 if no-high-res then
24 for ⟨s′, d ⟩ ∈ closed do
25 if all then
26 dϵ (s′) = ∞

27 else if d ≤ t then
28 dϵ (s′) = t − d

29 else
30 while closed , EMPTY-STACK do
31 ⟨s′, d ⟩ = closed.POP()
32 BELLMAN-UPDATE(s)

robust version of FLARES; one that labels the same set of states, but

that uses soft labels instead. This allows our method to explore,

with some probability, states that have already been labeled. As

it turns out, we experimented with the more accurate ϵ-distance
estimates and its empirical performance was worse than FLARES’.

Finally, what are good labeling functions to use? Intuitively, we

want increasing functions of the ϵ-distance, to encourage sampling

towards states that are “more likely” to be far away from con-

vergence. In our experiments we consider the following labeling

functions, for the case when t > 0:

• Linear: L(s) ≜ β−α
t dϵ (s) + α

• Logistic: L(s) ≜ 1

1+ 1−α
α exp{− 1

t ln
(1−α)β
α (1−β) ·dϵ (s)}

• Exponential: L(s) ≜ α exp{ 1t ln
β
α · dϵ (s)}

where α and β are parameters that represent the desired labeling

probability for dϵ (s) = 0 and dϵ (s) = t , respectively. In all cases,

Session 2C: Knowledge Representation and Reasoning AAMAS 2019, May 13-17, 2019, Montréal, Canada

471

Algorithm Exp. cost Time (seconds)

SOFT-FLARES-T-LOG(2) 93.89 ± 1.01 3.53
FLARES(2) 94.47 ± 0.99 4.65

BRTDP 94.86 ± 0.98 13.08

SSIPP(8) 95.26 ± 1.00 17.42

HDP(2) 95.64 ± 1.01 5.78

LRTDP 96.28 ± 1.04 7.57

Table 1: Expected cost and total planning of several planning
algorithms on the sailing domain (middle-goal).

Algorithm Exp. cost Time (seconds)

BRTDP 180.74 ± 1.37 78.67

FLARES(2) 180.84 ± 1.39 12.58

HDP(1,0) 180.86 ± 1.39 31.11

LRTDP 180.96 ± 1.36 18.72

SOFT-FLARES-T-EXP(2) 181.04 ± 1.41 9.99
SSIPP(8) 181.39 ± 1.39 74.29

Table 2: Expected cost and total planning of several planning
algorithms on an instance of the sailing domain (corner-
goal).

Algorithm Exp. cost Time (seconds)

SOFT-FLARES-T-EXP(3) 27.27 ± 0.19 4.34

LRTDP 27.30 ± 0.19 12.27

HDP(3,0) 27.41 ± 0.20 4.12
BRTDP 27.52 ± 0.19 9.27

FLARES(3) 27.52 ± 0.20 6.49

SSIPP(8) 28.06 ± 0.20 30.46

Table 3: Expected cost and total planning of several planning
algorithms on the racetrack domain (ring-5).

Algorithm Exp. cost Time (seconds)

SOFT-FLARES-T-LOG(3) 11.55 ± 0.05 0.33
FLARES(2) 11.55 ± 0.05 0.91

SSIPP(4) 11.58 ± 0.05 2.03

LRTDP 11.61 ± 0.05 58.62

BRTDP 11.64 ± 0.05 4.35

HDP(3,0) 11.65 ± 0.05 0.43

Table 4: Expected cost and total planning of several planning
algorithms on the racetrack domain (square-4).

we assume that L(s) = 0 if dϵ (s) < 0 and L(s) = β if dϵ (s) ≥ t .
Note that, under the provided definition of ESTIMATE-ϵ -DISTANCE, the

FLARES label described in Eq. (10) can now be succinctly written

as L(s ′) ≜ [dϵ (s ′) ≥ t].

