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ABSTRACT

The lack of data efficiency and stability is one of the main challenges

in end-to-end model free reinforcement learning (RL) methods. Re-

cent researches solve the problem resort to supervised learning

methods by utilizing human expert demonstrations, e.g. imitation

learning. In this paper we present a novel framework which builds a

self-improving process upon a policy improvement operator, which

is used as a black box such that it has multiple implementation

options for various applications. An agent is trained to iteratively

imitate behaviors that are generated by the operator. Hence the

agent can learn by itself without domain knowledge from human.

We employ generative adversarial networks (GAN) to implement

the imitation module in the new framework. We evaluate the frame-

work performance over multiple application domains and provide

comparison results in support.
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1 INTRODUCTION

Reinforcement learning as a field has had major successes in the

past few years [12, 15, 26, 30], particularly as techniques utiliz-

ing deep neural networks (DNN) have started to permeate the

research community. The techniques like Deep Q Network (DQN)

[14], trust region policy optimization (TRPO) [23], and asynchro-

nous advantage actor-critic (A3C) [13] recently grow significant

research contribution on deep reinforcement learning (DRL) [3].

However, there are some remaining challenges. The first one is

the sample inefficiency problem. In the classic Atari game experi-

ments (which have been one of the most widely used benchmark

for DRL), training a policy by DQN to perform close to human

level will normally cost many millions frame of the sample data.

In other word, it requires hundreds hours of play experience on

Proc. of the 18th International Conference on Autonomous Agents and Multiagent Systems
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the relatively simple Atari tasks. In more complex control tasks

like the ones in the MuJoCo simulator, normally thousands of GPU

hours are required to reach an acceptable performance, and this

corresponds to thousands year’s natural human experience.

The second challenge is the design of the reward. Reinforcement

learning process is guided by a predefined reward function or a

reward signal. The delayed reward problem [27] always occurs

while RL is employed as a tool to solve the sequential decision

making problem. Sparse reward will feedback less information for

learning. And if the reward is not straightforwardly evident (e.g. in

the games with numerical feedback scores), we need also manually

define one. However, in most cases an appropriate reward function

is hard to design, this leads to the reward engineering problem

[6]. In the past several decades researchers have developed many

solutions like reward shaping [16], transfer learning [29], inverse

reinforcement learning [1, 17], imitation learning [32], learning

from demonstrations [22], etc.

Inverse reinforcement learning (IRL) refers to the problem of

determining a reward function given observations of optimal be-

haviour [17], which is a learning from demonstrations method

for solving the reward engineering problem. However most the

IRL methods have lower data efficiency than the methods which

learn directly from the demonstrations such as imitation learning

or apprenticeship learning [1]. Imitation learning trains an agent

to perform a task from expert demonstrations, with samples of tra-

jectories from the expert, without having an access to the reward

signal or interacting with the expert. Two main implementations

for imitation learning are behavioral cloning (BC) and maximum

entropy IRL (MaxEnt-IRL). BC is formulated as a supervised learn-

ing problem to map state-action pairs from expert trajectories to a

policy [9] while MaxEnt-IRL solves the existing IRL problem that

multiple policies can be inferred from a given set of demonstrations

[32].

Recently [9] proposed an effective method, namely generative

adversarial imitation learning (GAIL), to learn policies directly

from data bypassing the intermediate IRL step. They showed a way

to implement the supervised imitation learning using Generative

Adversarial Networks (GAN) [7]. GAIL aims to recover only the

expert policy instead of directly learning a reward function from the

demonstrations. It relies on a dynamically trained discriminator to

guide an apprentice policy to imitate the expert policy by optimizing

the Jensen-Shannon divergence of the two policy distributions. The
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research showed that GAIL can learn more robust policies and

fewer expert demonstrations are required for the training purpose.

Existing imitation learning methods show that the policy can

be guided by the expert demonstrations instead of the reward sig-

nal. Generally they are not tabula rasa learning because the expert

demonstrations are provided by humans. This leads the trained

policies to be heavily biased toward to a human knowledge domain.

The agent will perform similarly to the human’s style even though

some behaviours are sub-optimal or non-optimal. The potentially

more powerful policies may be ignored in the training. In some sce-

narios it naturally assumes that the human expert demonstrations

are available; however, most of the real-world applications have no

available data sets, or no sufficient data for effective training.

In this paper we provide a novel general unsupervised learning

framework of self-improving generative adversarial reinforcement

learning (SI-GARL). The new framework avoids the reward engi-

neering process based on the general policy iteration (GPI) [27].

