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ABSTRACT

Hat guessing games have drawn a lot of attention among
mathematicians, computer scientists, coding theorists and
even the mass press, due to their relations to graph theory,
circuit complexity, network coding, and auctions. In this pa-
per, we investigate a new variant where there is exactly one
hat of each color and where each player may receive multiple
hats. Assume there are 𝑛 players and 𝑇 hats with different
colors. A dealer randomly places 𝑘 hats to each player and
holds 𝑇−𝑛𝑘 hats in hand. After observing the (colors of) hats
of other players but not those of themselves, the players shall
guess their colors simultaneously by a pre-coordinated strate-
gy. We present methods to compute the best strategy under
two common winning rules: all guesses are right or at least
one guess is right, and derive exact value of the maximum
winning probability for several cases. Especially, we introduce

a novel notion called Latin matching between
(︀
[2𝑛−1]
𝑛−1

)︀
and(︀

[2𝑛−1]
𝑛

)︀
and establish its connection to the solution of some

restricted cases. Here,
(︀
[2𝑛−1]
𝑛−1

)︀
(respectively,

(︀
[2𝑛−1]

𝑛

)︀
) denotes

the set of (𝑛− 1)-element (respectively, 𝑛-element) subsets
of {1, . . . , 2𝑛− 1}. Moreover, we show that some well-known
combinatorial results (e.g. the antipodal matching between
two symmetric layers of the subset lattice and the ordered
design 𝑂𝐷(𝑡, 𝑘, 𝑣) given in modern design theory) can be
applied to design explicit strategies in other cases. From our
results we observe an interesting phenomenon that a leader is
necessary for consensus but unnecessary for decentralization.
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1 INTRODUCTION

Hat guessing games have been studied extensively in recent
years due to their close relations to graph entropy, circuit com-
plexity, network coding, and auctions [6, 7, 12–14, 20, 21, 26].
In particular, some versions of hat guessing games are used
as toy problems in de-randomizing protocols in circuit com-
plexity and de-randomizing auctions in auction mechanisms
design, due to the innate similarities between these games
and the number-on-forehead models in complexity [3, 11] and
the bid-independent auctions [1, 4]. Other researchers are
attracted by these games because the optimal solutions of
several variants have unexpected connections to coding theo-
ry. For example, the solutions in [3, 11] can be constructed
from the well-known Hamming codes.

In this paper, we study a unique-supply hat guessing game
(defined below), which is a special case of the finite-supply
variant proposed and studied in [7, 12], in which the number of
hats are limited (which is more realistic). Unlike the original
version, best strategies based on combinatorial codes for this
variant have not been reported in prior work. Therefore,
investigating such strategies seems important at the moment
and will be the main agenda of this paper.

∙ Assume there are 𝑛 players and 𝑇 hats with different
colors 1, . . . , 𝑇 . (There is exactly one hat of each color;
in other words, the supply for hats of any specific
color is unique.) A dealer places 𝑘 hats to each of the
𝑛 players according to the uniform distribution, and
𝑑 = 𝑇 − 𝑛𝑘 ≥ 1 hats remain in the dealer’s hand.

∙ Each player knows the colors of hats of other players
but cannot see and has to guess all the 𝑘 colors he
or she receives. The answer of any player consists of
exactly 𝑘 different colors. The answer is right if all the
𝑘 colors are correct. All players guess simultaneously.

∙ The 𝑛 players act as a team. The team wins or loses,
not individuals. There are two different winning rules:
– All-right: The team wins if all players are right.
– One-right: The team wins if at least one is right.

∙ The parameters (𝑛, 𝑘, 𝑑) are known to the players (and
𝑇 = 𝑑 + 𝑛𝑘). No communication is allowed between
team members after the game starts. Communication
via wait as used in some hat puzzles [6] is also forbidden
because all players guess simultaneously. However, it is
permissible for them to discuss a strategy beforehand.

∙ The question is how to design the best cooperative
strategy to get the maximum winning probability.

Example 1.1. Assume (𝑛, 𝑘, 𝑑) = (2, 1, 2). If player 1 guess-
es color (of her own hat) as (𝐵 − 1) mod 4 after observing
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the hat color 𝐵 of its teammate, and player 2 guesses color
(of his own hat) as (𝐴 + 1) mod 4 after observing the hat
color 𝐴 of its teammate, this joint strategy is the best for
the all-right winning rule, as these two players either guess
right simultaneously or both make wrong guesses.

Our results. 1. We present general methods to compute the
best strategy for both winning rules, and prove exact values
of the maximum winning probability for all cases under the
one-right rule and some cases under the all-right rule.

2. We show that constructing explicit best strategies via
codes leads to some subtle combinatorial problems. Especially,
in one of our constructions (given in subsection 2.1), we

introduce a notion called Latin matching between
(︀
[2𝑛−1]
𝑛−1

)︀
and

(︀
[2𝑛−1]

𝑛

)︀
, which is worth to study in its own right. Here,(︀

[2𝑛−1]
𝑛−1

)︀
(respectively,

(︀
[2𝑛−1]

𝑛

)︀
) denotes the set of (𝑛 − 1)-

element (respectively, 𝑛-element) subsets of {1, . . . , 2𝑛− 1}.
(Yet our best strategy via codes does not always exist due to
the lack of the code for particular parameters 𝑛, 𝑘, 𝑑.)

3. We discuss the application of our best strategies in de-
randomization (in Section 4). Also, by comparing our best
strategies under two different rules, we discuss the necessity
of having a leader for making consensus in team cooperation.

A comparison of the models. A player in our game can infer
some information about his own color, e.g., 𝑐 is not his color
if he observes that color 𝑐 is placed to another player, whereas
in the unlimited-supply version a player knows nothing about
his color. Another major difference is that we allow 𝑘 ≥ 1
whereas the previous models only consider the case 𝑘 = 1.