5 EXPERIMENTS
In this section we empirically evaluate the use of soft labeling for

approximately solving SSPs, denoting the combination of Algo-

rithms 1 and 2 as SOFT-FLARES. The goal of these experiments was to

demonstrate that the general soft labeling framework can produce

algorithms competitive with state-of-the-art methods, both in terms

of expected cost and total planning time. We compared different

variants of SOFT-FLARES to several SSP solvers: RFF [20], LRTDP [4],

FLARES [16], HDP [3], BRTDP [15], and SSIPP [23]. We did not perform

extensive experiments with LABELED-SSIPP, since preliminary experi-

ments indicate that run time was never better than that of LRTDP.

Similarly, we did not compare with VPI-RTDP [18] as it seems to

be easily affected by the quality of initial upper bounds; in our

experiments we have been unable to reproduce the results in [18].

We use the notation ALGORITHM(X) to denote the short-sighted

horizon, X, used by the algorithm. In the case of SOFT-FLARES and SSIPP,

the notation ALGORITHM-DIST-LABEL; refers to a distance function, DIST,

(D for depth, T for trajectory probability, or P for plausibility), and a

label function, LABEL, (LINear, LOGistic, or EXPonential). In all cases

we used α = 0.1 and β = 0.9 for SOFT-FLARES. For SOFT-FLARES, we

also set ψ = 0, since we will evaluate the quality of the resulting

policies empirically. We used the hmin heuristic [4], pre-computed

for all states before planning started. We evaluated different param-

eterizations of the algorithms with distances from 0 to 4 for HDP,

FLARES and SOFT-FLARES, distances in {1, 2, 4, 8} for SSIPP, and values

of ρ = 2
−5

and ρ = 2
−4

for TRAJECTORY-BASED-SSIPP [22]. For each

algorithm, we report the results of the parameterization resulting

in the lowest planning time, under the constraint that the obtained

expected cost is within two standard errors of the best observed one

(if possible). In Section 6, we discuss the sensitivity of SOFT-FLARES

to its parameters values in more detail.

All experiments were performed on Xeon E5-2680 v4 @ 2.40GHz

computers. The performance of a planner is evaluated by running

simulations of the partial policy implied by the algorithm’s action

selection, and computing the resulting expected cost and total time

spent on planning. We reset any internal state of the algorithms

before each simulation starts, to evaluate their performance in a one-

shot planning task. Note that this is harder than typical competition

settings, where planners are allowed to reuse computation from

previous simulations. Actions are selected greedily on the current

value estimates, and we allow the algorithm to re-plan if necessary,

adding the accrued time to the total. For SSIPP, the algorithm re-

plans before each action, for HDP re-planning is done as described

by [3], and for SOFT-FLARES it is done whenever a soft-label check

fails.
2

5.1 Sailing Domain
Our first evaluation benchmark is the sailing problem [11]. We

evaluated on two instances of this domain, both with size 40 × 40

(12,801 states), differing in the goal location (corner or middle of

the grid). The wind transition probability is such that the direction

stays the same with probability 0.3, changes by one unit (clockwise

or counterclockwise) with probability 0.2, and by two units with

probability 0.15. We consider the performance of the algorithms

when there is no time limit per action, considering the following

2
Code to reproduce these experiments available at https://github.com/luisenp/mdp-lib.

Session 2C: Knowledge Representation and Reasoning AAMAS 2019, May 13-17, 2019, Montréal, Canada

472

Algorithm p01 p02 p03 p04 p05 p06 p07 p08 p09 p10

TRIANGLE-TIREWORLD

SOFT-FLARES 50 50 50 50 50 50 50 49 49 41

RFF 50 50 50 50 50 50 50 0 0 0

TRAJECTORY-BASED-SSIPP 50 50 48 46 46 38 40 33 42 31

EX-BLOCKSWORLD

SOFT-FLARES 45 15 17 21 50 48 50 27 23 1

RFF 31 7 25 10 50 12 41 6 5 0

TRAJECTORY-BASED-SSIPP 0 0 31 26 50 46 0 0 0 0

Table 5: Number of runs in which planners were able to successfully reach the goal for two IPPC’08 domains.

stopping criteria (whichever happens first): successful label checks

for FLARES, SOFT-FLARES, and HDP; 1000 trials for LRTDP, BRTDP, FLARES,

and SOFT-FLARES; a single simulated trial reaching a goal for SSIPP.

