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ABSTRACT
X -BalancedCC multiwinner voting rules constitute an attractive

but computationally intractable compromise between the propor-

tionality provided by the Monroe rule and the diversity provided

by the Chamberlin–Courant rule. We show how to use the Greedy-

Monroe algorithm to get improved approximation results for the

X -BalancedCC rules and for the Chamberlin–Courant rule, by ap-

propriately setting a “schedule” for the sizes of virtual districts. We

describe a polynomial-time algorithm for computing a schedule

that guarantees high approximation ratio, but show that finding

the best possible schedule for a given election is NP-hard. We fur-

ther evaluate our algorithms experimentally and show that they

perform very well in practice.
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1 INTRODUCTION
Multiwinner elections model settings where a group of agents (i.e.,

voters) wishes to select a group of candidates (i.e., a committee)

based on their preferences [12]. Classic examples of multiwinner

elections include (1) choosing a parliament or (2) selecting a set of

movies to put on the entertainment system of an airplane. In the

former case, a rule that guarantees proportional representation is

appropriate. In the latter case, a rule that selects a diverse set of

movies is appropriate, so that as many voters (i.e., passengers) as

possible can find a good movie to watch (disregarding the fact that

a large fraction of passengers would watch the same Hollywood

blockbuster movie and all the other movies would be watched by

small minorities only).

Proc. of the 18th International Conference on Autonomous Agents and Multiagent Systems

(AAMAS 2019), N. Agmon, M. E. Taylor, E. Elkind, M. Veloso (eds.), May 13–17, 2019,

Montreal, Canada. © 2019 International Foundation for Autonomous Agents and

Multiagent Systems (www.ifaamas.org). All rights reserved.

Two well-known multiwinner voting rules that are often dis-

cussed in the literature, and seem particularly suitable for the exam-

ple situationsmentioned above, are theMonroe (M) andChamberlin–

Courant (CC) rules [6, 19]. In this paper, we focus on a class of rules

that lie “between” the M and CC rules:X -BalancedCC rules, recently

introduced by Faliszewski and Talmon [14], which strike a compro-

mise between representing voters proportionally, as M does, and

selecting a diverse set of candidates, as CC does.

The M and CC rules indeed achieve proportional representation

and committee diversity, respectively. Interestingly, even though

their goals are quite different, their definitions are very similar

(we use the ordinal election model, where each voter ranks the

candidates from the most to the least appreciated one):

(1) Under CC, the procedure for selecting a winning committee

is as follows. For each committee of a given size k , each voter
is assigned to the committee member that he or she ranks

highest; if a voter v is assigned to candidate c then we say

that c is v’s representative. The set of voters assigned to a

given committee member form a virtual district. The rule

outputs the committee where, on the average, each voter

ranks his or her representative highest.

(2) The M rule proceeds similarly, but requires all virtual dis-

tricts to be of same size (give or take one voter). Thus, under

M we do not necessarily assign each voter to the committee

member he or she appreciates most, but find an assignment

fulfilling the condition on the virtual districts’ sizes while

optimizing the average position of a voter’s representative.

Faliszewski and Talmon [14] pointed out that the approaches

taken by M and CC are quite extreme in that in M, we require the

sizes of all virtual districts to be (nearly) identical, while in CC, we

do not put any constraints on their sizes. To provide some middle

ground, they introduced X -BalancedCC rules, for X ≥ 1, which

require that the largest virtual district can be at most X times larger

than the smallest one. Faliszewski and Talmon [14] argued that

X -BalancedCC rules still achieve some form of (degressive) propor-

tionality,
1
but are more open to selecting a diverse set of candidates

than the pure M rule. For example, when choosing movies for an

airplane, an X -BalancedCC rule (e.g., for X ≥ 2) would not choose

just a single blockbuster movie for all the passengers that want to

see a movie of this type (like CC might), but rather find a larger

selection of such movies, while still providing enough different

ones for the remaining passengers.

1
See the work of Koriyama et al. [15] for a discussion of degressive proportionality.
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Unfortunately, X -BalancedCC rules—just like M and CC—are

NP-hard to compute [4, 14, 18, 22]. To alleviate this, Faliszewski and

Talmon described ILP formulations to be used for medium-sized

elections, and adapted an approximation algorithm of Skowron et

al. [24] (Algorithm P), originally designed for CC. Their algorithm,

however, was quite cumbersome and achieved relatively poor ap-

proximation guarantees. Indeed, in some cases their algorithm gave

worse approximation guarantees forX -BalancedCC than that of the

currently best-known approximation algorithm for M (the Greedy-

Monroe algorithm of Skowron et al. [24]), even though the M rule

is much more constrained than the X -BalancedCC rules.
2

Our Contribution. Our main contribution is adapting the Greedy-

Monroe algorithm to X -BalancedCC rules, evaluating its approxi-

mation guarantees for this case (which turns out to be significantly

better than those of Faliszewski and Talmon [14]; sometimes even

better than the best-known approximation guarantees for CC), and

demonstrating how to use the algorithm in practice.

Briefly put, to select a committee of size k based on preferences

of n voters, GreedyMonroe proceeds in k iterations where in each

iteration it selects a group of n/k voters and finds them a repre-

sentative. We modify and generalize this algorithm by providing

it with a vector (s1, . . . , sk ) of positive integers, which we call a

schedule, so that in the i-th iteration it selects si voters. By choosing
the schedule appropriately, we ensure that GreedyMonroe finds

an assignment of committee members to voters where the largest

virtual district is at most X times larger than the smallest one (for a

givenX ). On the technical side, we show the following main results:

(1) We describe a polynomial-time algorithm that, for a given

number n of voters and committee size k , computes a

schedule that guarantees high-quality committees for X -
BalancedCC rules, irrespective of the voter preference or-

ders.

(2) We show that the problem of finding a schedule that leads to

the best possible results for a given election is NP-hard even

if we put no restrictions on the sizes of the virtual districts.

(3) We show experimentally that even without the ability to

find perfect schedules for specific elections, it is feasible to

prepare a small set of schedules so that after trying Greedy-

Monroe with each of them and choosing the best committee

computed, we obtain very high quality results.