1.1 Preliminary

Let 𝑣1, . . . , 𝑣𝑠 denote all the 𝑠 possible placements of hats,
where 𝑠 = 𝑇 !

𝑑!(𝑘!)𝑛
. For each player 𝑖 ∈ [𝑛], the number of his

or her possible observations is 𝑚 = 𝑠/
(︀
𝑘+𝑑
𝑑

)︀
. Denote his or

her possible observations by 𝑢𝑖,1, . . . , 𝑢𝑖,𝑚.
Define a bipartite graph 𝐻(𝑛, 𝑘, 𝑑) = (𝑈, 𝑉,𝐸) as follows:

𝑈 =
⋃︀𝑛

𝑖=1{𝑢𝑖,1, . . . , 𝑢𝑖,𝑚}, 𝑉 = {𝑣1, . . . , 𝑣𝑠}, and (𝑢𝑖,𝑗 , 𝑣𝑘) ∈
𝐸 if and only if placement 𝑣𝑘 leads to observation 𝑢𝑖,𝑗 . Clearly,

each vertex in 𝑈 has degree
(︀
𝑘+𝑑
𝑑

)︀
, and each vertex in 𝑉 has

degree 𝑛. More precisely, given any vertex 𝑣𝑘, there exists
exactly one 𝑗 for each 𝑖 ∈ [𝑛] so that 𝑣𝑘 is linked to 𝑢𝑖,𝑗 . For
example, see 𝐻(2, 1, 2) in the dashed box in Figure 1.

Denote 𝑉𝐺 = {𝑣1, . . . , 𝑣𝑠} and build a graph 𝐺(𝑛, 𝑘, 𝑑) =
(𝑉𝐺, 𝐸𝐺) as follows. (𝑣𝑘, 𝑣𝑙) ∈ 𝐸𝐺 if the distance between 𝑣𝑘
and 𝑣𝑙 is two in 𝐻(𝑛, 𝑘, 𝑑); equivalently, (𝑣𝑘, 𝑣𝑙) ∈ 𝐸𝐺 if there
exists a vertex 𝑢𝑖,𝑗 such that (𝑢𝑖,𝑗 , 𝑣𝑘) ∈ 𝐸 and (𝑢𝑖,𝑗 , 𝑣𝑙) ∈ 𝐸.
Intuitively, (𝑣𝑘, 𝑣𝑙) ∈ 𝐸𝐺 means that there exists a player
who cannot distinguish the two placements 𝑣𝑘 and 𝑣𝑙.

The subset lattice is the family of all subsets of [𝑇 ], partially
ordered by inclusion. The 𝑘-th layer of this lattice, denoted
by 𝒫𝑘, consists of all of the 𝑘-element subsets of [𝑇 ].

2 ALL-RIGHT WINNING RULE

Let 𝑝′max(𝑛, 𝑘, 𝑑) (or 𝑝′max when (𝑛, 𝑘, 𝑑) are clear) be the
maximum winning probability for the all-right winning rule.

x y

1A,2B

1A,3B

1A,4B

2A,1B

2A,3B

2A,4B

3A,1B

3A,2B

3A,4B

4A,1B

4A,2B

4A,3B

1B

2B

3B

4B

1A

2A

3A

4A

Player A
's 

observations

A
ll possible placem

ents

Player B
's 

observations

Figure 1: 𝐻(2, 1, 2). Players are denoted by 𝐴 and 𝐵.

1A,2B

1A,3B

1A,4B

2A,1B

2A,3B

2A,4B

3A,1B

3A,2B

3A,4B

4A,1B

4A,2B

4A,3B

Figure 2: 𝐺(2, 1, 2). Players are denoted by 𝐴 and 𝐵.

Proposition 2.1. 𝑝′max ≤ 1/
(︀
𝑘+𝑑
𝑑

)︀
.

Proof. Consider an arbitrary strategy 𝑆. The probability
that player 1 (we may consider any other player instead)

guesses right is 1/
(︀
𝑘+𝑑
𝑑

)︀
. This means that the probability

that all players are right is at most 1/
(︀
𝑘+𝑑
𝑑

)︀
using 𝑆. �

The next lemma gives a graph interpretation of the game.

Lemma 2.2. Let 𝛼(𝐺) be the cardinality of the maximum
independent (vertex) set of 𝐺. Then, 𝑝′max = 𝛼(𝐺(𝑛, 𝑘, 𝑑))/𝑠.
Moreover, the best strategy can be easily computed provided
that a maximum independent set of 𝐺(𝑛, 𝑘, 𝑑) is given.

Proof. Given an independent set 𝐼 of 𝐺(𝑛, 𝑘, 𝑑) (note
that each vertex in 𝐼 is a possible placement), we can de-
sign a strategy that wins all placements in 𝐼 as follows. For
each player, his or her observation (which is a vertex 𝑢𝑖,𝑗 in
𝐻(𝑛, 𝑘, 𝑑)) is linked to at most one node in 𝐼. He or she an-
swers this node, if any; and answers arbitrarily otherwise. On
the contrary, given any strategy, from its winning placements
we immediately obtain an independent set of 𝐺(𝑛, 𝑘, 𝑑). �

Example 2.3. (𝑛, 𝑘, 𝑑) = (2, 1, 2). We have 𝛼(𝐺(2, 1, 2)) =
4: a maximum independent set is drawn in Figure 2 (indicated
by the four solid circles). So, 𝑝′max = 4/12 by Lemma 2.2.
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By Lemma 2.2, computing 𝑝′max and the best strategy un-
der all-right winning rule reduces to computing the maximum
independent set of 𝐺(𝑛, 𝑘, 𝑑). Unfortunately, we have no idea
how to compute this set in polynomial time of 𝑠, or only derive
a formula for quantity 𝛼(𝐺(𝑛, 𝑘, 𝑑)), even though 𝐺(𝑛, 𝑘, 𝑑)
is highly symmetric (a vertex-transitive graph indeed).