Tables 1 and 2 show the expected costs and total planning times of

these experiments, averaged over 1000 simulations; standard errors

are also shown for the expected cost (the variance for the planning

time was negligible). Note that all planners are within statistical

error of the optimal performance (using the expected cost of LRTDP

as reference), so meaningful distinctions can only be established in

terms of planning time. In both of the problem instances considered,

a parameterization of SOFT-FLARES was considerably faster than all

other planners. Additionally, in both cases the best parameterization

of SOFT-FLARES involved the trajectory probability distance, although

other parameterizations achieved similar performance.

5.2 Racetrack Domain
Our second evaluation benchmark is the racetrack domain, first

proposed in [1]. We modify the domain so that, in addition to the

probability of slipping, all actions have some probability that the

acceleration changes from the intended one by 1 unit, in any of the

directions chosen uniformly at random; for example, accelerating

north can also result in accelerating north-west, north-east, or in no

acceleration. Note that similar modifications have been introduced

in the past to increase the complexity of the problem [15, 16]. We

used a probability of 0.20 for slipping, and a probability of 0.10

for randomly changing accelerations. We experimented with two

problems instances, one with 92,909 states (ring-5) and one with

400,270 states (square-4). The results are shown in Tables 3 and 4,

respectively, which show the expected costs and total planning

times of these experiments, averaged over 1000 simulations. In the

two problem instances considered, a parameterization of SOFT-FLARES

was among the best two planners in terms of total planning time,

being outperformed only by a slight margin by the HDP algorithm.

As in the case of the sailing domain, the best parameterization

involved the trajectory probability distance function.

5.3 International Planning Competition
Domains

We assessed the scalability of SOFT-FLARES to problems with very

large state spaces, using two domains from the International Plan-

ning Competition held in 2008 (the last competition involving goal-

based MDPs) [7]. We used problems 1-10 from two of the domains:

TRIANGLE-TIREWORLD and EX-BLOCKSWORLD; in contrast with the do-

mains explored in the previous sections, the state space of the larger

instances of these domains consist of billions of states. As typical in

competition settings, we gave planners 20 minutes to successfully

complete 50 runs of each problem. For SOFT-FLARES, we used t = 2, an

exponential labeling function and the inadmissible FF heuristic [5].

We compare the performance of SOFT-FLARES with our implementa-

tion of RFF [20], the winner of IPPC’08, and with trajectory-based

SSIPP [22], using ρ = 0.25 and thehadd heuristic (SSIPP code provided

by the original author); all experiments were run on the same ma-

chine. The results, shown in Table 5, demonstrate that SOFT-FLARES is

able to scale to very large problems, outperforming state-of-the-art

planners in two probabilistically interesting domains [13]. Crucially,

it outperforms RFF, without relying on a classical planner to speed
up computation, providing convincing evidence that soft labeling is

a promising framework for scalable and performant probabilistic

planning. Note that for TRAJECTORY-BASED-SSIPP, the original work

reports 50 in every triangle-tireworld instance [22], but we could

not reproduce these results using the original code.

6 DISCUSSION AND POTENTIAL
DRAWBACKS

The results described in the previous section offer evidence that our

soft labeling framework can be used to create planners with near-

optimal performance and competitive planning times. However,

our work opens ups some research questions for which we do not

have a definite answer yet, and, thus, it would be useful for the

reader to be aware of some of the potential aspects that can be

improved in our proposed approach.

One issue is the question of how to select the parameters for

the algorithm, namely, the horizon t , and the labeling and distance

functions. Tables 6 and 7 show the results obtained with different

parameterizations of SOFT-FLARES in one instance of the sailing do-

main, and one of the racetrack, respectively; the parameterizations

reported in Section 5 are highlighted in bold font. The choice of

parameters can have a significant impact on the quality of the fi-

nal results, both in terms of planning time and expected cost. In

particular, the choice of distance function can increase the running

time up to an order of magnitude, without significant improve-

ment in policy quality. Out of the distance functions considered,

the depth-based distance (w(⟨s, s ′⟩ = 1)) resulted in much slower

Session 2C: Knowledge Representation and Reasoning AAMAS 2019, May 13-17, 2019, Montréal, Canada