The main message of our paper is that the X -BalancedCC rules

(or, rather, their approximate variants) are perfectly usable in prac-

tical settings, even for elections whose sizes preclude the use of the

ILP formulations of Faliszewski and Talmon [14].

Related Work. Our work relates to the notion of (degressive) pro-

portional representation, which has been studied in quite some

depth, albeit often for approval-based elections, where instead of

ranking candidates, voters indicate which candidates they approve

of. (The M and CC rules can also be adapted to this setting [1, 23].)

For example, in this setting Aziz et al. [1] introduced and studied

the notions of justified representation (JR) and extended justified

2
A careful reader could point out that a less constrained problem does not necessarily

need to have more effective approximation algorithms. However, in this case the

committees computed by GreedyMonroe could be directly used as X -BalancedCC

committees, achieving the same approximation ratios as for M.

representation (EJR), which capture the intuitive notion of pro-

portional representation; later, Sánchez-Fernández [23] introduced

proportional justified representation as a middle-ground between

JR and EJR. In the same setting, Peters [21] has shown that, in

general, proportional representation and strategy-proofness are

mutual exclusive (see also the work of Lackner and Skowron [16]).

Lackner and Skowron [17], among other topics, discussed propor-

tionality aspects of a class of voting rules which they called Thiele

methods. Brill et al. [5] discussed how multiwinner rules relate to

apportionment methods (including a discussion of the M rule).

The ordinal setting received somewhat less attention in the re-

cent literature. Aziz et al. [2] adapted the notion of justified repre-

sentation (and related ones) to the world of ordinal elections, and

Elkind et al. [9] discussed a proportionality-related axiom inspired

by Dummett [7] (however, only recently Aziz et al. [3] expressed

Dummett’s ideas as axiomatic properties in a convincing way). For

more detailed discussions of multiwinner voting in general, and of

proportionality and diversity specifically, we point the readers to

the overview of Faliszewski et al. [12].

2 PRELIMINARIES
We mostly follow the notations of Faliszewski and Talmon [14]. In

particular, we consider ordinal elections and focus on rules based on

the Borda scoring function. For an integer t , we denote {1, . . . , t}
by [t]. An election E = (C,V ) consists of a set of candidates C =
{c1, . . . , cm } and a collection of votersV = (v1, . . . ,vn ). Each voter

vi is endowed with a preference order ≻vi ranking all candidates

from themost to the least preferred one (from the voter perspective).

We write posvi (c j ) to denote the position of candidate c j in the

preference order of voter vi (the most preferred candidate has

position 1, the next one has position 2, and so on).

Scoring Functions. Consider an election E = (C,V ) withm can-

didates. A single-winner scoring function γm : [m] → R associates a

score value with each position in a preference order. For candidate

c ∈ C , his or her γm-score is defined as:

γm-scoreE (c) =
∑
v ∈V

γm (posv (c)).

We are almost exclusively interested in the family of Borda scoring

functions, defined as βm (i) =m − i .

Multiwinner Voting Rules. A multiwinner voting rule R is a

function that, given an election E = (C,V ) and committee size k ∈

[|C |], outputs a family of winning size-k subsets of candidates (the

winning committees). There is quite a large variety of multiwinner

voting rules (see, e.g., the overview of Faliszewski et al. [12]), but

for our purposes it suffices to consider only a few. For example, the

k-Borda rule outputs all size-k committees consisting of candidates

with the highest Borda scores. To define the X -BalancedCC rules,

on which we focus, we introduce some additional definitions.

Assignment Functions. Let E = (C,V ) be an election and k the

desired committee size. A k-CC-assignment function is a function

Φ : V → C which associates each voter with one out of at most k
candidates (in other words, we require that |Φ(V )| ≤ k). We write

ΨCC(k,C,V ) to denote the set of all k-CC-assignment functions for

candidate set C and voter collection V . For a voter v , we refer to
the candidate Φ(v) as v’s representative (under assignment Φ). A
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k-CC-assignment function Φ induces a size-k committeeW ⊆ C if

W contains the representatives of all the voters. IfW is an induced

committee (for function Φ) then for each candidate c ∈W we refer

to the voters in the set Φ−1(c) as the virtual district of c . Formally,

it is possible that some virtual districts are empty.

Let X ∈ R be some number, X ≥ 1 (we refer to it as the balanced-

ness ratio). Then, a given k-CC-assignment function is X -balanced

if for each committeeW that it induces the following hold:

(1) Φ−1(c) , ∅ for each candidate c ∈W (i.e., there are no empty

virtual districts).

(2)
maxc∈W |Φ−1(c) |
mind∈W |Φ−1(d ) | ≤ X (i.e., the largest virtual district is at most

X times larger than the smallest one).

A k-CC-assignment function Φ : V → C is a k-Monroe-

assignment function if |Φ−1(c)| ∈ {0, ⌊ |V |/k⌋, ⌈ |V |/k⌉} holds for

each c ∈ C . Thus, whenever k divides |V |, k-Monroe-assignment

functions are exactly 1-balanced (formally, if k does not divide |V |,

then no 1-balanced assignments exist). For an election E = (C,V )

and size-k committeeW , we define the grab-your-best assignment

function Φ
gyb

(W ) : V → C so that each voter v is assigned to the

member ofW they rank highest.

Voter Satisfaction (Score). Consider a k-CC-assignment func-

tion Φ : V → C and a single-winner scoring function γm (where

m = |C |). We say that voter v’s (γm-based) satisfaction from his or

her representative is γm (posv (Φ(v))). The total satisfaction associ-

ated with Φ, denoted γm (Φ), is the sum of the voters’ satisfactions:

γm (Φ) =
∑
v ∈V

γm (posv (Φ(v))).

Here, we focus on Borda scoring functions for defining voter sat-

isfaction. We will typically omit the subscriptm in βm (Φ) as the
number of candidates is implicit in the definition of Φ. Often, in-
stead of using the term voter satisfaction we will simply speak of a

given assignment’s score.