It mainly contains two interleaved steps that conduct policy im-

provement and evaluation. We define a general policy improvement

operator in the policy improvement step, then we can learn from

a finite set of "generated expert" demonstrations produced by the

operator instead of collecting the real human expert data as the

guidance. In other words, we turn the policy improvement step to

an imitation learning form, which uses the current policy as the

prior knowledge to generate some improved policies and demon-

strations. We implement this by embedding an imitation module

to train the agent to mimic the produced demonstrations. The re-

ward is not directly used in our framework. Instead, it is implicit

in the policy improvement operator. In the policy evaluation step,

the current policy network is rated by a metric of the difference

between the current policy distribution and the improved policy

distribution. Thus this again naturally can connect to GAN which

trains a generative model to generate a distribution close to the

given data distribution, by using a discriminator as a critic. The

discriminator replaces the value functions/the rewards used in the

traditional policy evaluation methods. Our imitation module adopt

a GAN-like training method similar to GAIL.

DRL’s result success depends heavily on how well we explore

the solution space. And DRL highly rely on the rewards function

or through observations. In the other hand, Imitation Learning

uses supervised learning which is heavily studied with more stable

behaviour. But the trained policy is only as good as the demonstra-

tions from the experts, and IL will also experience an off-course

drifting problem. Our framework combined imitation learning and

DRL: The expert (improved policy) can tell us where to explore

which save the DRL a lot of effort. And we apply DRL to refine a

policy better than a human (because the generated policies are not

from human) and able to handle the off-course situations better. In

another view, the improvement operator can be seen as a policy

space reducer which limited the exploration space to a subspace

with higher quality policies. Comparing to the end-to-end DRL

methods which learn directly from the observation-reward sam-

ples, our method adds an auxiliary guidance and makes the agent

mimic to it. This significantly reduces the size of the exploration

space and improves the sample efficiency. A end-to-end model free

DRL (e.g. DQN) can be seen as a brain only uses intuitive thinking

to fast react to the observations. The policy improvement in our

framework can be seen as a brain thinks slower but plans longer

and more explicitly based on the current intuitive thinking.

There are four main contributions in our work:

• We add an auxiliary loss to guide the model-free DRL. In our

framework, agent will not only learn by the reward signal

collected from the environment, but also imitate a generated

improved policy, thus leading to better data efficiency.

• We enable the imitation learning method to work without

the human demonstrations. The expert data is generated by

the policy improvement operator, based on the policy output

by the model-free DRL. The learning will not be limited or

biased to any domain knowledge.

• The imitation part is implemented by adversarial training.

After the policy improvement operator output a policy, we

employ GAN to train the agent mimic towards to the im-

proved policy. In another view, this is also an implementation

of generalized policy distillation.

• We conduct a series of experiments to demonstrate the utili-

ties of the proposed framework and compare the framework

to the state-of-art RL methods. The experiments also include

the investigations of the efficiency of the GAN method and

the flexibility of the policy improvement operators.

2 PRELIMINARIES

A Markov Decision Process (MDP) is a mathematical system used

for modelling decision making. We use a tuple (S,A, P ,R,γ ) to
define a finite Markov Decision Process (MDP). S denotes the state

space, i.e a finite set of states. A denotes a set of actions the actor

can take at each time step t. Pa (s, s
′) = Pr (st+1 = s

′ |st = s,at = a)
denotes the probability that taking action a at time step t in state st

will result in state st+1. Ra (s, s
′) is the expected reward from taking

action a and transitioning to s ′. y ∈ [1, 0] is the discount factor,

which discounts the future reward.

Using an MDP, the goal is to determine which actions to take

given a certain state. For this, a policy π needs to be determined

which maps states s to actions a. A policy can either be stochastic

π (a |s) or deterministic π (s).
For Sequential decision making problem, scenarios are broken

up into a series of episodes. These episodes contain a set of re-

wards,states,and actions. Every episode contains n states corre-

sponding to time t . These states are samples for the initial state

s0. For each time step t the actor chooses an action at based on a

certain policy π . This policy is a probability distribution where the

action is sampled given the state at time t , i.e. π (at |st ). Based on

the action at , the environment will sample the reward Rt and the

next state st according to some distribution P(s(t+1), rt |st ,at ). An
episode runs for a predetermined number of time steps or until it

reaches a terminal state.

To take the best actions according to the environment distri-

bution, the policy π is chosen such that the expected reward is

maximized. The expectation is taken over episodes τ containing a

sequence of rewards, actions, and states ending at time t = n, i.e.
the terminal state.