One may guess that 𝑝′max = 1/
(︀
𝑘+𝑑
𝑑

)︀
. But this is not true

even for 𝑘 = 1. By computer programs [19] we verified that
𝐺(4, 1, 3) does not admit an independent set with size 𝑠/4,

which means 𝑝′max < 1/4 = 1/
(︀
𝑘+𝑑
𝑑

)︀
for (𝑛, 𝑘, 𝑑) = (4, 1, 3).

An outline of this section. Subsection 2.1 introduces
a novel notion called Latin matching and presents Latin
matchings of order 2, 3, and 5. Briefly, a Latin matching of

order 𝑛 is a perfect matching from
(︀
[2𝑛−1]
𝑛−1

)︀
to

(︀
[2𝑛−1]

𝑛

)︀
with

an additional property analogous to the property of Latin
square. Subsection 2.2 constructs a maximum independent
set of 𝐺(𝑛, 1, 𝑛−1) – i.e, it constructs an optimal strategy for
the case (𝑛, 𝑘, 𝑑) = (𝑛, 1, 𝑛−1) under all-right rule – based on
a Latin matching of order 𝑛. Subsection 2.3 proves two results
concerning the Latin matchings of higher orders. One states
that constructing cyclic Latin (see definition below) matching
is as hard as constructing the Steiner system 𝑆(𝑛 − 2, 𝑛 −
1, 2𝑛−2). The other states that the order of a Latin matching
must be prime. Subsection 2.4 discusses why we focus on the
case (𝑛, 1, 𝑛−1) and discusses other combinations of (𝑛, 𝑘, 𝑑).
Particularly, we use an ordered design [8, 10, 23] (which is a
kind of combinatorial design) to solve some cases of 𝑘 = 1.

2.1 Introduction of Latin Matchings

Definition 2.4. Assume 𝑓 is a perfect matching from
(︀
[2𝑛−1]
𝑛−1

)︀
to

(︀
[2𝑛−1]

𝑛

)︀
in the subset lattice (set 𝐴 can be mapped to 𝐴′ on-

ly if 𝐴 ⊂ 𝐴′). We say 𝑓 is of order 𝑛. Let 𝑓+({𝑖1, . . . , 𝑖𝑛−1})
denote the only element in 𝑓({𝑖1, . . . , 𝑖𝑛−1})−{𝑖1, . . . , 𝑖𝑛−1}.
We say 𝑓 is Latin if 𝑓+({𝑖1, . . . , 𝑖𝑛−1}) ̸= 𝑓+({𝑗1, . . . , 𝑗𝑛−1})
whenever {𝑖1, . . . , 𝑖𝑛−1} and {𝑗1, . . . , 𝑗𝑛−1} share exactly 𝑛−2
common elements. Moreover, we say 𝑓 is cyclic if

𝑓+({𝑖1 + 1, . . . , 𝑖𝑛−1 + 1}) ≡ 𝑓+({𝑖1, . . . , 𝑖𝑛−1}) + 1,

where numbers are taken modulo by (2𝑛− 1).

Example 2.5. Here is a Latin matching 𝑓 of order 2:
𝑓({1}) = {1, 2}, 𝑓({2}) = {2, 3}, 𝑓({3}) = {3, 1}. A Latin
matching 𝑓 ′ of order 3 is shown in Figure 3. The left table
shows (𝑓 ′)+, whose Latin property is easy to check.

{12} {13} {14} {15} {23} {24} {25} {34} {35} {45}

{123} {124} {125} {134} {135} {145} {234} {235} {245} {345}

(f’)+ 1 2 3 4 5

1 - 4 2 5 3
2 4 - 5 3 1
3 2 5 - 1 4
4 5 3 1 - 2
5 3 1 4 2 -

Figure 3: A Latin matching of order 3.

Example 2.6. We demonstrate a cyclic Latin matching
𝑓 of order 5 by Figure 4. Since cyclic, it can be illustrat-
ed by

(︀
9
4

)︀
/9 = 14 pictures. In each picture, we label the

small circles by 1 to 9 in clockwise order, ending at the
topmost one. Assuming the four solid circles are labeled
by 𝑖1, 𝑖2, 𝑖3, 𝑖4 respectively, then this picture indicates that
𝑓+({𝑖1, 𝑖2, 𝑖3, 𝑖4}) = 9. For example, the first four pictures
in the first row indicate that 𝑓+ maps {3, 4, 5, 6}, {2, 4, 5, 7},
{1, 4, 5, 8}, and {2, 3, 4, 8} to 9. The next lemma proves that 𝑓
is indeed a Latin perfect matching and reveals the connection
between 𝑓 and the Hamming code Hamming(8, 4, 4).

1
2
345

6
7
8 9

Figure 4: A Latin matching of order 5.

Lemma 2.7. 1. The matching 𝑓 defined above is a perfect

matching from
(︀
[9]
4

)︀
to

(︀
[9]
5

)︀
. 2. This matching is Latin.

Proof. In the 14 pictures, the shapes of the four black
circles are different under rotating, so as the shapes of the
four white circles. This implies the first part of this lemma.

To prove that 𝑓 is Latin, we first point out a connection
between 𝑓 and Hamming(8, 4, 4). Notice that we can represent
each of the 14 pictures by a binary word 𝑎1𝑎2 . . . 𝑎8 of length
8 (e.g., 00111100 and 01011010 for the first two pictures), and
we claim that these 14 words are exactly those 14 codewords
of Hamming(8, 4, 4) which are not all 0’s and not all 1’s. 1

Precisely, they can be described by the following equations.{︂
𝑎5 = 𝑎1 ⊕ 𝑎2 ⊕ 𝑎3, 𝑎6 = 𝑎1 ⊕ 𝑎2 ⊕ 𝑎4,

𝑎7 = 𝑎1 ⊕ 𝑎3 ⊕ 𝑎4, 𝑎8 = 𝑎2 ⊕ 𝑎3 ⊕ 𝑎4.
(1)