Monroe, CC, and X -BalancedCC. We define the Chamberlin–

Courant (CC) rule RCC [6] as follows. Given an election E = (C,V )

and committee size k , the rule outputs all size-k committeesW that

are induced byk-CC-assignment functionswith the highest possible

total voter satisfaction according to the Borda scoring function. The

Monroe and X -BalancedCC rules (where X ≥ 1 is a given number),

denoted RMonroe and RX -CC, are defined analogously, except that

we are restricted tok-Monroe assignment functions andX -balanced

k-CC-assignment functions, respectively.

Example 2.1. Consider the following election E = (C,V ) with six

candidates C = {a,b, c,d, e, f }, and the following six voters:

v1 : a ≻ d ≻ f ≻ b ≻ e ≻ c, v2 : a ≻ d ≻ e ≻ f ≻ b ≻ c,

v3 : a ≻ d ≻ e ≻ f ≻ b ≻ c, v4 : a ≻ e ≻ d ≻ f ≻ c ≻ b,

v5 : a ≻ c ≻ e ≻ d ≻ f ≻ b, v6 : b ≻ c ≻ e ≻ f ≻ d ≻ a.

We are looking for a committee of size 2. The unique 2-Borda

committee is {a,d} with total Borda score 43. Under CC the unique

winning committee is {a,b}, with {v1, . . . ,v5} being a’s virtual
district and {v6} as b’s virtual district, and total voter satisfaction

of 30 (highest possible). The unique Monroe winning committee

is {a, e}, with {v1,v2,v3} as a’s virtual district and {v4,v5,v6}
being e’s virtual district, and total voter satisfaction of 25. The

unique 2-CC winning committee is {a, c} with {v1, . . . ,v4} as a’s
virtual district and {v5,v6} as c’s virtual district, and total voter

satisfaction of 28.

Informally, we can think of the CC rule as the ∞-BalancedCC

rule. For the cases where the number of voters is a multiple of the

committee size (as often will be the case in this paper), the Monroe

rule is equivalent to the 1-BalancedCC rule.

Approximation Algorithms. We say that an algorithm is an α-
approximation algorithm for the CC rule if it outputs an assignment

that achieves at least an α fraction of the highest possible total

voter satisfaction, and we refer to the value α as the algorithm’s

approximation ratio. We define α-approximation algorithms for the

M and X -BalancedCC rules analogously.

3 APPROXIMATION ALGORITHMS
In this section we first describe two approximation algorithms for

the CC rule—GreedyCC of Lu and Boutilier [18] and Algorithm P of

Skowron et al. [24]—and discuss how Faliszewski and Talmon [14]

extended the latter to the case of X -BalancedCC rule. We men-

tion several drawbacks of their approach and describe how the

GreedyMonroe algorithm—originally designed as an approxima-

tion algorithm for the Monroe rule [24]—can be adapted to the case

of X -BalancedCC rules. Throughout this section we consider an

election E = (C,V ) withm candidates and n voters, and committee

size k . We start by considering the GreedyCC algorithm.

GreedyCC. The algorithm starts with an empty committeeW0 =

∅ and performs k iterations. For each i ∈ [k], in the i-th itera-

tion it chooses a candidate c ∈ C \Wi−1 that maximizes the value

β(Φ
gyb

(W ∪ {c})) and formsWi = Wi−1 ∪ {c} (if there are sev-

eral candidates c maximizing the score, one of them is arbitrarily

chosen; for the sake of concreteness, let us assume lexicographic

tie-breaking).

GreedyCC was introduced by Lu and Boutilier [18], who ob-

served that its approximation ratio is at least 1− 1/e (in essence, this

follows directly from the fact that the algorithm greedily approxi-

mates a monotone, submodular function [20]). While, in principle,

it is possible to adapt GreedyCC to the case of X -BalancedCC rules

(e.g., by replacing the grab-your-best assignments used through-

out the algorithm with some more involved ones), it appears to

be rather cumbersome, and showing that the algorithm preserves

the approximation ratio may be involved (for example, such analy-

sis for the case of Monroe, due to Skowron et al. [24], is far more

complicated than that for the case of the CC rule).

Algorithm P. Skowron et al. [24] improved upon GreedyCC by

providing a polynomial-time approximation scheme (PTAS) for

the CC rule (i.e., an algorithm that for any given ε > 0 finds a

(1 − ε)-approximate solution in time that depends polynomially on

the election size, but which may depend superpolynomially on 1/ε).

Their approach was largely based on using Algorithm P (which

they also introduced). Algorithm P can be seen as a variant of the

GreedyCC algorithm and proceeds as follows:

(1) It computes a value λ = W(k )/k , where W(k) is Lambert’s W

function (which, roughly speaking, grows more slowly than

logk). Then it replaces each voter’s preference order with a

set of λm candidates that the voter ranks on top.
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(2) The algorithm forms an empty committeeW = ∅ and exe-

cutes k iterations, where in each iteration it extendsW with

a candidate c that appears in the top sets of the largest num-

ber of voters; then, all the voters that rank c among top λm
positions are removed from further considerations.

(3) The algorithm outputs the assignment Φ
gyb

(W ).

Skowron et al. [24] have shown that this algorithm has approxima-

tion ratio 1 − 2W(k )/k . Faliszewski and Talmon [14] observed that

this algorithm (or, rather, its analysis) can be adapted to the case of

X -BalancedCC rules by choosing different values of λ. Specifically,
they have observed that for a given value λ, one can guarantee

that the largest virtual district will have size at most nλ and the

smallest one will have size at least nλ(1 − λ)k−1. Thus, by choosing

appropriate λ they were able to control the ratio between the sizes

of the largest and smallest virtual district.

Their approach had, however, one serious drawback. The reason

why Skowron et al. [24] were able to get a very good approximation

bound for their algorithm was that they could assume that the

candidate selected in each iteration does not appear among the top

λm positions of the remaining voters, which allowed them to use the

pigeonhole principle very effectively. Faliszewski and Talmon [14]

could not make this assumption because they had to bound the

sizes of the virtual districts created and they could not assume

that when they add a given candidate c to the committee then

they also assign to c and remove all voters that rank c among their

top λm positions. In consequence, the theoretical approximation

ratio they could guarantee was not great (specifically, it was ≈

( k−1
√
1/X − k−1

m )(1 − 1/X ( k−1
√
1/X ))). In consequence, even with a

number of tweaks they applied, the actual guarantees they could

provide (for particular numbers of candidates and voters and for

particular committee sizes) were either worse or only marginally

better than those achieved by Skowron et al. [24] for the Monroe

rule using the GreedyMonroe algorithm.