A policy maps states s to actions a. In this paper we focus on

stochastic policies. A parameterized stochastic policy π (a |s,w) is

a action distribution with a model parameterized byw . The value
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function Vπ (s) = Eπ [
∑
γr (s,a)] of state s under policy π is the

discounted expected total reward starting from state s . A policy π∗

is optimal if Vπ ∗ (s) = maxπ Vπ (s),∀s

3 BACKGROUND AND RELATEDWORK

A general method, called generalized policy iteration (GPI), rep-

resents the core mechanism of most reinforcement learning tech-

niques. It consists of two interactive processes. The policy evaluation
step estimates the utility of the current policy π , that is, it computes

Vπ . The main purpose of this step is to gather information about

the policy for computing the second step of the policy improvement.
In this step, the values of the actions are evaluated for every state,

in order to find any possible improvements. This step computes an

improved policy π ′
from the current policy π using the information

in Vπ .
The closest related work is GAIL[9]. Our policy imitation part

is similar to GAIL, which also uses GAN to imitate the expert. But

their method needs a well collected and selected expert data from

human. Their performance could be limited by the human level.

Our framework does not rely on a high quality expert data, and

more creative policies could be generated. Another related work

is AlphaGO[24, 25], which used policy and value network as the

estimators, and MCTS as a policy improvement operator. And at the

initial training iterations AlphaGO learns from a database of human

expert play, this may lead to policy biased to human knowledge.

Our framework did not directly use the improved policies, instead

it incorporated the GAN to mimic them. An initial investigation of

the GAN imitation is shown in Table 2. SI-GARL shows better per-

formance than SI-RL (which is a version more similar to AlphaGO)

when they were facing to the same opponents.

Another related work is policy distillation[19, 20]. Distillation

has been used in deep learning for compressing model and making

model more stable. Policy distillation uses a well-trained agent to

teach other random initialized agent. It can be cast as a supervised

regression problem where the objective is to learn a model that

matches the output distributions of all expert policies. Instead of

calculating loss with maximum likelihood between teacher’s action

and student’s action, it minimizes the Kullback-Leibler (KL) diver-

gence with temperature τ . In our framework GAN is employed

to distill the improved policy onto the initial policy at each iter-

ation. Comparing to the existing policy distillation[19, 20], our

method uses a self-generated policy as teacher. And we do not aim

to compress the big network to a smaller one, but to feedback an

incremental update to the current policy network.

4 SELF-IMPROVING GARL

In this section we start with a general framework of self-improving

reinforcement learning (SI-RL) and present the basic settings of the

networks and derive the update formula. Subsequently we intro-

duce the new framework of self-improving generative adversarial

reinforcement learning (SI-GARL) by adding GAN as the training

module into the SI-RL framework. We elaborate three potential

policy improvement operators in the SI-GARL framework.

4.1 General Framework

To generate the improved demonstration, we define a generic policy

improvement operator I which maps a policy π and the state value

V to an improved policy π ′
.

π ′ = I (π ,Vπ ) (1)

That is, the improved policy π ′
is claimed to be better than

the direct output from the policy neural network. π and V can be

considered as the prior knowledge to the operator I . The policy im-

provement operator does not have to be a specified structure. In our

framework it is considered as a black box and can be any algorithm

that can refine the initial intuitive strategy. Typically employing

an operator will cost more computational resources by utilizing a

current policy and state values multiple times. This is a trade off

between a high quality prior knowledge which helps to shrink the

exploration space and a consumption on computational resources.

The goal is to seek a fixed point π ′
such that π ′ = I (π ′,Vπ ′) where

the policy cannot be improved any further. A theorem guarantees

the same convergence as GPI [27] when I satisfies the conditions
that the policy order is defined.

Definition 4.1. [Policy Order] Let π and π ′
be any pair of policies

such that for any s , if Vπ (s) > Vπ ′(s), the policy order is defined as

π ≻ π ′

Definition 4.2. [Optimal Policy] For every MDP, there is at least

one policy π∗ that achieves the largest possible return from all

states, and π∗ ⪰ π for all the other policies π . This is called an

optimal policy

Theorem 4.3. For any finite Markov decision process, given a
policy π , if an operator I satisfies I (π ,Vπ ) ≻ π , then the sequence of
policies generated by our policy iteration algorithm converges to a
unique optimal policy π∗

Proof. For a finite MDP (i.e. the state and action spaces are

finite), policy iteration converges after a finite number of iterations.

Since, for a finite MDP, the number of different policies is finite.

Every policy πk+1
= I (πk ,Vπk ) is a strictly better policy than πk

unless in case πk = π
∗
, in which case the algorithm terminates. □

By employing the policy improvement operator I we can pro-

duce the expert demonstrations τπ ′ of the improved policies π ′ =

I (π ,Vπ ) based on the prior knowledge π and Vπ . Subsequently we

transform the problem into an imitation learning task, which trains

to match the agent policy to the improved policy. Similar to the

objective function used in the policy distillation [20], we define

the loss function as the KL-Divergence between the two policy

distributions,

LI = DKL[I (π ,Vπ )| |π ] (2)

where DKL[p | |q] computes the KL-Divergence between the two

distributions p and q.
In the new framework, the policy evaluation calculates a loss