A well-known property of Hamming(8, 4, 4) is that the ham-
ming distance between the codewords is at least 4. This
property is useful in proving the Latin property of 𝑓 :

Suppose to the opposite that 𝑓 is not Latin. There should
be two 4-element subsets 𝐴,𝐵 of [9] with exactly three com-
mon elements such that they are both mapped to 9 under
𝑓+. If we translate 𝐴 and 𝐵 to the length 8 binary codes 𝑎
and 𝑏, we know that d(𝑎, 𝑏) ≥ 4 according to the above cor-
respondence between 𝑓 and Hamming(8, 4, 4), where d(𝑎, 𝑏)
denotes the hamming distance between 𝑎 and 𝑏. On the other
hand, d(𝑎, 𝑏) = 2 since sets 𝐴,𝐵 are of size 4 and they share
exactly three common elements. Contradictory. �

As a summing up of this subsection, we have shown

Lemma 2.8. There exist Latin matchings of orders 2, 3, 5.

Two other cyclic Latin matchings of order 5 are drawn
in Figure 5. Interestingly, these two matchings can also be
represented by Hamming(8, 4, 4) (proof omitted).

1The original Hamming code is slightly different. But it is equivalent
to the one given here under permutation. The one in (1) admits an
interesting symmetric property which is not admitted by the original
one: if 𝑎1 . . . 𝑎8 is a codeword, its reverse 𝑎8 . . . 𝑎1 is also a codeword.
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Figure 5: Two more Latin matchings of order 5.

2.2 Optimal Strategy via Latin Matching

Lemma 2.9. The existence of a Latin matching of order
𝑛 implies the following: (1) 𝐺(𝑛, 1, 𝑛− 1) is 𝑛-colorable; (2)
𝛼(𝐺(𝑛, 1, 𝑛 − 1)) = 𝑠/𝑛; and (3) 𝑝′max(𝑛, 1, 𝑛 − 1) = 1/𝑛.
Moreover, we can design an optimal strategy for the case of
(𝑛, 𝑘, 𝑑) = (𝑛, 1, 𝑛− 1) using a Latin matching of order 𝑛.

Before proving this lemma, we reveal a connection between
the 𝑛-colorability of 𝐺(𝑛, 1, 𝑛 − 1) and the Latin square
problem. Recall that each vertex of 𝐺(𝑛, 1, 𝑛−1) corresponds
to a placement of the 𝑇 hats (notice that 𝑇 = 2𝑛− 1 when
𝑘 = 1 and 𝑑 = 𝑛− 1) to 𝑛 players, each of which receives one
hat. Such a placement can be represented as an 𝑛-dimensional
vector a = (𝑎1, . . . , 𝑎𝑛) where 𝑎1, . . . , 𝑎𝑛 ∈ [2𝑛 − 1] and
𝑎𝑖 ̸= 𝑎𝑗 (∀𝑖 ̸= 𝑗), and where 𝑎𝑖 indicates the hat that is given
to player 𝑖. Two vertices a = (𝑎1, . . . , 𝑎𝑛) and b = (𝑏1, . . . , 𝑏𝑛)
are connected in 𝐸𝐺 if vectors a,b have hamming distance
1, i.e.

∑︀𝑛
𝑖=1(1− 𝛿𝑎𝑖𝑏𝑖) = 1, where 𝛿 is the Kronecker delta.

Moreover, consider an incomplete 𝑛-dimensional hypercube
as follows. Initially, this hypercube has side length 2𝑛 − 1
and consists of (2𝑛− 1)𝑛 unit cells, each of which is denoted
by a coordinate (𝑎1, . . . , 𝑎𝑛) where 𝑎1, . . . , 𝑎𝑛 ∈ [2𝑛 − 1].
Then, remove the cells for which 𝑎1, . . . , 𝑎𝑛 are not distinct.
As a result, the vertices in 𝐺(𝑛, 1, 𝑛− 1) correspond to the
remaining cells, and two vertices are connected if and only if
their corresponding cells are in the same orthogonal line (a
line that is parallel to one of the 𝑛 axes is said orthogonal).

According to the above analysis, finding a vertex-color of
𝐺(𝑛, 1, 𝑛− 1) is equivalent to coloring the cells of the (incom-
plete) hypercube such that any cells in the same orthogonal
line have different color. Moreover, if it is constrained to use
𝑛 colors, the colors of cells in any orthogonal line must be a
permutation of all 𝑛 colors. Therefore, this is a variant of the
celebrated Latin square problem in high dimension [9, 22].

Proof of Lemma 2.9. (1) Let 𝑓 be a Latin matching of
order 𝑛. We color the vertices of 𝐺(𝑛, 1, 𝑛 − 1) as follows.
Take any vertex a = (𝑎1, . . . , 𝑎𝑛) where 𝑎1, . . . , 𝑎𝑛 follow the
assumption in the analysis above. Let 𝑆a = {𝑎1, . . . , 𝑎𝑛}.
Because 𝑓 is a perfect matching from

(︀
[2𝑛−1]
𝑛−1

)︀
to

(︀
[2𝑛−1]

𝑛

)︀
,

there must be a unique 𝑖 ∈ [𝑛] such that 𝑓(𝑆a − {𝑎𝑖}) = 𝑆a.
Define the color of a (denoted by 𝑐(a)) as 𝑖.

Assume now a and b are two adjacent vertices. So, there
is a unique 𝑗 ∈ [𝑛] such that 𝑎𝑗 ̸= 𝑏𝑗 . We shall prove that
𝑐(a) ̸= 𝑐(b). Suppose to the opposite that 𝑐(a) = 𝑐(b) = 𝑖.