473

Parameterization Exp. cost Time (seconds)

PLAUS-LIN(4) 178.51 ± 1.37 73.91

DEPTH-EXP(2) 179.37 ± 1.37 15.81

TRAJ-LOG(2) 181.04 ± 1.41 9.99

TRAJ-EXP(2) 181.04 ± 1.41 9.99

TRAJ-LIN(2) 181.04 ± 1.41 10.48

DEPTH-EXP(4) 182.47 ± 1.40 34.54

PLAUS-LOG(4) 185.03 ± 1.47 72.85

Table 6: Expected cost and total planning time of several pa-
rameterizations of SOFT-FLARES on the sailing domain (corner-
goal).

Parameterization Exp. cost Time (seconds)

PLAUS-EXP(4) 27.25 ± 0.18 7.40

TRAJ-EXP(3) 27.27 ± 0.19 4.34

DEPTH-LIN(2) 27.37 ± 0.19 7.84

DEPTH-EXP(4) 27.42 ± 0.19 18.02

TRAJ-LIN(3) 27.58 ± 0.20 5.30

TRAJ-LOG(3) 27.60 ± 0.19 4.70

DEPTH-LOG(4) 27.78 ± 0.20 18.54

Table 7: Expected cost and total planning time of several
parameterizations of SOFT-FLARES on the racetrack domain
(ring-5).

performance on both of these problems, even with smaller hori-

zons. For an example, see DEPTH-EXP(2) in Table 6 and DEPTH-LIN(2) in

Table 7. The plausibility distance function had poor running time

on the sailing domain, but better performance on the racetrack. In

general, the results suggest that the trajectory probability distance

can be a good choice, but this may be problem dependent (e.g, if

transition probabilities are markedly non uniform, plausibilities

could be better).

The choice of labeling function also has influence on the perfor-

mance of the algorithm, as evidenced by the differences between

TRAJ-LIN(2) and TRAJ-EXP(2) in Table 6, PLAUS-LIN(4) and PLAUS-LOG(4) in

Table 6, and TRAJ-EXP(3) and TRAJ-LIN(3) in Table 7. Note that in one

case (PLAUS-LIN(4) vs. PLAUS-LOG(4) in Table 6), the choice made a sta-

tistical significance difference in expected cost (p-value of 0.0001).

On the other hand, when using the trajectory based distance, we

did not find significant differences between the exponential and

logistic labeling functions (the linear labeling function was found to

be slightly slower). This suggest that the combination of trajectory

probability distance with exponential/logistic labeling function can

be effective in practice, but, given the heuristic nature of these

functions, we caution that the results are likely to be problem de-

pendent.

The other aspect of our approach that requires further investiga-

tion is the trade-off between theoretical and empirical results. The

results of Theorem 4.4 imply that, unlike their deterministic coun-

terparts, soft labeling allows short-sighted planners to naturally

leverage any additional planning time to increase policy quality.

To empirically confirm this property, we experimented with a soft

analogue of FLARES, which can be obtained under SOFT-FLARES using a

depth based distance and the label function L(s ′) ≜ β · [dϵ (s
′) ≥ t].

We used a similar setting to Section 5, allowing the planner to run

until the initial state is sampled as labeled. While this means the

algorithm is not necessarily running until optimality, the probabilis-

tic labels should allow the planner to run for longer than regular

FLARES, and result in lower expected costs. We experimented with

values of β ∈ [0.1, 0.2, ..., 0.9], and performed 4000 simulations, fo-

cusing on the case of horizon t = 1. In general, we observed that the

probabilistic labels generally resulted in lower expected costs than

those obtained with FLARES, although only statistically significant

in a few cases. In particular, in the sailing domain (size 40, middle

goal), all values of β ∈ {0.1, 0.3, 0.5, 0.7} improve the expected

cost by more than 2%, significant at a 0.05 level (p-value < 0.005).

Likewise, in racetrack instance ring-5, a value β = 0.3 improves

the expected cost by 1.2% (p-value of 0.018). We emphasize that

these improvements are solely due to the use of probabilistic labels.

