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ABSTRACT
We investigate themanipulation of power indices in TU-cooperative

games by stimulating (subject to a budget constraint) changes in

the propensity of other players to participate to the game.

We display several algorithms that show that the problem is often

tractable for so-called network centrality games and influence at-

tribution games, as well as an example when optimal manipulation

is intractable, even though computing power indices is feasible.
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1 INTRODUCTION
Control is a fundamental but difficult issue in multi-agent systems.

A multi-agent society may be difficult to control due to the concur-

rence of several factors, that may interact and drive the dynamics

in complex, unpredictable ways. Some of these factors could in-

clude uncertainty about agent involvement [6], coalition formation

[13], the rules [17], the environment [48], about rewards [28], the

presence (or lack) of synergies between players [39], etc.

A common type of control is manipulation1, which often aims

to change the power (index) of a given player by means of inter-

ventions in the settings or the dynamics of the agent society. Many

types of manipulation have been considered in the literature, often

in a computational social choice context. They include identity [2],

cloning [18] and quota [49] manipulation in voting games, collusion
and mergers [29], sybil attacks [45] and, finally, multi-mode attacks
[21], just to name a few.

We contribute to this direction by studying yet another natu-

ral mechanism for manipulation: changing the propensity of
players to participate to the game. This type of manipulation is

quite frequent in real-life situations, a central example being voting

- while parties cannot control with absolute certainty voter turnout

∗
corresponding author

1
We use the word with its wider, commonsense meaning, rather than the specialized

one from voting theory [15]. Our usage encompasses both strategic behavior by an

agent or coalition (voting theory "manipulation") and interventions by a chair or

outside agent (such as control and bribery in voting [22]). We assume, however, that

all such interventions are costly.

Proc. of the 18th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2019), N. Agmon, M. E. Taylor, E. Elkind, M. Veloso (eds.), May 13–17, 2019,
Montreal, Canada. © 2019 International Foundation for Autonomous Agents and

Multiagent Systems (www.ifaamas.org). All rights reserved.

on election day, they may employ tactics that aim to mobilize their

supporters and deter participation of their opponents’ voters
2
. Ma-

nipulation could be performed by a centralized actor (like in the

voting example), or by a coalition of players [14], strategically mod-

ifying their behavior (in our case their reliabilities) in response to a

perceived dominance of a player whose power index they wish to

decrease.

The main impetus for our work was [9], where a model of

strategic manipulation of player reliabilities was first investigated.

Bachrach et al. [9] considered max games. In these games each

player possesses a weight; the value of a coalition is the maximum

weight of a component of the coalition. They proved a "no sabotage

theorem" for (the reliability extension of) max-games with a com-

mon failure probability. They remarked that manipulating player

reliabilities can be studied in principle for all coalitional games,

and asked for further investigations of this problem, in settings

similar to the one we consider, i.e. under costly player manipula-

tion. Given the negative results for max-games [9] and the fact that

computing power indices is often intractable [16], we concentrate

mostly on proving positive results, showing that there exist natural

scenarios where optimal attacks on power indices by manipulating

players’ reliabilities are easy to compute (and interesting). We hope

that these positive results will encourage renewed interest (and

research) on the scope and limits of reliability manipulation.

Contributions and outline In Section 2we begin by informally

stating the problem and justifying our choice of the two classes of

coalitional games studied in this paper: network centrality games
[1, 35, 43, 44] and credit attribution games [27, 38]. Even though

credit attribution games may seem to be somewhat exotic/of limited

use, their importance extends well-beyond scientometry: they were,

in fact, anticipated, as hypergraph games (see [16] Section 3). The

two games we consider from this class, full credit and full obligation
games, are natural examples of read-once marginal contribution

(MC) nets [19]. Full credit games are equivalent to the subclass of

basic MC-nets [25] whose rules are conjunctions of positive variables;
full obligation games correspond to generalized MC-nets whose

rules consist of disjunctions of positive variables. Full obligation
games can simulate induced subgraph games [16]. Full credit games

capture an important subclass of coalitional skill games (CSG) [7, 8],

that of CSG games with tasks consisting of a single skill.

Section 3 contains technical details and precise specifications of

the models we investigate. We deal with two types of attacks: (node)

removal, where we are allowed to remove (decrease to zero the

reliability of) certain nodes, and fractional attacks, where reliability
probabilities can be altered continuously.

2
Such scenarios are best modeled asmultichoice voting games [23]. However, since such
games are multi-cooperative (rather than cooperative) games [11], they fall outside of

the scope of the present work, and will be dealt with in a subsequent paper.
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In Section 4 we give closed-form formulas for the Shapley values

of the reliability extensions of network centrality and credit alloca-

tion games. Next we particularize these results to centrality games

on specific network: first we show that no removal attack is benefi-

cial; as for fractional attacks, we show that in the complete graph

Kn or when attacking the center of the star graph Sn , a greedy

approach works: one should increase the reliabilities of neighbors

of the attacked node, in descending order of baseline reliabilities.

When attacking a non-center player in Sn the result is similar, with

the important exception that increasing the reliability of the center

should precede all other moves. In contrast, the situation for the

cycle graph Cn is more complex, involving all distance-two neigh-

bors of the attacked node. A simple characterization is provided

for the optimum as the best of four fixed “greedy” solutions. This
characterization allows the determination of the optimum for all

combinations of reliability values and budget.
3
An interesting, and

unintuitive, qualitative feature of the result is that in the optimal

attack a non-neighbor of the attacked node could be targeted before
some of the direct neighbors of the attacked node.

In Section 6 we analyze full credit and full obligation games. Al-

though these two games have the same Shapley value [27], we show

that they behave very differently with respect to attacks: removal

attacks are not beneficial for full credit games, NP-hard for full obli-

gation games. Fractional attacks also behave differently, modifying

probabilities in opposite directions. In a particular setting which

includes the case of induced subgraph games we obtain greedy

algorithms for both games, derived from expressing the problems

as fractional knapsack problems. The determining quantities for

the attack orders are (two different) cost-benefit measures.