Because a and b are adjacent, 𝑆a ̸= 𝑆b. Because 𝑐(a) = 𝑖,
set 𝑆a −{𝑎𝑖} is mapped to 𝑆a under 𝑓 . Because 𝑐(b) = 𝑖, set
𝑆b − {𝑏𝑖} is mapped to 𝑆b under 𝑓 . Altogether and since 𝑓
is a bijection, 𝑆a − {𝑎𝑖} ̸= 𝑆b − {𝑏𝑖}. This further implies
that 𝑗 ̸= 𝑖 since 𝑆a − {𝑎𝑗} = 𝑆b − {𝑏𝑗} by assumption of 𝑗.

Because 𝑗 ≠ 𝑖 and 𝑗 is the unique subscript such that
𝑎𝑗 ̸= 𝑏𝑗 , we know (i) 𝑎𝑖 = 𝑏𝑖 and (ii) 𝑆a −{𝑎𝑖} shares exactly
𝑛 − 2 common elements with 𝑆b − {𝑏𝑖}. The latter means
𝑓+(𝑆a − {𝑎𝑖}) ̸= 𝑓+(𝑆b − {𝑏𝑖}) by the Latin property of 𝑓 .
Recall that 𝑓(𝑆a−{𝑎𝑖}) = 𝑆a. This means 𝑓+(𝑆a−{𝑎𝑖}) = 𝑎𝑖.
Recall that 𝑓(𝑆b−{𝑏𝑖}) = 𝑆b. This means 𝑓+(𝑆b−{𝑏𝑖}) = 𝑏𝑖.
Together, (iii) 𝑎𝑖 ̸= 𝑏𝑖, which is contradictory with (i).

(2) By Proposition 2.1, 𝑝′max ≤ 1/𝑛. Combining this with
Lemma 2.2, 𝛼(𝐺(𝑛, 1, 𝑛− 1)) ≤ 𝑠/𝑛. On the other side, since
𝐺(𝑛, 1, 𝑛− 1) is 𝑛-colorable, 𝛼(𝐺(𝑛, 1, 𝑛− 1)) ≥ 𝑠/𝑛.

(3) This follows from (2) and Lemma 2.2.

In the following, we describe 𝑛 optimal strategies. For each
𝑖 ∈ [𝑛], let 𝐼𝑖 denote the set of vertices with color 𝑖. Formally,

𝐼1 =
{︀
(𝑥, 𝑖1, 𝑖2, . . . , 𝑖𝑛−1) | {𝑖1, . . . , 𝑖𝑛−1} ∈

(︀
[2𝑛−1]
𝑛−1

)︀}︀
,

𝐼2 =
{︀
(𝑖1, 𝑥, 𝑖2, . . . , 𝑖𝑛−1) | {𝑖1, . . . , 𝑖𝑛−1} ∈

(︀
[2𝑛−1]
𝑛−1

)︀}︀
,

. . .

𝐼𝑛 =
{︀
(𝑖1, 𝑖2, . . . , 𝑖𝑛−1, 𝑥) | {𝑖1, . . . , 𝑖𝑛−1} ∈

(︀
[2𝑛−1]
𝑛−1

)︀}︀
,

where 𝑥 denotes 𝑓+({𝑖1, . . . , 𝑖𝑛−1}).
For each 𝑐 ∈ [𝑛], set 𝐼𝑐 is a maximum independent set

of 𝐺(𝑛, 1, 𝑛 − 1). Applying Lemma 2.2, this means there
is an optimal strategy so that the nodes in 𝐼𝑐 are winning
placements. We describe this strategy below more explicitly.

The explicit strategy corresponding to 𝐼𝑐. Assume player
𝑖 receives the hat with color 𝑎𝑖. Write a = (𝑎1, . . . , 𝑎𝑛). For
each 𝑖 ∈ [𝑛], denote 𝐴𝑖 = 𝑆a − {𝑎𝑖}, which is the set of hats
observed by player 𝑖. In this strategy, we distinguish player 𝑐
from the other players. For player 𝑐, she guesses 𝑓+(𝐴𝑐). For
player 𝑖 where 𝑖 ̸= 𝑐, she plays as follows. Notice that 𝑎𝑐 is
known by player 𝑖. Since 𝐴𝑖 −{𝑎𝑐} has size 𝑛− 2 and due to
Latin property, there exists a unique number 𝑏𝑖 /∈ (𝐴𝑖−{𝑎𝑐})
such that 𝑓+((𝐴𝑖 − {𝑎𝑐}) + {𝑏𝑖}) = 𝑎𝑐. Player 𝑖 guesses 𝑏𝑖.

We shall show that every player guesses right when a ∈ 𝐼𝑐.
This reduces to showing that (i) 𝑓+(𝐴𝑐) = 𝑎𝑐 and (ii) 𝑏𝑖 = 𝑎𝑖

when a ∈ 𝐼𝑐. Assume a ∈ 𝐼𝑐. Fact (i) holds by the definition
of 𝐼𝑐. Since 𝑏𝑖 is the unique number /∈ (𝐴𝑖 − {𝑎𝑐}) such that
𝑓+((𝐴𝑖 − {𝑎𝑐}) + {𝑏𝑖}) = 𝑎𝑐, whereas 𝑎𝑖 /∈ (𝐴𝑖 − {𝑎𝑐}) and
𝑓+((𝐴𝑖 − {𝑎𝑐}) + {𝑎𝑖}) = 𝑓+(𝐴𝑐) = 𝑎𝑐, we get (ii). �

Leadership in the above strategies. In this strategy, player 𝑐
can be regarded as the leader of the team. This does not
mean that she or he will answer earlier than the others.
Instead, everybody considers what the leader would do and
searches the unique answer consistent with the leader.
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Remark. 1. Latin squares have wide applications in com-
binatorics, statistics, and computer science [9, 16]. They
can be used for scheduling tournaments and processors of
massively parallel computer. The 𝑛-coloring of 𝐺(𝑛, 1, 𝑛− 1)
shown above may have analogous and even more interesting
applications, since it is essentially a Latin hypercube.