However, as expected, they come with an increase in planning time,

which in these experiments ranges from 15% to 62%.

On the other hand, we have had less success translating the

results of Theorem 4.5 into empirical improvements. Ideally, we

would expect that an optimal instantiation of SOFT-FLARES, using

ψ , 0, would be faster than LRTDP. Unfortunately, we have not seen

any significant difference in running time between LRTDP and the

optimal version of SOFT-FLARES, even with different choices ofψ . It is
possible that a more refined implementation of ESTIMATE-ϵ -DISTANCE

and other labeling functions would result in a more efficient optimal

solver, but we leave this for future work.

7 CONCLUSION
We introduced soft labeling, a planning framework that generalizes

state labeling in SSPs. Crucially, soft labeling exploits the compu-

tational advantages of short-sightedness, while still allowing the

possibility of complete exploration of the state space, and maintain-

ing theoretical guarantees. Our definition of soft labeling exploits

the concept of ϵ-distance, a proposed heuristic measure for quanti-

fying how close the value of a state is to ϵ-consistency. We intro-

duced an efficient algorithm to estimate ϵ-distances, and combined

it with a soft-labeled variant of RTDP to produce an instance of our

framework, the SOFT-FLARES algorithm. We compare SOFT-FLARES to

several popular short-sighted solvers in four well-known bench-

marks, showing that it can produce policies with similar or better

quality, and shorter planning times. We also discuss some of the po-

tential drawbacks of our approach. One possible avenue to address

these, is the development of distance and labeling functions that

are connected in a principled manner to the value of the state to be

labeled. With the goal of illustrating the benefits of our framework,

in this work we have provided a variety of heuristics that can be

effective in practice, yet their performance can be problem depen-

dent. We envision that the most benefit of this flexible framework

is yet to be obtained, and developing more refined labeling and

distance functions is a promising direction of future work.

ACKNOWLEDGEMENT
Support for this work was provided in part by the National Science

Foundation under grant IIS-1524797.

Session 2C: Knowledge Representation and Reasoning AAMAS 2019, May 13-17, 2019, Montréal, Canada

474

REFERENCES
[1] Andrew G. Barto, Steven J. Bradtke, and Satinder P. Singh. 1995. Learning to Act

Using Real-Time Dynamic Programming. Artificial Intelligence 72 (1995), 81–138.
[2] Dimitri P. Bertsekas and John N. Tsitsiklis. 1991. An analysis of stochastic shortest

path problems. Mathematics of Operations Research 16, 3 (1991), 580–595.

[3] Blai Bonet and Héctor Geffner. 2003. Faster Heuristic Search Algorithms for

Planning with Uncertainty and Full Feedback. In Proceedings of the Eighteenth
International Joint Conference on Artificial Intelligence. Acapulco, Mexico, 1233–

1238.

[4] Blai Bonet and Héctor Geffner. 2003. Labeled RTDP: Improving the convergence

of real-time dynamic programming. In Proceedings of the Thirteenth International
Conference on Automated Planning and Scheduling. Trento, Italy, 12–21.

[5] Blai Bonet and Héctor Geffner. 2005. mGPT: A probabilistic planner based on

heuristic search. Journal of Artificial Intelligence Research 24 (2005), 933–944.

[6] Blai Bonet and Héctor Geffner. 2006. Learning depth-first search: A unified

approach to heuristic search in deterministic and non-deterministic settings, and

its application to MDPs. In Proceedings of the Sixteenth International Conference
on International Conference on Automated Planning and Scheduling. 142–151.

[7] Daniel Bryce and Olivier Buffet. 2008. Sixth international planning competition:

Uncertainty part. In Proceedings of the Sixth International Planning Competition.
[8] Mohammad Hajian, Emanuel Melachrinoudis, and Peter Kubat. 2016. Modeling

wildfire propagation with the stochastic shortest path: A fast simulation approach.

Environmental Modelling & Software 82 (2016), 73–88.
[9] Qilong Huang, Qing-Shan Jia, and Xiaohong Guan. 2018. Robust scheduling of

EV charging load with uncertain wind power integration. IEEE Transactions on
Smart Grid 9, 2 (2018), 1043–1054.