GreedyMonroe. As GreedyMonroe often obtains better approx-

imation ratios than those achieved by the analysis of Faliszewski

and Talmon [14], yet it produces far more constrained committees

than many X -BalancedCC rules require (recall that Monroe is very

close to being a 1-BalancedCC rule), in this paper we consider how

we can design a variant of the GreedyMonroe algorithm that, on the

one hand, will take advantage of the full power of X -BalancedCC
rules (for values X > 1) and, on the other hand, will still maintain

high approximation ratio. Below we describe the GreedyMonroe

algorithm adapted to our purposes.

In addition to election E = (C,V )withm candidates and n voters,

and the committee size k , the algorithm also receives a vector

s = (s1, . . . , sk ) ∈ N
k
, such that s1 + · · · + sk ≤ n.3 We refer to this

vector as the schedule. The algorithm proceeds as follows:

(1) It starts with an empty assignment function Φ (i.e., with a

partial assignment functionwhich does not assign candidates

to any of the voters) and with an empty committeeW0 = ∅.

(2) It performs k iterations, where for each i ∈ [k], the i-th
iteration is as follows. For each candidate c ∈ C\Wi−1 it finds

a subcollection Vc of si voters (that have not been removed

3
One might wonder why we do not require that s1 + · · · + sk = n. Indeed, we find
that sometimes it is useful to consider schedules that take into account fewer than n
voters.

from consideration yet) that maximizes the value s(c) =
β-score(C,Vc )(c). (In other words, for each not-yet-selected

candidate we find a group of si voters that jointly assign

to him or her the highest total Borda score). We choose the

candidate c for whom the value s(c) is highest (breaking ties
arbitrarily; in our case, lexicographically), setWi =Wi−1 ∪

{c}, extendΦ so that for each voterv fromVc we haveΦ(v) =
c , and remove the voters of Vc from further consideration.

(3) If s1 + · · · + sk < n, then some voters do not have assigned

representatives. In this case, we use the following filling

procedure: We iteratively consider each of these voters and

assign him to a committee member c ∈ W that the voter

ranks as highly as possible but whose virtual district is not

the largest, unless all virtual districts are of the same size
4
).

(4) We output Φ.

Skowron et al. [24] considered this algorithm for the case of the

Monroe rule, that is, for the schedule (⌈n/k⌉, . . . , ⌊n/k⌋). They have

shown that in this case the algorithm achieves approximation ratio

≈ 1 − k−1
2(m−1)

−
Hk
k , where Hk is the k-th harmonic number.

By extending the GreedyMonroe algorithm with arbitrary sched-

ules, as we do here, and choosing such schedules appropriately, we

can ensure that GreedyMonroe finds a validX -balanced assignment

function for a given X . Specifically, if we use a schedule (s1, . . . , sk )

such that

maxi∈[k ] si
minj∈[k ] sj

≤ X (we refer to such schedules asX -balanced),

then GreedyMonroe will output an X -balanced assignment (due

to the filling procedure, this holds even if s1 + · · · + sk < n). The
problem, however, lies in choosing schedules ensuring a high voter

satisfaction. The rest of the paper is dedicated to identifying such

schedules.

Useful notations. We will use the following notation. For

a given election E = (C,V ), committee size k , and schedule

(s1, . . . , sk ), we write gm(E, s) to denote the total (Borda) satisfac-

tion of the voters from an assignment computed using GreedyMon-

roe with schedule s (note that the schedule implicitly gives the num-

ber of candidates in the committee). For a number n of voters, com-

mittee size k , and balancedness ratio X , we write sched(n,k,X ) to

denote the set of all schedules (s1, . . . , sk ) such that s1+ · · ·+sk ≤ n

and

maxi∈[k ] si
minj∈[k ] sj

≤ X (i.e., the set of all schedules that achieve bal-

ancedness ratio X with n voters and k committee members). We

define sched(n,k) analogously, by dropping the constraint on X .

4 APPROXIMATION GUARANTEES
In this section we analyze the worst-case approximation ratios that

can be achieved for a given X -BalancedCC rule by using Greedy-

Monroe with an appropriately chosen schedule. It turns out that

in some cases we obtain even better approximation ratios for X -
BalancedCC rules than Skowron et al. [24] obtained via Algorithm P

for the less constrained CC rule.

Before we proceed with our analysis, in the following example

we show that, even though it is natural to expect high-quality

schedules to be nonincreasing, this does not need to be the case.

4
This procedure may seem a bit strange but its purpose will soon become clear. Alter-

natively, we could compute an optimal X -balanced assignment for a given committee,

but this would require using a somewhat complicated algorithm and we wanted to

keep our solution as simple as possible.
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Example 4.1. Consider the 4-BalancedCC rule and election E =
(C,V ) with candidates C = {a,b, c,d, e} and the voters:

v1 : a ≻ e ≻ c ≻ d ≻ b, v2 : a ≻ e ≻ b ≻ d ≻ c,

v3 : c ≻ b ≻ e ≻ d ≻ a, v4 : e ≻ b ≻ c ≻ d ≻ a,

v5 : d ≻ b ≻ e ≻ c ≻ a.

We seek a committee of size 2. The unique optimal committee

is {a,b} with total voter satisfaction of 17 with {v1,v2} as a’s vir-
tual district and {v3,v4,v5} asb’s virtual district. For schedule (2, 3),
GreedyMonroe first chooses candidate a (for voters v1 and v2) and
then candidate b (for the remaining voters). For schedule (3, 2), it

first chooses e and then b. Schedules (1, 4) and (4, 1) lead to com-

mittees (e, c) and (e,d); all these committee have total satisfaction

16 and, hence, we see that the optimal schedule can be increasing.