2. Let a = (𝑎1, . . . , 𝑎𝑛) denote a vertex in 𝐺(𝑛, 1, 𝑛 − 1).
The color of a is 𝑐(a). Because 𝑐(a) changes whenever exactly
one of 𝑎1, . . . , 𝑎𝑛 changes, this value can serve as the one-
error detecting bit when we send message 𝑎1, . . . , 𝑎𝑛.

3. The application of the Latin matching in our optimal
strategy has the same favor as the application of the Hamming
code in the optimal strategy of the original hat guessing game.
The independent set defined from a Latin matching (e.g. 𝐼1 or
𝐼𝑛) has the same favor as the hamming code in some sense.

2.3 Latin Matchings of Higher Orders

A Steiner system with parameters 𝑡, 𝑘, 𝑛, written as 𝑆(𝑡, 𝑘, 𝑛),
is an 𝑛-element set 𝑆 together with a set of 𝑘-element subsets
of 𝑆, called blocks, with the property that each 𝑡-element
subset of 𝑆 is contained in exactly one block [5, 8, 24].

Theorem 2.10. From a cyclic Latin matching of order 𝑛,
we can obtain a Steiner system 𝑆(𝑛 − 2, 𝑛 − 1, 2𝑛 − 2). In
other words, finding a cyclic Latin matching of order 𝑛 is at
least as difficult as designing 𝑆(𝑛− 2, 𝑛− 1, 2𝑛− 2).

Theorem 2.11. The order of a Latin matching is prime.

Remark. 1. The existence of 𝑆(𝑛− 2, 𝑛− 1, 2𝑛− 2) for
𝑛 > 11 has been open for decades and is surprisingly difficult
[5, 24]. A trivial prerequisite is that 𝑛 must be prime. So the
order of a cyclic Latin matching is prime. But this is covered
by Theorem 2.11. Moreover, system 𝑆(9, 10, 20) does not
exist [24]. So, by Theorem 2.10, there is no cyclic Latin
matching of order 11. Furthermore, system 𝑆(5, 6, 12) does
exist and is unique up to isomorphism and is widely known
as the small Witt design 𝑊12 [24]. Yet there is no cyclic
Latin matching of order 7 (see the discussion below).

2. Every known Latin matching is isomorphic to a cyclic
Latin matching. Whether this is always true is not known.

Proof of Theorem 2.10. According to our construction
of the cyclic Latin matching of order 5 in subsection 2.1, a
cyclic Latin matching 𝑓 of order 𝑛 can be represented by
𝑀 =

(︀
2𝑛−1
𝑛−1

)︀
/(2𝑛− 1) codewords of length 2𝑛− 2 so that

1st. Each codeword consists of half zeros and half ones.
2nd. If 𝑎 and 𝑏 are two codewords, then 𝑎+′ 0′ is not cyclic

equivalent to 𝑏+′0′ and 𝑎+′1′ is not cyclic equivalent to
𝑏+′ 1′, where + indicates the concatenation of strings.
(Note: This property implies that 𝑓 is perfect.)

3rd. The hamming distance between two codewords is at
least 4. (Note: This property implies that 𝑓 is Latin.)

Let 𝑆 = {1, . . . , 2𝑛−2}. We build𝑀 blocks ((𝑛−1)-element
sets) of 𝑆 from these codewords in a standard way. For each
codeword 𝑎 = 𝑎1 . . . 𝑎2𝑛−2, we build a block {𝑖 | 𝑎𝑖 = 1}.
Since 𝑎 has half ones, this block has 𝑛− 1 elements indeed.

We now verify that each (𝑛− 2)-element set of 𝑆 is con-
tained in exactly one block. First, we claim that any (𝑛− 2)-
element set is contained in at most one block. This is because
when two blocks both contain the same 𝑛− 2 elements, their
corresponding codewords have hamming distance 2. More-
over, since each block has 𝑛 − 1 elements, the number of
(𝑛 − 2)-element sets covered by each block is 𝑛 − 1. So, at
least 𝑀 × (𝑛− 1) =

(︀
2𝑛−2
𝑛−2

)︀
different (𝑛− 2)-element sets are

covered. This means every (𝑛− 2)-element set is covered.

The above process can be reversed. From a Steiner system
𝑆(𝑛−2, 𝑛−1, 2𝑛−2), we can obtain 𝑀 codewords satisfying
the 1st and 3rd properties, but not necessarily the 2nd. �

Why is there no cyclic Latin matching of order 7? Finding
such a matching reduces to finding a code satisfying the three
properties above. By computer programs [18] we generate all
codes admitting the 1st and 3rd properties (from the unique
𝑆(5, 6, 12) using the reverse process mentioned above) and
test if any of them admits the 2nd. The result is negative.

The remaining part of this subsection proves Theorem 2.11.

Proposition 2.12. Given integer 𝑛 ≥ 2. It is prime if and
only if 𝑘! divides (𝑛+(𝑘−1))× . . .×(𝑛+1) for 2 ≤ 𝑘 ≤ 𝑛−1.

Proof. Assume 𝑛 is composite. Choose its prime factor
𝑘. Obviously, 𝑘 does not divide (𝑛+ (𝑘 − 1))× . . .× (𝑛+ 1).
Thus 𝑘! does not divide it either.

Assume 𝑛 is prime. For 2 ≤ 𝑘 ≤ 𝑛− 1, because
(︀
𝑛+𝑘−1

𝑘

)︀
=

(𝑛+ (𝑘− 1))× . . .× 𝑛/𝑘!, we know 𝑘! divides (𝑛+ (𝑘− 1))×
. . .× (𝑛+1)×𝑛. Further, because 𝑛 is prime and not a factor
of 𝑘!, we can remove 𝑛 from the right part and it is done. �

Proof of Theorem 2.11. Assume 𝑓 is a Latin matching

from
(︀
[2𝑛−1]
𝑛−1

)︀
to

(︀
[2𝑛−1]

𝑛

)︀
. Define 𝑓+ as Definition 2.4. Assume

𝑘 is any integer such that 2 ≤ 𝑘 ≤ 𝑛− 1. Let 𝑆 be the set of
𝑘-permutations of [𝑛+ 𝑘]. Formally,

𝑆 = {(𝑎1, . . . , 𝑎𝑘) | 𝑎𝑖 ∈ [𝑛+ 𝑘], 𝑎𝑖 ̸= 𝑎𝑗 for 𝑖 ̸= 𝑗}.