2 PROBLEM STATEMENT AND CHOICE OF
GAMES

The power index attack problem, the main problem of interest in this

paper, has the following simple informal statement: we consider the

reliability extension of a cooperative game. We are given a positive

budget B > 0 and are allowed to modify reliabilities of all nodes,

other than the targeted player x , as long as the total cost incurred

is at most B. Which nodes should we target, and how should we

change their reliabilities, in order to decrease as much as possible

the Shapley value of node x?
A variant of the previous problem, called the pairwise power

index attack problem and motivated by Example 2.1 below, is the

following: we are given not one but two players x ,y. The goal is to
decrease as much (within the budget) the Shapley value of x , while
not affecting at all the Shapley value of y. This restriction makes

some nodes exempt from attacks: we are not allowed to change the

reliabilities of players who contribute to the Shapley value of y.
Choice of games The problems described above could be inves-

tigated in all classes of TU-cooperative games, or compact represen-

tation frameworks. However, we feel that the most compelling cases

are those where the computation of power indices, e.g. the Shapley

value, of (the reliability extensions) of our games is tractable
4
. In

3
The precise formula for the optimum is cumbersome, hence deferred to the full

version.

4
This requirement disqualifies many natural candidate games such as weighted voting
games [16, 33], as well as most subclasses of coalitional skill games [3]

other words the intractability of manipulating a power index should
not be a consequence of our inability to compute these indices. In
particular, we are interested in scenarios where computing power

indices is easy, but computing an optimal attack on them is hard.

Theorem 6.2 below provides such an example.

The appeal of studying attacks on node centrality in social net-

works is quite self-evident: game-theoretic concepts such as those

considered in [1, 35, 43, 44] formalize appealing notions of lead-

ership in social situations. They have been proposed as tools for

identifying key actors, with applications e.g. to terrorist networks

[32, 36]. In such a setting, a direct (physical) attack on a leading

node may be infeasible. Instead, one could attempt to indirectly

affect its status (centrality), by incentivizing some of its peers.

Relevant examples of targeting nodes in order to affect power

indices arose (implicitly) in even earlier work [38], that attempted

to develop coalitional models of credit allocation in scientific work.

The following is a version of the example in [38]:

Example 2.1. Two scientistsA,B are compared with respect to their
publication record5. All their papers have exactly one co-author. Fig-
ure 1 displays this information as a graph, listing for each author pair,
the number of publications they have authored and the number of
citations. If using the Hirsch index, it would seem that candidate A
has a better track record than candidate B. But if we discard publica-
tions both of them have co-written with “famous scientist Y ” (that is,
remove Y and its publications from consideration), then their
relative ranking would be reversed.

The authors of [38] attempted to use the Shapley value of a

game based on the Hirsch index for credit allocation. An ulterior,

more general and cleaner game-theoretic approach is [27]. The

author defines several credit allocation games, and uses their (iden-

tical) Shapley values as a measure of individual publication record.

Slightly modified versions of this measure have (regrettably) ac-

tually been used in some countries to set minimum publication

thresholds for access and promotion to academic positions, e.g. the

minimal standards in Romania.

In such a context one could naturally ask the following question:

what are the top k coauthors that account for most of a scientists’
publication record? When using the game-theoretic framework for

scientific credit from [27], this is equivalent to finding the k coau-

thors whose removal (together with the joint papers) causes the

scientist’s’ Shapley value to decrease the most.

Collaborations may, however, be genuinely productive or just

bring to one of the scientists the benefits of association with leading

scientists
6
. The Shapley value approach of [27] does not distinguish

between these two scenarios, as it gives equal credit to all authors

of a joint paper, irrespective of "leadership status". Recent work,

e.g. Hirsch’s alpha index [24], has attempted to quantify "scientific

leadership". It is possible to define a measure based on the reliability

extension of credit allocation games that factors out the "well con-

nectedness" of an individual from its score
7
. Given such a measure,

5
We do not condone and caution against the real-life use of such crude quantitative

metrics for tasks like the one described in this example or our models.

6
One could argue, of course, that such an association itself reflects positively on the

scientist. But the opposite argument, that prestige drives scientific inequality, has

recently been substantiated by real data [37] and is, at the very least, hard to ignore.

7
The measure computes appropriate values of reliability probabilities, the lower the

probability the more of a "scientific leader" a coauthor is; we are currently investigating

the practicality of such an approach.
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the previous question, that of finding the top-k co-authors is still

interesting, as it identifies the most (genuinely) fruitful collaborations
of a given author, irrespective of status. This is modeled by the power

index attack problem in credit allocation games.

A Y B

X1 X2

X3

X4

X5 X6

P : 5

C : 4

P : 8

C : 8

P : 5

C : 4

P : 5

C : 3

P : 5

C : 3

P : 5

C : 4

P : 5

C : 3

P : 5

C : 3

Figure 1: The scenario (from [38]) in Example 2.1

3 TECHNICAL DETAILS
We will be working in the framework of Algorithmic Cooperative

Game Theory, see [12] for a readable introduction.

We will make use of notation f |ba as a shorthand for f (b) − f (a).
Given graph G = (V ,E) and vertex v ∈ V , we will denote by

N (v ) the set of neighbors of V and by
EN (v ) = {v} ∪ N (v ). Given

S ⊆ V , we denote by δ (S ) the set of nodes y ∈ V \ S such that

there exists x ∈ S , (x ,y) ∈ E. We generalize the setting above to the

case when G is a weighted graph, i.e. there exists a weight function
w : E → R+. Given set S ⊆ V and integer r ≥ 1 we define Bw (S ,r ),
the ball of radius r around S , to be the set Bw (S ,r ) = {x ∈ V : (∃y ∈
S ) s.t. dw (x ,y) ≤ r }. We may omitw from this notation when it is

simply the graph distance in G. Also, given "cutoff" distance dcut
we define Ncut (x ) = B ({x },dcut ).

We will deal with cooperative games with transferable utility,

that is pairs Γ = (N ,v ) where N is a set of players and v : P (S ) →
R+ is a value function under the partial sets of S . If S ⊆ N is a set of

players, v (S ) is the value that players in coalition S can guarantee

for themselves irrespective of the other players’ participation.