function defined as the KL-Divergence between the current policy

and the improved policy. The loss is used as the utility function of

the current policy: if the loss is large, the current policy still has

potentiality to be improved. The policy improvement step trains to

update the current policy in order to minimize the loss function.
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We implement our framework by employing deep neural net-

works (DNN) as the function approximation. We use a DNN to es-

timate the state value function V as V̂ (θ , s) = DNN θ (s). DNNθ (s)
can be any type of DNN such as CNN, ResNet, etc. It is an end-to-end

estimator with the input of a state s ∈ S and the output of the state

value. θ represents the internal parameters of the DNN. Similarly,

the policy estimator is defined as π̂ (a |s,w) = DNNw (s) where w
represents the parameters in the DNN. By inputting the state s the
DNN will generate an estimated policy distribution π̂ (a |s,w) on the

state s . We call the framework as the self-improving Reinforcement

Learning (SI-RL) in Algorithm 1. The parameterized loss function

and the update take the form as:

LI (w,θ , s) = DKL[I (π̂ (·|s,w), V̂ (θ , s))| |π̂ (·|s,w)]. (3)

Define π ′ = I (π̂ (·|s,w), V̂ (θ , s)) as the output of the policy im-

provement operator, the gradient can be derived:

∇wLI (wk ,θk , s) = ∇wE[log

π ′

π̂ (·|s,w)
]

= ∇w
∑
s
π ′

log

π ′

π̂ (·|s,w)

=
∑
s

∇wπ
′(logπ ′ − log π̂ (·|s,w))

=
∑
s

∇wπ
′
logπ ′ −

∑
s

∇wπ
′
log π̂ (·|s,w))

= −π ′∇w log π̂ (·|s,w)

= −I (π̂ (·|s,w), V̂ (θ , s))∇w log π̂ (·|s,w)

(4)

Similarly, ∇θLI (wk ,θk , s) can be derived as:

∇θLI (wk ,θk , s) = −I (π̂ (·|s,w), V̂ (θ , s))∇θ log π̂ (·|s,w) (5)

Hence the update formulas for SI-RL will be:

wk+1
= wk + ∇wLI (wk ,θk , s)

= wk − I (π̂ (·|s,w), V̂ (θ , s))∇w log π̂ (·|s,w)
(6)

θk+1
= θk − I (π̂ (·|s,w), V̂ (θ , s))∇θ log π̂ (·|s,w)+

∇θ | |V̂ (θ , s) − R)| |
2

(7)

4.2 Training by the GAN method

Instead of optimizing the KL-divergence between the training pol-

icy and the improved policy produced by the policy improvement

operator, we can integrate the GANmethod [7] into the SI-RL frame-

work to implement the training process of the imitation module.

The main idea is to have two networks: discriminator and generator.

The discriminator represents a classifier and assigns a low loss to

the improved policies and a high loss to the initial ones. The goal

of generator is to generate the initial policies so that their assigned

loss is minimized. We keep using our policy network and allow it

to update the parameters in the GAN training. Formally it tries to

find the saddle point for the optimization below:

min

w
max

D
Eπw [logDψ (s,a)] + Eπ ′[log (1 − Dψ (s,a)] (8)

where πw is the policy model which we train, π ′ = I (π ,V ) is the

improved policy, and D(a, s)ψ is the discriminator network with

the weight ψ . The generator will output an initial policy distri-

bution, which is trained to predict what an agent will eventually

decide to do given a state. This is similar to what GAIL [9] performs:

to form an imitation module but to be guided by the dynamically

generated improved policy.We call the GAN embedded SI-RL frame-

work as the self-improving generative adversarial reinforcement

learning (SI-GARL) in Algorithm 2. The policy network should be

updated towards the natural gradient direction, while the discrimi-

nator and value network can be updated by the SGD methods.

In the practical implementation, we notice that the divergence

used f -divergence can be chosen [18]. To deal with the mode col-

lapse and vanishing gradient problems, we employ theWasserstein
distance [2]. The policy network and value network can be set to

share the latent layers’ parameters to reduce the computational

complexity such that they will not be updated separately. We show

the engineering structure of the SI-GARL framework in Figure 1.

Algorithm 1 SI-RL

1: while true do

2: {Policy Evaluation}

3: Produce improved policy

π ′(·|s) = I (π̂ (·|s,w), V̂ (θ , s))
4: Calculate LI (w,θ , s) by Eq. 3

5: if LI (w,θ , s) < ϵ then
6: STOP

7: end if

8: {Policy Improvement}

9: Updatew,θ by Eq. 6,7

10: Take action using updated π̂ (·|s,w ′)

11: end while

Algorithm 2 SI-GARL

1: while true do

2: {Policy Evaluation}

3: Policy Evaluation step is the same as SI-GL

4: {Policy Improvement}

5: for i=0,1,2,... do

6: Updatew by natural gradient: Eπw [∇wDψ (s,a) andψ by

SGD on: Eπw [∇ψDψ (s,a)] − Eπ ′[∇ψDψ (s,a))]
7: end for

8: Take action based on updated π̂ (·|s,w ′)