Define a mapping 𝑔 : 𝑆 → [𝑛+ 𝑘] by

𝑔(𝑎1, . . . , 𝑎𝑘) = 𝑓+({𝑎1, . . . , 𝑎𝑘, 𝑛+𝑘+1, 𝑛+𝑘+2, . . . , 2𝑛−1}).

We claim that for any 𝑖 ∈ [𝑛+𝑘], there are exactly |𝑆|/(𝑛+
𝑘) elements of 𝑆 mapped to 𝑖 under 𝑔. Intuitively speaking,
𝑔 uniformly partitions 𝑆.

Let �⃗� = (𝑏1, . . . , 𝑏𝑘−1) be a (𝑘 − 1)-permutation of [𝑛+ 𝑘].

Denote by �⃗�𝑡 the shifted sequence (𝑏1+ 𝑡, . . . , 𝑏𝑘−1+ 𝑡), where
additions are taken modulo [𝑛 + 𝑘]. Denote the union of

elements in �⃗�𝑡 by 𝐵𝑡, and denote 𝐵0 as 𝐵 for short. Using
the definition of 𝑔 and the Latin property of 𝑓 , the value of

𝑔(⃗𝑏, 𝑥) runs over [𝑛+ 𝑘]− 𝐵 when 𝑥 runs over [𝑛+ 𝑘]− 𝐵.
Moreover, when 𝑡 runs over [𝑛+𝑘], the (multiset) union of 𝐵𝑡

is clearly (𝑘− 1) copies of [𝑛+ 𝑘]. Together, given �⃗�, multiset

{𝑔(⃗𝑏𝑡, 𝑥) | 𝑡 ∈ [𝑛+ 𝑘], 𝑥 ∈ [𝑛+ 𝑘]−𝐵𝑡} = {[𝑛+ 𝑘]−𝐵𝑡 | 𝑡 ∈
[𝑛+ 𝑘]} equals (𝑛+ 𝑘)− (𝑘 − 1) = (𝑛+ 1) copies of [𝑛+ 𝑘].
Furthermore, applying the fact that 𝑆 can be partitioned

as
⋃̇︀

𝑏1=1,𝑏2,...,𝑏𝑘−1,𝑡∈[𝑛+𝑘],𝑥∈[𝑛+𝑘]−𝐵𝑡
{(⃗𝑏𝑡, 𝑥)}, multiset 𝑔(𝑆)

equals several copies of [𝑛+ 𝑘], i.e. 𝑔 uniformly partitions 𝑆.
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In particular, the number of elements in 𝑆 that are mapped
to 1 under 𝑔 is |𝑆|/(𝑛 + 𝑘). However, this number should
be a multiple of 𝑘! since 𝑔 is invariant under permutation.
Therefore, 𝑘! divides |𝑆|/(𝑛 + 𝑘) = (𝑛 + 𝑘 − 1) . . . (𝑛 + 1).
Finally, applying Proposition 2.12, 𝑛 must be prime. �

2.4 Short Summary & Additional Results

Table 1 summarizes our knowledge on Latin matchings.

order 𝑛 2, 3, 5 7, 11 prime > 11 composite

Cyclic Latin Yes No Unknown (No)

Latin (Yes) Unknown Unknown No

Table 1: On the existences of Latin matchings

Thus far in this section we discuss the special case where
𝑘 = 1, 𝑑 = 𝑛− 1. The following theorem states some results
for two other cases (proof will be given in a full version).

An ordered designs with parameters 𝑡, 𝑣, 𝑘, written as
𝑂𝐷(𝑡, 𝑘, 𝑣), is an 𝑘×

(︀
𝑘
𝑡

)︀
𝑡! array with 𝑣 entries such that each

column has 𝑘 distinct entries and any 𝑡 rows contain each
column tuple of 𝑡 distinct entries exactly once [8, 10, 23].

Theorem 2.13. (1) 𝑝′max = 1/
(︀
𝑘+𝑑
𝑑

)︀
when 𝑛 = 2.

(2) For 𝑘 = 1, equality 𝑝′max = 1/
(︀
𝑘+𝑑
𝑑

)︀
= 1/(𝑑+ 1) holds

if and only if there exists an ordered design 𝑂𝐷(𝑛 −
1, 𝑛, 𝑛+𝑑) (because an 𝑂𝐷(𝑛−1, 𝑛, 𝑛+𝑑) corresponds
to an independent set of 𝐺(𝑛, 1, 𝑑) of size 𝑠/(𝑑+ 1)).

Remark. 1. Since 𝑂𝐷(𝑛−1, 𝑛, 𝑛+1) (trivially) exists [10],
the aforementioned equality of 𝑝′max holds when 𝑘 = 𝑑 = 1.

2. When 𝑛 is prime, by [25] there is an 𝑂𝐷(𝑛 − 2, 𝑛 −
1, 2𝑛 − 2). Thus the case (𝑛 − 1, 1, 𝑛 − 1) is solved for any
prime 𝑛. However, it is open whether an 𝑂𝐷(𝑛−1, 𝑛, 2𝑛−1)
exists. If so, (𝑛, 1, 𝑛− 1) is solved for prime 𝑛. (Note that an
𝑂𝐷(𝑛− 1, 𝑛, 2𝑛− 1) implies an 𝑂𝐷(𝑛− 2, 𝑛− 1, 2𝑛− 2).)

Why do we focus on 𝑘 = 1, 𝑑 = 𝑛− 1? The all-right case
is quite difficult; so we fix 𝑘 = 1. When 𝑘 = 1, it seems that
𝑑 = 1 or 𝑑 = 𝑛− 1 is relatively easy. Another reason is that
from this typical case, it is enough to compare the difference
between the two winning rules (as shown below).