Although we could prove similar results for other power indices,

e.g. the Banzhaf value, in this paperwe restrict ourselves to the Shap-
ley value. This index measures the portion of the grand coalition

value v (N ) that a given player x ∈ N could fairly request for itself.

It has the formula [12] Sh[v](x ) = 1

n! ·
∑
π ∈Sn [v (S

x
π ∪{x })−v (S

x
π )],

where Sxπ = {π [i]|π [i] precedes x in π } and Sn is the set of permu-

tation.

We are concerned with two classes of cooperative games. The

first one arose from efforts to define game-theoretic notions of

network centrality [1, 35, 43, 44]. We define these games as follows:

- Game ΓNC1
is specified by its value function vNC1

(S ) =
|S ∪ δ (S ) |.

- Given integer k ≥ 1, game ΓNC2
is specified by its value

function vNC2
(S ) = |S ∪ {x < S s.t. |N (x ) ∩ S | ≥ k }|.

- In game ΓNC3 graphG is weighted. We are also given a posi-

tive "cutoff distance"dcut .We give the characteristic function

vNC3
by vNC3

(S ) = |B (S ,dcut ) |.

A second class of games, related to the example in [38] is that

of influence-attribution games, formally defined by Karpov [27].

A credit-attribution game is formalized by a set of authors N =
{1, ...,n} and a set of publications P = {P1, ...,Pm }. Each paper Pj is
naturally endowed with a set of authors Authj ⊆ N and a quality

score w j ∈ R+. In real-life scenarios the quality measure could be 1

(i.e. we simply count papers), a score based on the ranking of the

venue the paper was published in, the number of its citations, or

even some iterative, PageRank-like variant of the above measures.

- The full credit game ΓFC is specified by its value function

vFC (S ) which is simply the sum of weights of papers whose

authors’ list contains at least one member from S .
- The full obligation game ΓFO is specified by its value function

vFO (S ) which is the sum of weights of papers whose authors

are all members of S .
Denote by Papx the set of papers of x , and by CA(x ) the set of

co-authors of x , i.e. the set of players l for which there exists a

k ∈ Papx ∩ Papl . If l ∈ CA(x ) denote byC (x ,l ) =
∑

k ∈Papx∩Papl
wk

the joint contribution of x ,l .
Reliability extension and attackmodelsWewill be working

within the framework of reliability extension of games, first defined

in [6] and further investigated in [9]. The reliability extension of

cooperative game G = (N ,v ) with parameters (p1,p2, . . . ,pn ) is
the cooperative game Γ = (N ,v ) with v (S ) =

∑
T ⊆S

v (T ) · ΠT ,S ,

where ΠT ,S = (
∏
i ∈T

pi ) · (
∏

i ∈S\T
(1 − pi )).

A useful result about these quantities is:

Claim 1. Let S ⊆W . We have

∂ΠS,W

∂pj
=




ΠS\j,W \j if j ∈ S ,
−ΠS,W \j if j ∈W \ S , and
0, if j <W

We will consider in the sequel the following two attack models:

(1). fractional attack: In this type of attack every node j different
from the attacked node x has a baseline reliability p∗j ∈ (0,1].

We are allowed to manipulate the reliability of each such

node j , x by changing it from p∗j to an arbitrary value p.

To do so we will incur, however, a cost uj (p). We assume

that cost function uj (·) is defined and has an unique zero
8
at

p = p∗j , is decreasing and linear on [0,p∗j ] and increasing and

linear on [p∗j ,1] (Figure 2). That is: for every player j , x

there exist values Lj ,Rj > 0 such that

uj (p) =




Lj (p
∗
j − p), if p < p∗j ,

0, if p = p∗i ,
Rj (p − p

∗
j ), if p > p∗j .

(2). removal attack: In this type of attack we are only allowed

to change the reliability of any node j (different from the

targeted node x ) from p∗j to 0. To do so will incur a cost c j .

A basis for fractional attacks The following simple result will

be used to analyze fractional attacks in network centrality games:

Lemma 3.1 ("IMPROVING SWAPS"). Let D be an open set in Rn ,
let x = (x1, . . . ,xn ) ∈ D and f : D → R be an analytic function. As-
sume 1 ≤ i, j ≤ n are indices such that ∂f (x1, ...,xn )

∂xi
>

∂f (x1, ...,xn )
∂x j

.

Define xi,j (ϵ ) = (xk (ϵ )), with

xk (ϵ ) =



xk + ϵ , if k = j,
xk − ϵ , if k = i,
xk , otherwise.

(1)

8
There is no cost for keeping the baseline reliability.
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Then there exists ϵ0 > 0 such that function д : [0,ϵ0] → R, д(ϵ ) =
f (xi,j (ϵ )) is monotonically decreasing.

In other words, to minimize function f one could decrease the

variables with the largest partial derivative, while symmetrically

increasing a smaller one.

Proof. By the chain rule д′(0) =
n∑

k=1

∂f (x1, ...,xn )
∂xk

∂xk (ϵ )
∂ϵ |ϵ=0

=
∂ f (x1, . . . ,xn )

∂x j
−
∂ f (x1, . . . ,xn )

∂xi
< 0.

Sinceд′ is continuous,д′ is strictly negative on some interval [0,ϵ0].
The result follows. □

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

p∗i = 0.4

p

u
i(
p
)

Figure 2: Shape of utility functions in fractional attacks.