9: end while

4.3 Analysis of GAN and Divergence

In this section we analyse the reason of using GAN instead of

training directly by KL-devergence. Firstly we represent the loss

function of GAN as below:

L(w,D) =

∫
x

(
pπ ′(x) log(D(x)) + pπw (x) log(1 − D(x))

)
dx

=

∫
x
f (D(x))dx

(9)
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Figure 1: The architecture of SI-GARL framework. Arrows with solid lines show how the data transfer between modules, and

those with dotted lines show the feedback signal used to update the networks. The orange blocks represent the internal data.

The grey circle represents the policy improvement operator seen as a black box. The policy network and value network are

the estimators of the policy (P = π (·|s)) and value functions (V = V̂ (s)) as defined in Section 3.1 with, and the discriminator

network is in the GAN training in Section 3.2.

We are interested in what is the best value of D to maximize

L(w,D), so we derive as the following:

d f (D(x))

dD(x)
= pπ ′(x)

1

ln10

1

D(x)
− pπw (x)

1

ln10

1

1 − D(x)

=
1

ln10

(
pπ ′(x)

D(x)
−

pπw (x)

1 − D(x)
)

=
1

ln10

pπ ′(x) − (pπ ′(x) + pπw (x))D(x)

D(x)(1 − D(x))

(10)

Then we set
df (D(x ))
dD(x ) = 0, we get the best value of the discrimi-

nator:

D∗(x) =
pπ ′(x)

pπ ′(x) + pπw (x)
∈ [0, 1] (11)

When the generator is trained to its optimal, i.e.pπ ′(x) ≈ pπw (x),

the optimal discriminator should be D∗(x) = 1

2
. The loss function

becomes:

L(w,D∗) =

∫
x

(
pπ ′(x) log(D∗(x)) + pπw (x) log(1 − D∗(x))

)
dx

= log

1

2

∫
x
pπ ′(x)dx + log

1

2

∫
x
pπw (x)dx

(12)

Recall the definition of Jensen-Shannon Divergence:

D J S (pπ ′ ∥pπw ) =
1

2

DKL(pπ ′ | |
pπ ′ + pπw

2

) +
1

2

DKL(pπw | |
pπ ′ + pπw

2

)

=
1

2

(
log 2 +

∫
x
pπ ′(x) log

pπ ′(x)

pπ ′(x) + pπw (x)
dx

)
+

1

2

(
log 2 +

∫
x
pπw (x) log

pπw (x)

pπ ′(x) + pπw (x)
dx

)
=

1

2

(
log 4 + L(w,D∗)

)
(13)

Thus L(w,D∗) = 2D J S (pπ ′ ∥pπw )−2 log 2. So optimising the gen-

erator model is treated as optimising the JS-divergence between the

generative policy distribution and the improved policy distribution.

Early research[10] speculates that one reason behind GAN’s suc-

cess is switching the loss function from asymmetric KL-divergence

in MLE approach to symmetric JS-divergence. In our implementa-

tion, we further use the symmetric Wasserstein distance provides

a smoother measure than JS-devergence to solve the problem of

disjoint distributions [2].

4.4 Selections of Policy Improvement Operator

There are many choices for the policy improvement operator. It can

traditionally be a policy based procedure or a value based procedure.

It can also be a planning based or evolution based procedure. In this

paper we adapt three typical options: trust region policy optimiza-

tion (TRPO), Monte Carlo tree search (MCTS) and cross entropy

method (CEM). We show how these operators can be efficiently

embedded in our framework.

4.4.1 TRPO. Policy gradient (PG) methods [28] formulate a

class of method to optimize a parameterized policy πθ directly by

maximizing expected return through a stochastic gradient ascent.

TRPO is one of the notable policy gradient algorithms [23] and has

a nice theoretical monotonic improvement guarantee.

Suppose we have a current policy π0 that wewish to improve.We

can write the performance of a new policy π in terms of the perfor-

mance of π0 η(π ) = η(π0) + Eρπ Ea∼π (s)[Aπ0
(s,a)]. [23] proved the

following simpler bound involving KL-divergence between the new

policy and the old policy: η(π ) ≥ Lπ0
(π ) −CmaxsDKL(π0(s)∥π (s))

Where C =
2γmaxs |Ea∼π ′(s )[Aπ

0
(s,a)] |

(1−γ )2 . They used mean-KL diver-

gence over state space as an approximation so that we can estima-

tion it by D̄KL(π0∥π ) = Es∼ρπ
0

[DKL(π0(s)∥π (s))]. Then the TRPO

optimization problem become maximizeθ [Lθ0
(θ ) −CD̄KL(π0∥π )].