[10] Thomas Keller and Malte Helmert. 2013. Trial-based Heuristic tree search for

finite horizon MDPs. In Proceedings of the Twenty-Third International Conference
on International Conference on Automated Planning and Scheduling. 135–143.

[11] Levente Kocsis and Csaba Szepesvári. 2006. Bandit based Monte-Carlo planning.

In Proceedings of the Seventeenth European conference on Machine Learning. 282–
293.

[12] Andrey Kolobov, Peng Dai, Mausam Mausam, and Daniel S. Weld. 2012. Reverse

iterative deepening for finite-horizon MDPs with large branching factors. In

Proceedings of the Twenty-Second International Conference on Automated Planning
and Scheduling.

[13] Iain Little and Sylvie Thiebaux. 2007. Probabilistic planning vs. replanning. In

Proceedings of the ICAPS’07 Workshop on the International Planning Competition:
Past, Present and Future.

[14] Michael L. Littman. 1997. Probabilistic propositional planning: Representations

and complexity. In Proceedings of the Fourteenth National Conference on Artificial
Intelligence. Providence, Rhode Island, 748–754.

[15] H. Brendan McMahan, Maxim Likhachev, and Geoffrey J. Gordon. 2005. Bounded

real-time dynamic programming: RTDP with monotone upper bounds and perfor-

mance guarantees. In Proceedings of the 22nd international conference on Machine
learning. 569–576.

[16] Luis Pineda, Kyle Hollins Wray, and Shlomo Zilberstein. 2017. Fast SSP Solvers

Using Short-Sighted Labeling. In Proceedings of the Thirty-First Conference on
Artificial Intelligence. 3629–3635.

[17] Martin L. Puterman. 1994. Markov Decision Processes: Discrete Stochastic Dynamic
Programming. John Wiley & Sons, Inc., New York, NY, USA.

[18] Scott Sanner, Robby Goetschalckx, Kurt Driessens, and Guy Shani. 2009. Bayesian

Real-time Dynamic Programming. In Proceedings of the Twenty-First International
Joint Conference on Artificial Intelligence.

[19] Trey Smith and Reid Simmons. 2006. Focused real-time dynamic programming

for MDPs: squeezing more out of a heuristic. In Proceedings of the 21st National
Conference on Artificial intelligence, Vol. 2. 1227–1232.

[20] Florent Teichteil-Königsbuch, Ugur Kuter, and Guillaume Infantes. 2010. Incre-

mental plan aggregation for generating policies in MDPs. In Proceedings of the
Ninth International Conference on Autonomous Agents and Multiagent Systems.
Toronto, Canada, 1231–1238.

[21] FelipeW. Trevizan andManuelaM. Veloso. 2012. Short-sighted stochastic shortest

path problems. In Proceedings of the Twenty-Second International Conference on
Automated Planning and Scheduling. Atibaia, Brazil, 288–296.

[22] Felipe W. Trevizan and Manuela M. Veloso. 2012. Trajectory-Based Short-Sighted

Probabilistic Planning. In Proceedings of Neural Information Processing Systems.
Lake Tahoe, Nevada, 3257–3265.

[23] Felipe W. Trevizan and Manuela M. Veloso. 2014. Depth-based short-sighted

stochastic shortest path problems. Artificial Intelligence 216 (2014), 179–205.
[24] Kyle Hollins Wray, Luis Pineda, and Shlomo Zilberstein. 2016. Hierarchical

approach to transfer of control in semi-autonomous systems. In Proceedings of
the Twenty-Fifth International Joint Conference on Artificial Intelligence. 517–523.

Session 2C: Knowledge Representation and Reasoning AAMAS 2019, May 13-17, 2019, Montréal, Canada

475

	Abstract
	1 Introduction
	2 Related Work
	3 Formal background
	4 Soft Labeling in SSPs
	4.1 Generalizing Labeling
	4.2 Soft Labeling
	4.3 Theoretical Properties

	5 Experiments
	5.1 Sailing Domain
	5.2 Racetrack Domain
	5.3 International Planning Competition Domains

	6 Discussion and Potential Drawbacks
	7 Conclusion
	References