4 CLOSED-FORM FORMULAS
The basis for our manipulation of network centralities is the follow-

ing characterization of the Shapley value of the reliability extension:

Theorem 4.1. The Shapley values of the reliability extensions of
network centrality games ΓNC1

,ΓNC2
,ΓNC3

have the formulas:

Sh[vNC1
](x ) = px

∑
y∈FN (x )

S ⊆EN (y )\x

1

|S | + 1
ΠS,EN (y )\x

Sh[vNC2
](x ) = px [

∑
y∈N (x )

∑
S⊆FN (y )\x
|S | ≥k−1

( |S | + 1 − k )

|S |( |S | + 1)
ΠS,EN (y )\x+

+

∑
S ⊆N (x )

k

|S | + 1
ΠS,N (x )]

Sh[vNC3
](x ) = px

∑
y∈N̂ (x )

S ⊆GNcut (y )\x

1

|S | + 1
ΠS, GNcut (y )\x

As for credit atribution games, the corresponding result is

Theorem 4.2. The Shapley values of the reliability extensions of
ΓFC ,ΓFO with probabilities (p1,p2, . . . ,pn ) have the formulas

Sh[vFC ](x ) = px ·
∑

k ∈Papx

wk ·
[ ∑
S ⊆Authk \{x }

Π∅,S

(nk − |S |)
(nk
|S |

) ] (2)

whereAuthk is the set of coauthors of paper k and nk = |Authk |, and

Sh[vFO ](x ) =
∑

k ∈Papx

wk
nk
· ΠAuthk ,Authk (3)

5 ATTACKING NETWORK CENTRALITIES
The next result follows from Theorem 4.1 and Claim 1:

Corollary 5.1. In the reliability extensions of the centrality games
ΓNC1

,ΓNC2
,ΓNC3

, the Shapley values of player 1 are monotonically
decreasing functions of distance-two neighbors’ reliabilities (and do
not depend on other players).

Proof. Deferred to the full version. □

The previous corollary shows that for network centrality games

no removal attack is beneficial:

Theorem 5.2. No removal attack on the centrality of a player in
games ΓNC1

,ΓNC2
,ΓNC3

can decrease its Shapley value.

Fractional attacks on specific networks Given that removal

attacks are not beneficial, we now turn to fractional attacks. The

objective of this section is to show that the analysis of optimal

fractional attacks is often feasible. Since the graphs in this section

are fairly symmetric, we will assume (for these examples) that the

slopes of all utility curves are identical. That is, there exist positive

constants L,R such that if i , j are different agents then Li = Lj = L
and Ri = Rj = R (though, of course, baseline probabilities p∗i and
p∗j may differ). The graphs we are going to be concerned with are

the complete graph Kn , the star graph Sn (where node 1 is either

the center or an outer node) and the n-cycle Cn (Figure 3).

1

p∗
2

p∗
3

p∗
4

p∗
5

p∗
6

p∗
2

p∗
3

p∗
4

p∗
5

p∗
6

p∗
7

1

p∗
3

p∗
4

p∗
5

p∗
6

p∗
7

p∗
3

p∗
2

1p∗n

p∗n−1

Figure 3: Target topologies for fractional attacks.

Note that, when G = Kn or G = Sn , pairwise Shapley value

attacks are trivially impossible: indeed, these graphs have diameter

at most two. Since all distance-two neighbors influence the Shapley

value of a given player, all nodes are exempt from attacks.

On the other hand, for these topologies it turns out that the best

attack on Shapley value of player x is to increase the reliabilities of

its neighbors in the descending order of their baseline reliabilities:

Theorem 5.3. Let G be either the complete graph Kn with n ver-
tices. or the star graph with n vertices Sn centered at node x = 1.
To optimally attack the centrality of x in the reliability extension of
ΓNC1

use the following algorithm:

- Consider nodes 2, . . . ,n in the decreasing order of their baseline
reliabilities, breaking ties arbitrarily. p∗sor ted (2) ≥ p∗sor ted (3) ≥

. . . ≥ p∗sor ted (n) .

- While the budget allows it, increase to one (if not already
equal to 1) the probabilities psor ted (i ) , starting with i = 2 and
successively increasing i .
- If the budget no longer allows increasing psor ted (i ) to one,
increase it as much as possible.
- Leave all other probabilities to their baseline values.

If, on the other hand, G = Sn centered, say, at node 2, to optimally
attack the centrality of node x = 1, the algorithm changes as follows:
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- Consider nodes 2, . . . ,n in the following order: node 2, followed
by nodes 3, . . . ,n sorted in decreasing order of their baseline reli-
abilitiesp∗sor ted (3) ≥ . . . ≥ p∗sor ted (n) , breaking ties arbitrarily.
Denote the new order by Q .
- Follow the previous greedy protocol, increasing baseline proba-
bilities up to one (if allowed by the budget) according to the new
ordering Q .

Similar statements hold for game ΓNC2
, and for ΓNC3

for large
enough values of parameter dcut .

In the previous examples the optimal attack involved a deter-

mined node targeting order, which privileged direct neighbors and

could depend on baseline reliabilities but was independent of the

value of the budget. None of this holds in general: as the next result

shows, on graph Cn the optimum can be computed by taking the

best of four node targeting orders. The optimum may lack the two

previously discussed properties of optimal orders:

- in optimal attacks one should sometimes target a distance-

two neighbor (3 or n-1) before targeting both of x = 1’s

neighbors (2 and n, see Figure 3).
- the order (among the four) that characterizes the optimum

may depend on the budget value B as well. Formally:

Theorem 5.4. Let P ,Q ,R,S be the vectors [2,n,n − 1,3], [2,n −
1,n,3], [n,3,2,n − 1], [n,2,3,n − 1], respectively. Let SolP ,SolQ ,SolR ,
SolS be the configurations obtained by increasing in turn (as much as
possible, subject to the budget B) the reliabilities of nodes 2,3,n − 1,n
in the order(s) specified by P ,Q ,R,S , respectively. Then

a. The best of SolP ,SolQ ,SolR ,SolS is an optimal attack on the
centrality of x = 1 in game ΓNC1

on the cycle graph Cn .
b. There exist values of p∗

2
,p∗

3
,p∗n−1,p

∗
n s.t. SolP is optimal for all

values of B (by symmetry a similar statement holds for SolS ).
c. There exist values of p∗

2
,p∗

3
,p∗n−1,p

∗
n and an nonempty open

interval I for the budget B such that SolQ is an optimum for
all B ∈ I (by symmetry a similar statement holds for SolR ).

6 ATTACKS IN CREDIT ATTRIBUTION
In this section we study removal attacks in credit attribution games.

Interestingly, while the Shapley values have identical formulas in

ΓFC ,ΓFO [27], the two games are not similar with respect to attacks.

Indeed, similarly to the case of network centrality, we have:

Theorem 6.1. No removal attack can decrease the Shapley value
of a given player in a full credit attribution game.