In the SI-GARL framework, we can directly use TRPO without

modification as the policy improvement operator ITRPO (π0,v) =
TRPO(π0,v, ). Because of the monotonic improvement guarantee

[23] in TRPO, it is obviously that TRPO satisfies Theorem 1. In

practice, the estimated v values under the current policy π0 can

be used to calculate the approximation advantage Âπ0
, and then
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use conjugate gradient to approximate the gradient direction F−1д,
where, F is the Fisher Information Matrix equivalent to the second

order derivative of the KL-divergence.

4.4.2 MCTS. Monte Carlo tree search [5] is a search algorithm

that is based on a tree data structure, which can balance the exploration-

exploitation dilemma, and performs effectively in the high dimen-

sional search space. In theory MCTS can be applied to any domain

that can be described in terms of {state,action} pairs and simula-

tions used to forecast outcomes.

The basic idea is to use a cycle of Selection, Expansion, Simula-

tion, and Back-Propagation to build and selectively explore a tree,

where each node corresponds to a state and each edge from a node

corresponds to an action. Leaf nodes are chosen according to a

particular algorithm, and then full games are simulated from those

nodes until they terminate. Then, the results of the simulation are

back propagated up the tree all the way to the root node. And, un-

like other RL techniques, MCTS does not require that the full state

space be enumerated, which may be necessary to fully estimate the

value of a state in terms of its future rewards.

MCTS is often used as an online planning method.AlphaGO and

AlphaGO Zero have shown success on GO game by combining RL

with MCTS [24, 25]. We use MCTS in the SI-GARL framework as

a planning-based police improvement operator. It provides a long

term panning ability compared to the policy gradient methods. The

Upper Confidence Bounds for Trees (UCT) algorithm is a particular

instance of MCTSwith the formulaUCT = X̄ j+2Cp

√
2 logn
nj , where

X̄ j is the average reward of child j, n is the number of times the

parent node has been visited, nj is the number of times child j has
been visited, andCp > 0 is a constant. We modify this formula to fit

the SI-GARL framework:UCTπ = vj + 2Cp

√
2 logn
nj +k

π̂ (a |sj )
nsj ,a+1

. We

use the estimation value vj of the states replace the average reward
X̄ j , and add a policy term to make UCTπ be able to improve the

policy by utilising the policy produced by the current network. It has

been proved that MCTS converges to an optimal solution [11], such

that the policy improvement operator IMCTS (v,π0) = MCTS(v,π0)

underUCTπ satisfies Theorem 1.

4.4.3 CEM. In the SI-GARL framework the policies are always

generated by the network. Hence they can all be seen as parametrized

policies with the network parameters. To solve the policy optimiza-

tion problem of maximizing the total (discounted) reward given

some parametrized policy, a simple approach is the derivative free

optimization (DFO) which considers this problem as a black box

with respect to the parameter θ , which is different from the pol-

icy gradient method. One particular DFO approach is called the

cross-entropy method (CEM). At any point in time, it maintains

a distribution over parameter vectors and moves the distribution

towards parameters with a higher reward.

To adapt the CEM in the SI-GARL framework, we keep changing

the parameters in the network: given a current policy network

π0, we initialize µ as the current network parameters. Then run

CEM to update the parameter in the policy network ICEM (v,π0) =

CEM(π0), which is similar to the evolution strategy algorithm [21].

The implementation includes the following four steps:

5 EXPERIMENT

In this section we investigate our framework in a series of experi-

ments to answer the following questions:

• Does the self-improving imitation learning framework make

the performance better than that by training only by the pol-

icy improvement operator which the framework employed?

• For the scenarios without clearly defined reward signal, can

the SI-GARL learn better policies than the standard DRL

baselines like DQN and A3C? And how important does GAN

play a role in the training process? This will help us answer

why GAN is needed when a parameterized policy is already

obtained from the policy improvement operator.

• For the scenarios with clearly indicated reward signal, can

the SI-GARL still reach or even outperform the state-of-art

RL algorithms? And how does the selection of the policy

improvement operator impact the performance for various

domain problems?

The experiments on the first Gomoku section compare against

the black-box policy improvement algorithms.While that onminiRTS

and Atari sections are compared to standard DRL baselines. In

miniRTS section there is also a comparison between our GAN ver-

sion SI-GARL and non-GAN version SI-RL.

We develop a light version and a whole version of the SI-GARL

framework to adapt different scenarios. Normally the light version

generative network uses a 30 layer’s fully-connected network with

3 extra layers of end nodes to output the policy or value. The whole

version has 80 layers. There are 3 fully convolution layers using

32, 64 and 128 3 × 3 filters at the beginning. The ReLu activation

function is employed. In the policy output end, four 1 × 1 filters

are used to do the dimensionality reduction. After that there is

an extra full connection layer. The so f tmax nonlinear function

directly outputs the probability of each action on the state. At the

value end, we first connect two 1 × 1 filters, then a fully connected

layer of 64 neurons. It uses the tanh nonlinear function to output

the evaluated score in the range [−1, 1].