Knowing that high-quality schedules may possibly be quite pe-

culiar, we move on to search for schedules that guarantee as high

approximation ratios as possible.We borrow ourmain technical tool

from Skowron et al.’s [24] analysis of GreedyMonroe. Let E = (C,V )

be an election, let k be the committee size, and let (s1, . . . , sk ) be
a given schedule. Let m = |C | be the number of candidates and

n = |V | be the number of voters. In the first iteration, GreedyMon-

roe finds s1 voters and a candidate c ∈ C such that these s1 voters
assign the highest Borda score to c . By the pigeonhole principle,

we note that each of these s1 voters have to rank c at least on po-

sition t1 = ⌈
s1m
n ⌉ or higher (the reason is that the n voters have

altogether t1n slots on top t1 positions and, in the worst case, each

of them candidates has to appear in s1 of these slots; by requiring

that t1n = s1m we compute the value t1 (and take its ceiling, for

rounding). Thus, GreedyMonroe obtains a total score of at least:

s1
(
m −

⌈ s1m
n

⌉)
in the first iteration. By the same reasoning, in the i-th iteration the

algorithm finds si voters that rank their representative at least on

position ti = ⌈
s2m

n−(s1+· · ·+si−1)
⌉ + i − 1 (the i − 1 addition comes from

the fact that the candidates selected in the previous i − 1 iterations

could be ranked on the top i − 1 positions by all the voters) and the

algorithm obtains score of at least:

si
(
m −

⌈
s1m

n−(s1+· · ·+si−1)

⌉
− (i − 1)

)
.

Since in the best possible solution every voter ranks his or her rep-

resentative on the top position, in total we get that GreedyMonroe

form candidates, n voters, and with schedule (s1, . . . , sk ) achieves
an approximation ratio of at least:

5

1

n(m − 1)
·

k∑
i=1

si

(
m −

⌈
s1m

n − (s1 + · · · + si−1)

⌉
− (i − 1)

)
. (1)

In consequence, to find an approximation guarantee for a given

X -BalancedCC rule it suffices to find an X -balanced schedule that

maximizes the value (1). Fortunately, it is possible to compute such

schedules in polynomial time.

Remark 1. Notice that what we do next, in essence, is using an

algorithm (specifically, an algorithm based on dynamic programming)

5
Skowron et al. [24] carried out such analysis for schedules of the form (n/k, . . . , n/k),
obtaining a closed-form approximation ratio for Monroe; their analysis of Algorithm P

also is with respect to the score n(m − 1).

in order to design an approximation algorithm for X -BalancedCC,
particularly by optimizing the approximation guarantee.

Proposition 4.2. There is an algorithm that, given a number n of

voters, numberm of candidates, committee size k , and two integers L
andU , computes a schedule (s1, . . . , sk ) that maximizes the value (1),

while ensuring that L ≤ si ≤ U for each i ∈ [k]. The algorithm runs

in polynomial time with respect to n +m.

Proof. To specify our algorithm we provide a function that it

computes, express this function recursively, and then, by standard

dynamic programming techniques, we conclude that it is possible

to compute this function in polynomial time with respect to n +m.

Let sched(n,k,L,U ) denote the set of schedules (s1, . . . , sk ) such

that

∑k
i=1 si ≤ n and for each i ∈ [k] it holds that L ≤ si ≤ U . For

integers N and j and a sequence (sj , . . . , sk ) we define:

дj (N , sj , . . . , sk ) =
k∑
i=j

si

(
m −

⌈
sim

N − (sj + · · · + si−1)

⌉
− (i − 1)

)
.

Intuitively, дj (N , s1, . . . , sk ) computes the part of expression (1)

that corresponds to the latter k − j + 1 elements of the schedule

(ignoring the multiplicative constant
1

n(m−1)
), where we interpret

N as n − (s1 + · · · + sj−1). For each pair (N , j) we define:

f (N , j) = max

(sj , ...,sk )∈sched(N ,k−j+1,L,U )
дj (N , sj , . . . , sk ).

(We implicitly assume that the max operator, when applied to an

empty set, returns −∞.) Note that f (n, 1) gives the highest value (1)
possible to obtain by any schedule. We express f (N , j) recursively:

f (N , j) = max

L≤sj ≤U
дj (N , sj ) + f (N − sj , j + 1).

(We use here дj (N , sj ) to compute the lower bound on the number

of points GreedyMonroe would obtain in the j-th iteration, not

counting the following iterations.) Using this formula and standard

dynamic programming techniques we can compute f (n, 1) and
recover the schedule which leads to its value. □

Using the algorithm from Proposition 4.2 we can compute a

schedule that maximizes the value (1) for an X -balanced schedule.

Specifically, for an election with n voters,m candidates, commit-

tee size k , and for a given value X , we run the algorithm from

Proposition 4.2 for all values of L between 1 and n/k , matched

with values U = X · L. We have ran this procedure for values of

X ∈ {1.5, 2, 3, 5, 10} and with the following parameters:

(1) 100 candidates, 100 voters, 10 committee members;

(2) 500 candidates, 500 voters, 20 committee members; and

(3) 1000 candidates, 1000 voters, 100 committee members.

We have compared the achieved approximation ratios against those

of Faliszewski and Talmon [14]. We present the results in Table 1.

We see that our approach always achieves better guarantees than

that of Faliszewski and Talmon [14]; furthermore, the smallerX , the

larger the improvement. Interestingly, in some cases (specifically,

for m = n = 500 and k = 20) our approach even gives better

approximation guarantees than Algorithm P of Skowron et al. [24]

for the Chamberlin–Courant rule. Indeed, this is the first case of

achieving a guarantee better than that of Algorithm P (although, of

course, there were heuristic algorithms that in practice performed

better than Algorithm P [13]).
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Table 1: Approximation guarantees for GreedyMonroe with
optimal schedules for a given balancedness ratio X (type-
set in bold) and the previously best results achieved by Fal-
iszewski and Talmon [14]; the column marked GM shows
the approximation ratios for the classic GreedyMonroe algo-
rithm forX = 1, and the columnmarkedAlg. P shows the ap-
proximation ratios guaranteed by Algorithm P. In the rows
denoted “imp. ratio” we report the ratio of the approxima-
tion guarantees of our algorithm and the algorithm of Fal-
iszewski and Talmon.