Proof. At first, this seems counterintuitive, as it would seem to

contradict Example 2.1. The answer is that this example does not
correspond to the full credit game, but to the full obligation one: in
game ΓFC a player does not lose credit for a paper due to removal

of a coauthor; in fact its Shapley value will increase, since the credit

for the paper divides among fewer coauthors. It is in ΓFO where

players may lose credit as a result of coauthor removal. □

This difference between ΓFC and ΓFO is evident with respect to

attacks: As the next result shows, in full-obligation games, finding

optimal removal attacks can simulate a well-known hard combina-

torial problem:

Theorem 6.2. The budgeted maximum coverage problem (which
is NP-complete) reduces to minimizing the Shapley value of a given
player in the full-obligation game (under removal attacks).

Proof. Deferred to the full version. □

Fractional attacks The following is a simple consequence of

the formulas in Theorem 4.2 and Claim 1 shows that optimal attacks
are different in games ΓFC and ΓFO irrespective of the topology of the
coauthorship hypergraph: in the first case we need to increase the

reliability of x ’s coauthors, in the other case we aim to decrease it:

Theorem 6.3. In the reliability extensions of the credit allocation
games ΓFC ,ΓFO the Shapley value of player x is a decreasing (respec-
tively increasing) function of coauthors’ reliabilities (and does not
depend on other players).

Optimal attacks can be explicitly described in the particular

scenario when, just as in Example 2.1, each paper has exactly two

authors (a situation that corresponds, under the full obligation

model, to induced subgraph games). It turns out that the relevant
quantity is the ratio between the score of coauthors’ joint contribution
with the attacked node and its marginal cost:

Theorem 6.4. To optimally decrease the Shapley value of node x
in game ΓFC in the two-author special case:

(a). Sort the coauthors l of x in the decreasing order of the frac-
tions C (x,l )

R (l ) , breaking ties arbitrarily.
(b). While the budget allows it, for i = 1, . . . |CA(x ) |, increase
to 1 the probability of the i’th most valuable coauthor.
(c). If the budget does not allow increasing the probability of the
i’th coauthor up to 1, increase it as much as possible.
(d). Leave all other probabilities to their baseline values.

Corollary 6.5. In the setting of Theorem 6.4, to optimally solve
the pairwise Shapley value attack problem for x ,y, run the algorithm
in the Theorem only on those z that are coauthors of x but not of y.

As for game ΓFO , the optimal attack is symmetric. Since we are

decreasing probabilities, we will be using fractions
C (x,l )
L(l ) instead:

Theorem 6.6. To optimally decrease the Shapley value of node x
in the full obligation game ΓFO in the two-author special case:

(a). Sort the coauthors of x in the decreasing order of the fractions
C (x,l )
L(l ) , breaking ties arbitrarily.

(b). While the budget allows it, for i = 1, . . . |CA(x ) |, decrease
to 0 the probability of the i’th most valuable coauthor.
(c). If the budget does not allow decreasing the probability of the
i’th coauthor up to 0, decrease it as much as possible.
(d). Leave all other probabilities to their baseline values.

Corollary 6.7. In the setting of Theorem 6.6, to solve the pairwise
Shapley value attack problem for players x ,y, run the algorithm in
the Theorem only on those z that are coauthors of x but not of y.
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7 PROOF HIGHLIGHTS
In this section we present some of the proofs of our results. Some

other proofs are included in the Appendix, others are deferred to

the full version of the paper, to be posted on arxiv.org:

7.1 Proof of Theorem 4.1
We prove the formula for the first game only. Similarly to [35],

the proofs for the other two games are completely analogous, and

deferred to the full version. Define, for y ∈ V ,W ⊆ V

fy (W ) =

{
1, if y <W ∪ δ (W ),
0, otherwise.

A simple case analysis proves that, for everyW ⊆ V , vNC1
(W ∪

{x }) −vNC1
(W ) =

∑
y∈EN (x ) fy (W ).We therefore have

Sh[vNC1
](x ) = Eπ ∈Sn [vNC1

(Sxπ ∪ {x }) −vNC1
(Sxπ )] = Eπ ∈Sn [px ·∑

W ⊆Sxπ

[vNC1
(W ∪ {x }) −vNC1

(W )] · ΠW ,Sxπ ] = pxEπ ∈Sn

∑
W ⊆Sxπ∑

y∈EN (x )

fy (W ) · ΠW ,Sxπ = pxEπ ∈Sn

∑
y∈EN (x )

∑
W ⊆Sxπ

fy (W ) · ΠW ,Sxπ

We now introduce two notations that will help us reinterpret the

previous sum: givenW ⊆ V , denote byAlive (W ) the set of nodes in
W that are alive under the reliability extension model. Also, given

permutation π ∈ Sn andW ⊆ V , denote by Firstπ (W ) the element

ofW that appears first in enumeration π . With these notations

Sh[vNC1
](x ) = px

∑
y∈EN (x )

Prπ ∈Sn [y < Alive (S
x
π ) ∪ δ (Alive (S

x
π ))]

= px
∑

y∈EN (x )

Prπ ∈Sn [x = Firstπ (EN (y) ∩Alive (V )) |x ∈ Alive (V )]

If S = (EN (y) \ {x }) ∩Alive (V ) then the conditional probability that

x is Firstπ (S ∪ {x }), given that x is alive, is
1

|S |+1 . We thus get the

desired formula.

7.2 Proof of Theorem 4.2
Denote, for a set of authors C , by PapC = ∪l ∈CPapl the set of

papers with at least one author in C . We decompose function vFC
as vFC (·) =

∑
k wkvk (·) where

vk (C ) =

{
1, if k ∈ PapC
0,otherwise.

(4)

Thus vFC (C ) =
∑
R⊆C

vFC (R)ΠR,C =
∑
R⊆C

ΠR,C
∑
k

wkvk (R) =

=
∑
k

∑
R⊆C

ΠR,Cwkvk (R) =
∑
k

wkvk (C )

which means that we can decompose vFC =
∑
k wkvk , and

the Shapley value of vFC decomposes as well Sh(vFC ) =
∑
k wk ·

Sh(vk ), and similarly for vFO . On the other hand

Sh[vk ](x ) =
1

n!