5.1 Gomoku

We chose Gomoku as the first experiment platform since it is a

zero-sum game and the state space is not as large as Go. We choose

MCTS as the policy improvement operator in this experiment. To

reduce the computational time, we test a small size 8×8 chessboard

with five chess. A player who first makes a line of 5 chess win the

game. We use 4 binary 8 × 8 feature matrix. The first two are the

board states of the current and the opponent players. The third

matrix indicates the position of the last move of the opponent. The

fourth matrix indicates which player can move at this step. The self-

play data was generated directly from the current network and was

used to train and update itself. Using the latest model to generate

self-play data will also benefit the exploration. We add Dirichlet

noise P(s,a) = (1 − ε)Pa + εηa , similar to the way of exploring in

deterministic policy gradient methods. The parameters of Dirichlet

noise are 0.3, η ∼ Dir(0.3) with ϵ = 0.25.

A total of 3050 games were played in this experiment. The loss

changed from around 4.0 down to around 2.2. We observe the

change of entropy of the policy during the training. The policy

network will learn which positions should have a large probability
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of moving in different situations. The distribution will become

strong bias, thus the entropy will be smaller. Figure 2 shows that

a loss function with the number of self-play matches changes on

8 × 8 broad, and the changes of the entropy of the policy network

output observed in the same training process. The results show

that the SI-GARL framework is on the right learning path.

Figure 2: Loss and entropy change in training

In addition, we set a competition to observe the performance

of the training network. From the beginning, every 50 self-play

games we use our latest network to fight versus a single MCTS

planning method which is the same as the policy improvement

operator we employed in our framework. We set a different level of

the MCTS AI by changing the number of MC simulations on each

step, i.e.MCTSN means for each step the AI will do N simulations

to estimate the future. When a level of the AI was defeated to 10:

0 by our trained AI model, it will be upgraded into the next level

by increasing N and so on. While our trained AI model employs a

MCTS400 operator. After the above 3050 self-match training experi-

ments, we observed that it indeed increases the performance while

it keeps beating higher and higher level’ opponents in Table 1.

Number of Games Score(w:d:l) Opponent level

100 3:1:6 MCTS1000

450 10:0:0 MCTS1000

700 7:1:2 MCTS2000

1100 10:0:0 MCTS2000

1250 8:0:2 MCTS3000

1600 10:0:0 MCTS3000

2300 8:2:0 MCTS4000

3050 9:1:0 MCTS4000

Table 1: Comparison between SI-GARL and MCTS oppo-

nents. The score shows the counts of win, draw and loss in

10 games.

5.2 miniRTS

In this experiment we train our model in a more complex envi-

ronment without obvious reward functions. Game environments

are widely used to test novel reinforcement learning algorithms.

The real-time strategy (RTS) games realistically simulate real-world

scenarios. ELF is an platform for game and reinforcement learning

research, which gives an end-to-end solution from game simulators

to training paradigms [31]. It requires less resources compared to

other RTS simulators. The complexity of the RTS game always

challenges design of the reward function and this is exactly what

the SI-GARL framework tries to solve. As the game engine focuses

on two-player games, we choose CEM and MCTS as the policy

improvement operators for both SI-RL and SI-GARL in the experi-

ments. There are two stages in the experiment. In the first stage,

Figure 3: Compare our two methods to DQN, REINFPRCE

and A3C on the win rate to a rule-based AI in training.

because the MiniRTS in ELF provides a rule-based simple AI player

as a baseline opponent, we train 5 methods including SI-GARL

(MCTS), SI-RL (MCTS), DQN, REINFORCE and A3C to fight against

the rule-based AI. Since RTS is much more complex than Gomoku,

we use the whole version network to improve the learning ability.

The win rate curves in the training in Figure 3 show how different

algorithms perform versus a baseline AI.

In the second stage, after all the methods have been trained by

a default rule-based AI as opponent, we change the opponent to

each of the AIs well-trained from the first stage. Then we evaluate

our AIs using SI-GARL and SI-RL via 10000 game simulations on

each of the other opponents. The accumulated win rates are shown

in Table 2. We notice that when the opponent is a rule-based AI,

the importance of using GAN is not significant. However when our

models face more complex and intelligent opponents, GAN adds

more values to the performance improvement. Especially SI-GARL

reaches over 60% win rate to directly beat SI-RL.