GM X = 1.5 X = 2 X = 3 X = 5 X = 10 Alg. P

m = n = 100 0.714 0.718 0.721 0.721 0.721
k = 10 0.687 0.658 0.685 0.710 0.716 0.716 0.726

imp. ratio 1.085 1.048 1.015 1.006 1.006

m = n = 500 0.826 0.831 0.835 0.836 0.836
k = 20 0.808 0.704 0.748 0.787 0.809 0.815 0.813

imp. ratio 1.173 1.11 1.06 1.033 1.025

m = n = 1000 0.906 0.917 0.925 0.930 0.932
k = 100 0.903 0.718 0.763 0.840 0.878 0.909 0.948

imp. ratio 1.261 1.201 1.101 1.059 1.025

It is also interesting to consider the actual schedules that our

algorithm computed. Below we give the schedules computed for

the case of 100 candidates, 100 voters, and committee size 10:

X = 1.5 : (12, 11, 11, 12, 9, 9, 8, 8, 8, 8),

X = 2 : (12, 12, 12, 11, 11, 9, 8, 8, 6, 6),

X = 3 : (15, 14, 13, 10, 10, 9, 8, 7, 5, 5),

X = 5 : (16, 14, 12, 10, 10, 9, 8, 7, 5, 4),

X = 10 : (16, 14, 12, 10, 10, 9, 8, 7, 5, 4).

These schedules have some interesting features. The first observa-

tion is that the schedule for X = 1.5 is not monotone (Example 4.1

indeed suggested that we might expect this effect), whereas the

other ones are. Our schedules for other parameters were typically

not monotone (usually just a few entries were breaking the mono-

tonicity; when we sorted the schedules to be nonincreasing, they

gave only slightly worse guarantees). The second observation is

that neither of our schedules uses all the 100 voters (the above

schedules use either 95 or 96 voters). This seems to be a general

feature of all the computed schedules for all the settings (intuitively,

not using all the voters means that we cannot get the score values

from the omitted ones, but for the used ones we get better bounds

on the positions of the representatives). The third observation is

that the schedules for X = 5 and X = 10 are identical and, in fact,

achieve balancedness ratio 4. Indeed, for every election size there

is an X value beyond which it is impossible to improve the approx-

imation guarantee using our technique (this certainly happens for

X = n, but typically this value of X is much lower than n).

5 SCHEDULES FOR SPECIFIC ELECTIONS
In the previous section we have shown that our technique is promis-

ing and that there are universal schedules that lead to very high

approximation ratios. In this section we explore the computational

complexity of computing an X -balanced schedule that achieves the

highest possible voter satisfaction for a given election. Formally, we

consider the following computational problem.

Definition 5.1. In the X -Optimal Schedule problem we are

given an election E = (C,V ), a committee size k , and score value B.
We ask if there exists a schedule s = (s1, . . . , sk ) ∈ sched(|V |,k,X )

such that gm(E, s) ≥ B. We define the Optimal Schedule problem

analogously, except that we do not put constraints on the balanced-

ness ratio of the schedule that we consider.

Unfortunately, for some elections and committee sizes no sched-

ule leads to an optimal solution.

Example 5.2. Consider an election E = (C,V ) with five candi-

dates C = {a,b, c,d, e} and the following four voters:

v1 : a ≻ d ≻ e ≻ c ≻ b, v2 : c ≻ a ≻ d ≻ e ≻ b,

v3 : c ≻ b ≻ d ≻ e ≻ a, v4 : b ≻ e ≻ d ≻ c ≻ a.

We search for a committee of size 2. The unique optimal committee

is {a,b} with a total voter satisfaction of 14. Any schedule s =
(s1, s2) with s1 + s2 ≤ 3 achieves a maximal voter satisfaction

of 3(m − 1) = 12 and thus does not lead to an optimal solution.

Schedule (3, 1) leads to committees {c,a} or {c,b} with a total voter

satisfaction of 13; schedule (2, 2) leads to committees {c,d} or {c, e}
with a total voter satisfaction of 13; and schedule (1, 3) leads to

committees {a, c} and {b, c} with a total voter satisfaction of at

most 13. Hence, in this example, no schedule is optimal.

Naturally, the above example is not an argument against using

the GreedyMonroe algorithm. By their very nature, sometimes

approximation algorithms are unable to find optimal solutions and

the fact that this holds true also for GreedyMonroe is marginally

disappointing, but not surprising. It is, however, a bit moreworrying

is that the Optimal Schedule problem is intractable (in the next

section, however, we describe a workaround for this problem).

Theorem 5.3. The Optimal Schedule problem is NP-hard, even

when restricted to decreasing schedules.

Proof. We describe a reduction from the X3C problem to Opti-

mal Schedule. As input, we are given a universeU = {u1, . . . ,u3k }
of elements and a family T = {T1, . . . ,T3k } of three-element sub-

sets of U , where each element ui belongs to exactly three different

sets. The question is if there is a set I ⊆ {1, . . . , 3k} of k indices

such that

⋃
i ∈I Ti = U . We form an instance of Optimal Schedule

with election E = (C,V ), committee size k (this is the same k as in

the X3C instance), and score requirement B. Below we describe the

exact construction of E and B.
Let L be (10 · k)6 (intuitively, L is a large value, relative to the

size of the X3C instance). We form candidate set C = T ∪ D, where
T = {t1, . . . , t3k } contains candidates that correspond to the sets

from the X3C instance and D contains 7k(1 + 2 + · · · + 3k) dummy

candidates. We have two groups of voters:

(1) In the first group, for each element ui ∈ U , we have L triples

of voters with preference orders of the following form (let

Tx , Ty , and Tz be the three sets to which ui belongs, with
x < y < z; by putting a set in the description of a preference
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order, we mean listing members of this set in some arbitrary

but fixed order):

uixyz : tx ≻ ty ≻ tz ≻ D ≻ T \ {tx , ty , tz },

uizxy : tz ≻ tx ≻ ty ≻ D ≻ T \ {tx , ty , tz },

uiyzx : ty ≻ tz ≻ tx ≻ D ≻ T \ {tx , ty , tz }.