∑
π ∈Sn

[vk (S
x
π ∪ {x }) −vk (S

x
π )]

Given set A of authors,

vk (A ∪ {x }) −vk (A) =
∑

R⊆A∪{x }

vk (R)ΠR,A∪{x } −
∑
R⊆A

vk (R)ΠR,A

= (1 − px )
∑

R⊆A\x

vk (R)ΠR,A\{x } + px
∑

R⊆A\x

ΠR,Avk (R ∪ {x })

−
∑
R⊆A

ΠR,Avk (R) = px ·
∑
R⊆A

ΠR,A[vk (R ∪ {x }) −vk (R)]

Now vk (R ∪ {x }) −vk (R) is 1 if k ∈ Papx \ PapR , 0 otherwise. For
k < Papx ,vk (A∪{x })−vk (A) = 0. Otherwisevk (A∪{x })−vk (A) =
px ·

∑
R⊆A

k<PapR

ΠR,A .

We can interpret this quantity as the probability that the live

subset of A does not cover k , but x is live and does. Applying this

to the Shapley value we infer that Sh[vk ](x ) is the probability that

in a random permutation π the live subset of Sxπ does not cover k ,
but x is live and does.

Full credit model: There are nk ! permutations Ξ of indices in

Authk , each of them equally likely when π is a random permutation

in Sn . Given subset S ⊂ Authk \ {x }, the probability that Ξ starts

with S followed by x is
|S |!(nk−|S |−1)!

nk !
. Tomake x pivotal for paperk ,

none of the agents in S must be live. This happens with probability

Π∅,S . Given the above argument, we have

Sh[vk ](x ) = px ·
∑

S ⊆Authk \{x }

( |S |)!(nk − |S | − 1)!

nk !
· [
∏
l ∈S

(1 − pl )]

= px ·
∑

S ⊆Authk \{x }

Π∅,S

(nk − |S |)
(nk
|S |

) , hence
Sh[vFC ](x ) = px ·

∑
k ∈Papx

wk · [
∑

S ⊆Authk \{x }

Π∅,S

(nk − |S |)
(nk
|S |

) ] (5)

which is what we had to prove.

Full obligationmodel: For x to be pivotal for paper k , x and all

its coauthors inAuthk must all be live, and all elements ofAuthk \x
must appear before x in ordering π . This happens with probability

1

nk
· ΠAuthk ,Authk .

7.3 Proof of Theorem 5.3
First of all, the following claim holds for all graphs G:

Claim 2. The minimum of function z → Sh[vNC1
](1) |z exists

and is reached on some profile (pi ) with p∗i ≤ pi ≤ 1.

Proof. Function z → Sh[vNC1
](1) |z is continuous and the set

[0,1]n is compact, so the minimum is reached. Assuming some

pj < p∗j , we could increase pj up to p
∗
j , reducing total cost. This does

not increase (and perhaps further decreases) the Shapley value. □

Next, we (jointly) prove cases G = Kn and G = Sn with x =
1 being a center, since the proofs are practically identical. The

remaining case (K = Sn , x = 1 not a center) is deferred to the

Appendix. We start with the following

Lemma 7.1. For G = Kn or G = Sn , j , l ∈ V (G ) \ 1 and any
probability profile p = (p1, . . . ,pn ) ∈ (0,1]n ,

siдn
( ∂Sh[vNC1

](1)

∂pj
|p −
∂Sh[vNC1

](1)

∂pl
|p
)
= siдn(pj − pl )
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Proof. Deferred to the full version. □
We first prove that in the optimal solution on these graphs no

two variables could assume equal values, unless both equal to the

endpoints of their restricting intervals:

Lemma 7.2. In the setting of Theorem 5.3, suppose p = (p1, . . . ,pn )
is such there is are indices 2 ≤ i , j ≤ n with 0 < pi = pj < 1.
Then there exists ϵ0 > 0 such that for every ϵ ∈ [−ϵ0,ϵ0], ϵ , 0,
Sh[vNC1

](1) |pi,j (ϵ ) < Sh[vNC1
](1) |p , (where pi,j (ϵ ) is defined as in

equation (1)).

Proof. Deferred to the full version. □

Now we prove:

Claim 3. In the optimal solution there is at most one index i1 with
pi1 ∈ (p∗i1 ,1). In other words, in the optimal solution some probabilities
are increased up to 1, some ae left unchanged to their baseline values,
and at most one variable is increased to a value less than 1.

Proof. Suppose there were two different indices i1 , i2. We

must have pi1 = pi2 , or, by Lemma 3.1, one could decrease the Shap-

ley value by increasing the larger one and symmetrically decreasing

the smaller one. But this is impossible, due to Lemma 7.2. □

Note that the greedy solution Γ has the structure from Claim 3

and that any permutation of OPT on variables p2, . . . ,pn has the

same Shapley value as OPT (since Kn ,Sn have this symmetry).

We compare the vectors Γ,OPT , both sorted in decreasing order.

Our goal is to show that these sorted versions are equal. With-

out loss of generality, we may assume that OPT creates the same

ordering on variables as the p∗i ’s (and Γ), when considered in de-

creasing sorted order (we break ties, if any, in the same way). In-

deed, if there were indices i, j such that p∗sor ted (i ) ≥ p∗sor ted (j )
but psor ted (i ) < psor ted (j ) then, since psor ted (j ) > psor ted (i ) ≥
p∗sor ted (i ) ≥ p∗sor ted (j ) , we could simply swap values psor ted (i )
and psor ted (j ) and obtain another legal, optimal solution.

If Γ were different from OPT , since Greedy increases the largest

variables first, there must be variables x ,y such that Γx ≥ Γy ,
Γx > px and Γy < py . Since Γ and OPT have the same ordering of

variables, we also must have in fact px ≥ py , i.e. 1 ≥ Γx > px ≥
py > Γy ≥ p∗y . But then, using either Lemma 3.1 (if px , py ) or

Lemma 7.2 (otherwise) we could further improveOPT by increasing

px and symmetrically decreasing py , a contradiction.