Opponent SI-RL SI-GARL

Rule-based 82.7% 84.1%

DQN 68.3% 73.4%

REINFORCE 64.5% 71.8%

A3C 63.8% 69.9%

SI-RL NA 60.2%

Table 2: Comparison between SI-GARL and SI-RL without

the GAN training. The accumulated win rates are listed.
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GAME ROM SI-GARL SI-GARL SI-GARL UCT A3C DQN

(MCTS) (TRPO) (CEM)

Amidar (423.5) 266.7 121.4 187.2 278.6 125.4

Assault 1635.1 3319.9 1637.1 1498.7 (3715.7) 3103.6

Battle Zone 12131.3 8904.5 (19021.5) 9162.4 10712.4 16605.6

Beamrider 3014.6 10314.7 806.5 2896.1 (13176.8) 8557.1

Breakout (636.7) 501.4 17.4 404.7 560.4 247.3

Centipede 5016.9 2215.3 (7147.9) 4102.3 3477.9 3678.1

DemonAttack 69385.3 (81353.4) 2639.5 57893.3 79674.2 11376.5

Freeway 22.1 23.9 (32.2) 24.1 26.8 25.3

Gravitar 367.1 334.8 (917.4) 397.1 274.6 226.3

Kangaroo 1677.3 1104.2 (9759.3) 1879.4 1146.7 2489.3

Phoenix 12634.6 20456.3 5867.1 6871.5 (27914.6) 9768.4

Pong (20.9) 17.4 20.8 20.6 19.3 16.8

Q-bert (33756.7) 21793.0 877.4 15321.2 14002.5 4557.2

RiverRaid 5837.4 (11419.8) 7032.6 4749.9 9469.1 3885.9

RoadRunner (33891.4) 31046.3 18934.6 29742.8 32168.3 9127.4

Seaquest 2067.3 2104.5 1407.3 2018.4 2267.1 (2749.6)

Skiing 12493.6 12135.8 (17072.4) 10024.2 13367.1 8463.5

StarGunner (76345.1) 62123.4 1931.4 33756.1 57193.6 31482.7

Venture 487.3 98.4 (658.3) 212.4 22.4 42.7

Zaxxon (6794.5) 3036.7 6191.4 3631.7 2979.2 811.4

Table 3: Final results obtained by SI-GARL with different policy improvement operators on 20 Atari 2600 games, and compare

to two RL methods A3C, DQN and a planning based policy search method UCT

5.3 Atari

A popular benchmark for evaluating reinforcement learning has

been on the Atari game domain, provided through the Arcade

Learning Environment (ALE) - an object-oriented framework that

allows researchers to easily develop AI agents [4]. To save the

experimental times, we used ELF which has incorporated ALE with

the support of paralleled running on multi-cores.

The standard evaluation metric for Atari game is the score re-

turned by the game itself. This means Atari game can be easily

evaluated by an obvious numerical reward score. We test our frame-

work on 20 selected Atari games to see if the performance can

reach the same or above that of the three benchmark methods UCT,

A3C and DQN. Different from the SI-GARL framework, all these

benchmarks learn directly based on the reward score. We also inves-

tigate how the three implemented policy improvement operators

perform across the 20 different games. We used the same A3C and

DQN setup and followed the images pre-processing in [13]. The

setup of UCT is the same as that in [8]. Our policy network used a

whole version of the SI-GARL framework with well tuned hyper-

parameters. All the games were trained for 160 million frames on

our three methods and 640 million frames on the benchmarks.

The averaged scores over the last 20 episodes are shown in

Table 3. Most of the best scores are reached by the SI-GARL with

fewer training frames. In most times our method can lead to the

close or better game scores while it does not directly optimize the

scores.We notice that there is nowinner between our threemethods

for all games. For example, some games relying on planning would

require aMCTS based policy improvement operator. Our framework

has the flexibility for different types of tasks.

We also have computational time cost for each method. The com-

putational cost varies in different settings because the improvement

operator performance varies widely on multiple games. SI-GARL

with MCTS costs roughly 5-8 times compared to DQN, while with

TRPO costs 3-4 times and with CEM costs 4-6 times. Overall the new

framework endorses good performance in terms of computational

cost.

6 CONCLUSION

This paper proposes and implements a novel SI-GARL framework

that avoids to face directly to the reward engineering problem in

RL. We define a policy improvement operator to provide flexibility

to the SI-GARL framework, and employ the operator as a black box

to implement the self-improving procedure. We integrate GAN into

the SI-GARL framework in order to further improve the exploration

quality and the data efficiency. The imitation step is implemented

by adversarial training, which is not a standard GAN, but similar

to GAIL. The generator-and-discriminator gaming principle still

exists in our framework. The framework does not seem to be similar

to a classical GAN, but inherits its essential idea. We show in the

experiments that it is worth to spend more computational cost on

this framework due to its outstanding performance. Both GAN

and self-improving procedures show their potential in multiple

test domains. In the future we will turn to investigate on how

to select the proper improvement policy operator and develop a

meta-selector.
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