(2) In the second group, for each set Ti , we have i voters such
that each of them (a) ranks ti on positionm − i , (b) ranks
dummy candidates on the top 7k positions (except for the

(m − i)-th position), and (c) ranks the remaining candidates

in some arbitrary but fixed order. Furthermore, each voter

in this group ranks different dummy candidates on his top

7k positions (this is possible due to the number of dummy

candidates in the election).

Altogehter, there aren = 3k ·3L+(1+2+· · ·+3k) = 9kL+ 1

2
3k(3k+1)

voters. Intuitively, each voter from the first group corresponds to

some member of ui and ranks highly (among top 3 positions) the

sets to which he or she belongs. The voters from the second group

are used to connect the schedule that we seek with the sets from T .

Letm be the number of candidates in the election (i.e.,m = |C | =
3k+7k(1+2+· · ·+3k)). We set B = 3kL(m−1)+3kL(m−2)+3kL(m−

3) = 9kL(m − 2). Roughly put, this score requirement corresponds

to the situation where each voter from the first group is assigned

to a candidate that he or she ranks among top 3 positions.

We claim that the answer for the constructed instance of Opti-

mal Schedule is yes if and only if the answer for the input X3C

instance is yes. To show that this is the case, we first assume that

there is a set I = {i1, . . . , ik } of k indices such that i1 < · · · < ik and⋃
i ∈I Ti = U , and we will show that GreedyMonroe for schedule

(9L + ik , 9L + ik−1, . . . , 9L + i1) achieves score gm(E, s) ≥ B.6

Given this schedule, in the first iteration GreedyMonroe consid-

ers each candidate and finds 9L + ik voters that rank this candidate

as highly as possible. Let us focus on some candidate tj . There are
3L voters in the first group that rank tj on the first position, 3L
voters that rank tj on the second position, and 3L voters that rank tj
on the third position. GreedyMonroe also selects min(j, ik ) voters
from the second group that rank tj on position j , andmax(ik − j, 0)
voters (possibly from either of the groups) that rank tj at position
7k or lower. Altogether, candidate tj is associated with score at

most:

9L(m − 2) +min(j, ik )(m − j) +max(ik − j, 0)(m − 7k) .

Indeed, for j ≥ ik this is exactly the score that the candidate

achieves. For j = ik , the score is 9L(m − 2) + ik (m − ik ), and for

j > ik it is 9L(m − 2) + ik (m − j). Thus, we see that tik obtains

higher score than each candidate tj with j > ik . On the other hand,

if j < ik , then tj gets score:

9L(m − 2) + j(m − j) + (ik − j)(m − 7k) ,

which, as shown by simple calculations, also is lower than that

of tik . Finally, each dummy candidate is associated, at best, with a

single voter (from the second group) that ranks him or her on the

6
Note that, for this schedule, we have (9L + ik ) + . . . + (9L + i1) = 9kL + i1 + i2 +
. . . + ik < 9kL + 3k (3k + 1)/2. In other words, under this schedule we need to use

the fill-in procedure to assign a few of the voters; we make use of the property that

the set sched (n, k) of all possible schedules contains all vectors (s1, . . . , sk ) ∈ N
such that s1 + . . . + sk ≤ n.

top position and 9L + ik − 1 voters (from the first group) that rank

him or her on the fourth position, giving total score (9L + ik )(m −

4) + 3, which is far below that of tik . Thus in the first iteration

GreedyMonroe selects ik .
By a similar analysis—and noting that the set I gives an ex-

act cover of U—we see that in the next iteration GreedyMonroe

chooses tik−1 , then tik−2 , and so on, until ti1 . Each of these can-

didates contributes at least 9L(m − 2) to the score of the created

assignment and, so, the total score of the assignment is at least

9kL(m − 2) = B.
Now, assume that there is a schedule s = (s1, . . . , sk ) such that

gm(E, s) ≥ B. We will show that this implies that there are k sets in

T whose union is U . Let us consider the assignment Φ computed

by GreedyMonroe for our election with schedule s and, for the sake
of contradiction, let us assume that there is at least one element

uℓ ∈ U such that uℓ belongs to sets Tx , Ty , and Tz but there is no
voter that is assigned to any of tx , ty , and tz (note that if such an

elementui did not exist, then this would mean that there is an exact

cover of elements from U with k sets from T ).

We now compute the upper bound for β(Φ), that is, the score that
is associated with the assignment β . By definition, assignment Φ
involves at most k different candidates. In the first group of voters,

each candidate is ranked first by at most 3L voters. Similarly, in this

group, each candidate is ranked second by at most 3L voters, and is

ranked third by at most 3L voters. As there are 9kL voters in the first
group, the highest score that is possible by assigning k candidates

is 3kL(m−1)+3kL(m−2)+3kL(m−3) = 9kL(m−2). However, due

to our assumption regarding element uℓ , there are 3L voters that to

whom Φ can, at best, assign a candidate that they rank on the fourth

position. Thus the score thatΦ receives from voters in the first group

is at most 9kL(m − 2) − 3L(m − 3) + 3L(m − 4) = 9kL(m − 2) − 3L.
Since the voters in the second group can provide at most score

(1 + · · · + 3k)(m − 1) ≤ (3k)2(m − 1), Φ has score at most:

9kL(m − 2) − 3L + (3k2)(m − 1) ,

which is less than B (because m < (10k)4 and L = (10k)6). This
contradicts the assumption that Φ has score at least B and, so, our

assumption regarding element uℓ must have been false. In conse-

quence, we know that if there is a schedule that lead GreedyMonroe

to find an assignment with score at least B then there must be an

exact cover of elements from U with k sets from T . □

A similar proof also shows that the problem is W[1]-hard when

parametrized by the committee size. On the positive side, our prob-

lems are fixed-parameter tractable when parametrized either by

the number of voters or by the number of candidates.

Theorem 5.4. TheOptimal Schedule problem isW[1]-hard when

parametrized by the committee size, but is fixed-parameter tractable

with respect to the number of voters and with respect to the number

of candidates.