7.4 Proof of Theorem 5.4
A simple computation shows that for G = Cn

Sh[vNC1
](1) = p1 (

p2pn + p2p3 + pn−1pn
3

−
p3 + pn−1

2

−p2−pn+3).

As p1 does not influence any attack on itself, w.l.o.g. we will

assume p1 = 1. We need to minimize the above quantity, subject to

p2 + p3 + pn−1 + pn = B + p∗
2
+ p∗

3
+ p∗n−1 + p

∗
n ,p
∗
i ≤ pi ≤ 1.

We now prove a result somewhat similar to Claim 3. However, now

we will only interdict certain patterns.

Claim 4. In an optimal solution it is not possible that p∗k < pk < 1,
p∗l < pl < 1 when:

a. k = 2, l = n − 1 (and, symmetrically, k = 3, l = n). In fact,
in this case we have the stronger implication pn−1 > p∗n−1 ⇒
p2 = 1. Symetrically, p3 > p∗

3
⇒ pn = 1.

b. k = 2, l = n.
c. k = 2, l = 3 (and, symmetrically, k = n, l = n − 1.) In the

case when p3+pn
3
≤

p2
3
− 1

2
we have the stronger implication

p3 > p∗
3
⇒ p2 = 1. Symetrically, in the case when p2+pn−1

3
≤

pn
3
− 1

2
, pn−1 > p∗n−1 ⇒ pn = 1.

Proof. Suppose there were two such indices k ,l . We must also

have

∂Sh[vNC
1
](1)

∂xk
=

∂Sh[vNC
1
](1)

∂xl
, otherwise we could decrease

the Shapley value using Lemma 3.1. We reason in all cases by

contradiction:

a. We prove directly the stronger result. Suppose p2 < 1. We have

∂Sh[vNC
1
](1)

∂x2
=

p3+pn−1
3

− 1 ≤
p3
3
− 2

3
<

p3
3
− 1

2
=

∂Sh[vNC
1
](1)

∂xn−1
.

So we can apply Lemma 3.1 to p2 and pn−1, further decreasing the

Shapley value as we increase p2 and decrease pn−1.
b. Equality of partial derivatives can be rewritten as p2 + pn =

p3 + pn−1. An easy computation (which uses this equality) shows

that Sh[vNC1
](1) |

pn,2 (ϵ )
p = − ϵ

2

3
. But then it means that one could

further decrease the Shapley value of player 1, hence we are not at

an optimum, a contradiction.

c. As in the proof of a.
p3+pn−p2

3
− 1

2
=

∂Sh[vNC
1
](1)

∂x2
−
∂Sh[vNC

1
](1)

∂x3
= 0, otherwise we could use Lemma 3.1 with p2,p3 to decrease the

Shapley value. An easy computation (which uses this equality)

shows that Sh[vNC1
](1) |

p3,2 (ϵ )
p =

ϵ (pn−p2+p3 )
3

− ϵ
2
− ϵ 2

3
= − ϵ

2

3
< 0.

But then one could further decrease the Shapley value of 1, a con-

tradiction.

□
We use Claim 4 to prove Theorem 5.4:

a. The conclusion of this claim is that the only case when there

could exist two values pk ,pl strictly between their baseline values

and 1 is k = 3,l = n − 1 (or vice-versa), a case when we must

further have p2 = pn = 1. Thus the optimal solution is the best

of the configurations obtained by greedily increasing probabilities

(up to 1, if the budget will allow it) in one of the orders [2,n,3,n −
1], [2,n,n−1,3], [2,n−1,n,3], [n,3,2,n−1], [n,2,3,n−1], [n,2,n−1,3].
An easy computation shows that the first two orders are equally

good for all possible budget values B, and so are the last two. So, in

the end we only have to compare the four orders P ,Q ,R,S to find

an optimum, proving the first part of the theorem.

b,c: Symmetry between 2,3 and n,n-1 reduces the proof of these

two points to analyzing the “winners” among SolP ,SolQ ,SolR , SolS ,
and proving that, under suitable conditions, it belongs either to

{SolP ,SolS } (point b.) or to {SolQ ,SolR } (point c.).
If we start by increasing p2 by ϵ , the Shapley value decreases by

ϵ (1 −
p∗
3
+p∗n−1
3

). We will call the number 1 −
p∗
3
+p∗n−1
3

the speed of
the decrease. It is maintained while p2 increases from p∗

2
to 1, i.e.

over a segment (interval) of size 1 − p∗
2
. There are four segments,

corresponding to the four variables being increased. The table in

Figure 4 summarizes the effect of variable increases on the decrease

of the Shapley value of node 1. Using this table it is easy to compare

the four permutations with respect to this decrease:

P versus Q: Since they use the same variable, ∆P = ∆Q through-

out the first segment. At the (common) end of the third segment, a
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Perm, Sp1 sz1 Sp2 sz2 Sp3 sz3 Sp4 sz4

P 1 −
p∗
3
+p∗n
3

1 − p∗
2

2−p∗n−1
3

1 − p∗n 1/6 1 − p∗n−1 1/6 1 − p∗
3

Q 1 −
p∗
3
+p∗n
3

1 − p∗
2

1

2
−

p∗n
3

1 − p∗n−1 1/3 1 − p∗n 1/6 1 − p∗
3

R 1 −
p∗
2
+p∗n−1
3

1 − p∗n
1

2
−

p∗
2

3
1 − p∗

3
1/3 1 − p∗

2
1/6 1 − p∗n−1

S 1 −
p∗
2
+p∗n−1
3

1 − p∗n
2−p∗

3

3
1 − p∗

2
1/6 1 − p∗

3
1/6 1 − p∗n−1

Figure 4: Dynamics of the decrease of the Shapley value.

simple computation yields ∆P −∆Q = 0, and since P ,Q use identical

fourth segments, ∆P = ∆Q throughout their fourth segment.