To conclude, it is intractable to compute optimal schedules for

given elections.While onemight try to form integer linear programs

(ILPs) to compute such schedules using off-the-shelf ILP solvers, we

expect that it would be more effective to simply compute optimal

committees using ILP solvers. Thus in the next section we suggest

a simple workaround for the problem and evaluate its effectiveness.
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Table 2: Ratios of the average position of a voter’s repre-
sentative in committees computed using the Multischedule
GreedyMonroe algorithm and in the optimalX -BalancedCC
committee, for elections with 100 candidates and 100 voters,
generated using the Pólya-Eggenberger urn model, with a
given value ofα , forX ∈ {1.5, 2, 3, 5, 10}. Numbers in brackets
give the same values, but for GreedyMonroe with schedules
from Section 4.

α = 0 α = 0.1 α = 0.25 α = 0.5

X = 1.5 1.38 (1.30) 1.46 (1.32) 1.36 (1.27) 1.23 (1.19)

X = 2 1.33 (1.26) 1.44 (1.36) 1.35 (1.30) 1.23 (1.23)

X = 3 1.31 (1.22) 1.44 (1.31) 1.36 (1.29) 1.23 (1.25)

X = 5 1.29 (1.20) 1.43 (1.36) 1.38 (1.42) 1.21 (1.39)

X = 10 1.29 (1.20) 1.43 (1.43) 1.44 (1.66) 1.30 (1.69)

6 EXPERIMENTAL EVALUATION
In Section 4 we have shown away of computing schedules that guar-

antees high voter satisfactions; indeed, one could simply use Greedy-

Monroe with those schedules to compute good X -BalancedCC com-

mittees, but such a variant of the algorithm would not adapt to

specific elections. However, Faliszewski and Talmon [14] in their

experimental evaluation of X -BalancedCC rules observed that for a

large class of elections (they considered the Pólya-Eggenberger urn

model [8] and Euclidean elections [10, 11]) the vectors of the sizes

of the virtual districts (sorted from largest to smallest) in optimal

solutions can be categorized to the following types:

(1) “Sigmoidal” vectors, consisting of a sequence of large dis-

tricts followed by a sequence of small districts.

(2) Vectors which are linearly decreasing.

(3) Vectors which are exponentially decreasing.

Thus we have hand-picked a set of schedules of the above types

for the case of 100 candidates, 100 voters, committee size 10, and

X ∈ {1.5, 2, 3, 5, 10}. Below we show such schedules for X = 3 (for

each X we prepared three “sigmoid” type schedules, with different

numbers of large and small districts, one linear schedule and one

exponential schedule; since the entries of the schedules need to be

integer and we chose ones that sum up to the number of voters, the

linear and exponential ones are not perfectly linear/exponential):

Sig1 : (18, 18, 18, 7, 7, 7, 7, 6, 6, 6)

Sig2 : (15, 15, 15, 15, 15, 5, 5, 5, 5, 5)

Sig3 : (13, 12, 12, 12, 12, 12, 12, 5, 5, 5)

Linear : (15, 14, 13, 12, 11, 9, 8, 7, 6, 5)

Exponential : (17, 15, 13, 11, 10, 8, 7, 7, 6, 6)

Our algorithm now proceeds as follows. To compute an X -
BalancedCC committee for a given election E (with 100 candidates

and 100 voters), and committee size 10, we run GreedyMonroe for

all such schedules with balancedness ratio up to the given X (so for

X = 3 we would try 15 schedules: five for balancedness ratio 1.5,

five for balancedness ratio 2, and five for balancedness ratio 3) and

we choose the committee with the highest score. We refer to this

algorithm as the Multischedule GreedyMonroe algorithm.

We have tested our algorithm on elections generated according

to the Pólya-Eggenberger urn model. In this model we assume

some parameter α > 0 (known as the parameter of contagion). To

generate an election with n voters andm candidates, we proceed

as follows. Initially, we have an urn with allm! possible preference

orders. To generate a vote, we draw a random preference order

from the urn, add it to the election, and return it to the urn together

with αm! copies (so the larger the parameter α , the more likely it

is that many identical votes appear in the election). For α = 0 the

urn model is equivalent to the Impartial Culture model, where each

preference order is equally likely.

We have considered values for α from the set {0, 0.1, 0.25, 0.5}.

For each value of α and for each X ∈ {1.5, 2, 3, 5, 10}, we have

generated 150 elections and computed optimal X -BalancedCC com-

mittees for them using the ILP formulations of Faliszewski and

Talmon [14]. Then for each of these elections, we have run our

GreedyMonroe algorithm with the optimal schedule from Section 4

and the variant of the algorithm described in this section (which

uses multiple hand-picked schedules and chooses the best outcome

seen). In all our experiments, we observed average approximation

ratios between 97% and 99%. Thus, following Faliszewski et al. [13],

instead of reporting these approximation ratios, we report ratios

x/y, where x is the average position of a voter’s representative in

a solution computed using a given algorithm and y is the average

position of a voter’s representative in the optimal committee. We

report the results in Table 2.

It turns out that GreedyMonroe with our schedules from Sec-

tion 4 performs very well for most of the test cases, except for the

situations where α is either 0.25 or 0.5 and, at the same time, X is

5 or 10. This suggests that the intractability results from Section 5

do not have a strong bite and in practice one can either use the

schedules from Section 4 (if one wants high quality and low run-

ning time) or one can design a set of a few varied schedules to try

within Multischedule GreedyMonroe (but one should then include

the schedules from Section 4 in the mix).

7 CONCLUSIONS
We have adapted the GreedyMonroe algorithm to the case of X -
BalancedCC rules. We have shown that our variant of the algorithm

provides better approximation guarantees than the previous algo-

rithm of Faliszewski and Talmon [14] and, indeed, in some settings

it even achieves higher approximation ratios than Algorithm P of

Skowron et al. [24], designed for the Chamberlin–Courant rule.

While it is computationally intractable to find parameters for which

our variant of GreedyMonroe achieves best performance for a given

election, we have shown experimental evidence that it is possible

to prepare a handful of parameter settings to try, to ensure that the

algorithm achieves good results.
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