As for the second/third segments, if p∗n < 1 and p∗n−1 − p
∗
n >

1

2

then throughout the common portion of the second segment ∆P <
∆Q . Afterwards the difference will start shrinking, and will become

positive after a certain value λP,Q where ∆P = ∆Q . Note that at

the end of the second segment of Q , ∆P − ∆Q =
1−p∗n−1

6
≥ 0, so

λP,Q is in the second segment of P and the third of Q .
To determine λP,Q write λP,Q = 1−p∗

2
+ 1−p∗n−1 + µP,Q . We have:

2−p∗n−1
3

(1 − p∗n−1 + µP,Q ) = ( 1
2
−

p∗n
3
) (1 − p∗n−1) +

µP ,Q
3

, or µP,Q =

p∗n−1 − p
∗
n −

1

2
hence λP,Q =

3

2
− p∗

2
− p∗n .

The conclusion is that ∆P ≥ ∆Q for all budgets if p∗n−1 −p
∗
n ≤

1

2
.

Otherwise ∆P ≥ ∆Q , except for B ∈ IP,Q := (1 − p∗
2
, 3
2
− p∗

2
− p∗n ).

Similar conclusions hold for comparing S versus R.

P versus S: At the (common) end of their second segment ∆P −

∆S = (1 − p∗n ) (
p∗
2
−1

3
) + (1 − p∗

2
) (

1−p∗n
3

) = 0. So ∆P = ∆S , and this

prevails throughout the third and fourth segments.

As for the first and second segment, ∆P − ∆S ≤ 0 if p∗
3
+ p∗n ≥

p∗
2
+p∗n−1, ∆P −∆S ≥ 0 if p∗

3
+p∗n ≤ p∗

2
+p∗n−1. Hence ∆P ≤ ∆S for

all budgets if p∗
3
+ p∗n ≥ p∗

2
+ p∗n−1. Otherwise ∆P ≥ ∆S .

Summing up:

- If p∗n−1 − p
∗
n < 1/2, p∗

3
− p∗

2
< 1/2, p∗

3
+ p∗n ≤ p∗

2
+ p∗n−1, then

∆P ≥ ∆Q , ∆S ≥ ∆R ,∆P ≥ ∆S for all budgets, so P is optimal. If

the last condition is reversed then S is optimal.

- If p∗n−1 − p∗n > 1/2, p∗
3
− p∗

2
> 1/2 then ∆P ≤ ∆Q on IP,Q ,

∆S ≤ ∆R on IS,R . So the best ofQ ,R is an optimum on IP,Q ∩ IS,R .
SinceQ ,R are piecewise linear functions, one of them is better than

the other one on an open interval.

7.5 Proof sketch of Theorems 6.4 and 6.6
The two proof are very similar, so we only present the one of Theo-

rem 6.4. Particularizing formula 2 to the case of induced subgraph

games, we infer that the Shapley value of player x has the formula

Sh[vFC ](x ) = px ·
∑

l ∈CA(x )
C (x ,l ) ·

2−pl
2

(*).

We claim that minimizing Sh[vFC ](x ) is equivalent to solving

the following fractional knapsack problem:




max[
∑

l ∈CA(x )
C (x ,l ) (1 − p∗l ) · yl ]∑

l ∈CA(x )
Rl (1 − p

∗
l ) · yl =

∑
l ∈CA(x )

Rl · (1 − p
∗
l ) − B.

0 ≤ yl ≤ 1,∀l ∈ CA(x )

(6)

Indeed, by formula (*) it is only efficient to increase the reliabil-

ity probabilities of x ’s authors from p∗l to some pl ∈ [p∗l ,1]. If

we introduce variables yl ∈ [0,1] by equation 1 − yl =
pl−p∗l
1−p∗l

,

(or, equivalently, yl =
1−pl
1−p∗l

), the cost of such move is Rl · (p
∗
l −

pl ) = Rl · (1 − yl ) (1 − p
∗
l ). The total costs must add up to B, so

∑
l ∈CA(x )

Rl · (1 − yl ) (1 − p
∗
l ) = B, which is equivalent to system (6).

The minimization of the Shapley value is easily seen to correspond

to the maximization of the objective function of (6).

Now it is well-known that the greedy algorithm that considers

variables yl in decreasing order of their cost/benefit ratio finds an

optimal solution to problem (6). Reinterpreting this result in our

language we get the algorithm described in Theorem 6.4.

8 RELATEDWORK9

First of all, network interdiction (see e.g. [41, 42]) is a well-established
theme in combinatorial optimization. Our removal model can be

seen as a special case of node interdiction.

Results on the reliability extension of a cooperative game [5, 6, 9,

10, 34] are naturally related. So is the rich literature onmanipulation,
both in non-cooperative and coalitional settings [2, 21, 29, 45–47,

49] and bribery [20] in voting. Our framework covers both scenarios,

that in which an external perpetrator bribes agents to change their

reliabilities, and that in which this is done by a coalition of agents.

A lot of work has been devoted recently to measuring and charac-

terizing synergies between players in multi-agent settings [30, 31, 39].

Synergies between players in cooperative games are obviously rel-

evant to the theme of this paper: synergic agents’ participation

to coalitions increases the Shapley value of the given agent. The

nature of some of our results (Theorems 5.3, 6.4 and 6.6), that target

nodes in a fixed order, provide a concrete way for ranking synergies

between these nodes and the attacked one.

9 CONCLUSIONS AND OPEN ISSUES
Our results have uncovered a rich typology of optimal attacks on

players’ power indices: Sometimes no attack is beneficial. Some-

times, the optimal attack is intractable, even when computing the

power indices is feasible. For fractional attacks, in many cases (but

not always) greedy-type approaches provide an optimal strategy.

An open question raised by our work is the complexity of fractional

attacks in general full-obligation credit attribution games. Moti-

vated by Theorem 6.2 we believe that even this version is intractable.

On the other hand we would like to see our framework applied to

more settings. They include bicooperative games [11], generalized

MC-nets [19], etc. Of special interest are cases when computing

the Shapley value is easy, e.g. voting games with super-increasing

weights [4], flow games on series-parallel networks [19], or games

with bounded dependency degree [26].

As for relative attacks, we propose studying a more realistic

bicriteria optimization version of the problem [40]: decrease as

much as possible the Shapley value of node x while not affecting

the Shapley value of node y by more than a certain amount D.
Finally, the related problem of increasing the power index of a

given node subject to budget constraints is also worth investigating.
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For reasons of space this section is only sketched.
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