3 ONE-RIGHT WINNING RULE

In this section, we move on to the one-right winning rule.
Let 𝑝max(𝑛, 𝑘, 𝑑) (or 𝑝max when (𝑛, 𝑘, 𝑑) are clear) be the
maximum winning probability for this rule. The next lemma
gives a graph interpretation of the game in this rule.

Lemma 3.1. Let 𝜈(𝐻) denote the cardinality of the max-
imum matching of graph 𝐻. Then 𝑝max = 𝜈(𝐻(𝑛, 𝑘, 𝑑))/𝑠.
Moreover, the best strategy can be easily computed provided
that the maximum matching of 𝐻(𝑛, 𝑘, 𝑑) is given.

Proof. Recall 𝐻(𝑛, 𝑘, 𝑑) = (𝑈, 𝑉,𝐸). A strategy can be
represented by a subset 𝐸′ of 𝐸 in which each vertex in 𝑈
has degree 1. Those vertices in 𝑉 which are covered by edges
of 𝐸′ correspond to the winning placements of the strategy.
This correspondence immediately implies the lemma. �

Theorem 3.2. 𝑝max = min{1, 𝑛/
(︀
𝑘+𝑑
𝑑

)︀
}.

Proof. Add a source 𝑥 and a sink 𝑦 to graph 𝐻(𝑛, 𝑘, 𝑑)
as shown in Figure 1. Connect 𝑥 to each vertex in 𝑈 , and 𝑦 to
each vertex in 𝑉 . Assume unit capacity for all edges. Clearly,
𝜈(𝐻(𝑛, 𝑘, 𝑑)) = 𝑓 , where 𝑓 denotes the value of maximum
flow from 𝑥 to 𝑦. By Lemma 3.1, 𝑝max = 𝜈(𝐻(𝑛, 𝑘, 𝑑))/𝑠.

Thus it reduces to proving that 𝑓/𝑠 = min{1, 𝑛/
(︀
𝑘+𝑑
𝑑

)︀
}.

When 𝑛/
(︀
𝑘+𝑑
𝑑

)︀
≤ 1, we need to prove 𝑓 = 𝑠𝑛/

(︀
𝑘+𝑑
𝑑

)︀
= 𝑛𝑚.

First, 𝑓 ≤ degree(𝑥) = 𝑛𝑚. To show 𝑓 ≥ 𝑛𝑚, we construct
a fractional flow with value 𝑛𝑚: all edges connecting with 𝑥
flow 1, all edges in 𝐸 flow 1/

(︀
𝑘+𝑑
𝑑

)︀
, and all edges connecting

with 𝑦 flow 𝑛/
(︀
𝑘+𝑑
𝑑

)︀
≤ 1. The validity of flow is easy to check.

When 𝑛/
(︀
𝑘+𝑑
𝑑

)︀
≥ 1, we need to prove 𝑓 = 𝑠. First, 𝑓 ≤

degree(𝑦) = 𝑠. To show 𝑓 ≥ 𝑠, we construct the following
fractional flow whose value is 𝑠: all edges connecting with 𝑦
flow 1, all edges in 𝐸 flow 1/𝑛, and all edges connecting with

𝑥 flow
(︀
𝑘+𝑑
𝑑

)︀
/𝑛 ≤ 1. The validity of flow is easy to check.

(Note that constructing a maximum fractional flow is
sufficient here according to the integral flow theorem [27].) �

Remark. Theorem 3.2 can be generalized to the asymmet-
ric case where the dealer places different number of hats to
different players and the players guess multiple and possibly
different times. (Still, they win if at least one guess of a player
is right.) Assume player 𝑖 receive 𝑘𝑖 hats and has to answer 𝑔𝑖
times. Then, 𝑝max ≤

∑︀𝑛
𝑖=1

𝑔𝑖

(𝑘𝑖+𝑑
𝑑 )

by union bound. Surpris-

ingly, by our flow technique, 𝑝max = min{1,
∑︀𝑛

𝑖=1
𝑔𝑖

(𝑘𝑖+𝑑
𝑑 )

}.
We leave the proof as an exercise for curious readers.

The fractional flow technique can solve other guessing
problems. Assume three players want to guess the order of
four distinct numbers 𝐴,𝐵,𝐶,𝐷. However, player 1 can only
observe the order between 𝐵,𝐶, player 2 can observe the
order between 𝐴,𝐵,𝐶, whereas other two players can observe
nothing. No communication is allowed after the observation
and the rule is still one-right. Then, we can immediately
claim that 𝑝max = 1/12 + 1/4 + 1/24 + 1/24 = 5/12.

The maximum winning probability (under one-right rule)
is already solved by Theorem 3.2, whereas by Lemma 3.1
computing the best strategies is also solved (in general), which
reduces to computing the maximum matching of 𝐻(𝑛, 𝑘, 𝑑),
whose running time is a polynomial of the size of 𝐻(𝑛, 𝑘, 𝑑).
However, to play the hat guessing game using such matchings
is unpractical, because players have to remember the entire
matching, which is enormous when 𝑛, 𝑘, 𝑑 grow bigger.

Therefore, in the rest of this section, we aim to design
cooperative strategies using codes. We first review two kinds
of well-known matchings in the subset lattice, and then by
utilizing such explicit matchings, we design explicit best
cooperative strategies for the cases where 𝑛 = 2 or 𝑘 = 1.

3.1 Two Kinds of Explicit Matchings

In the following, we introduce a perfect matching 𝛾𝑇
𝑗 between

two antipodal layers 𝒫𝑗 and 𝒫𝑇−𝑗 for each 𝑗 < 𝑇
2
, as well as

a matching 𝜑𝑇
𝑗 between two consecutive layers 𝒫𝑗 and 𝒫𝑗+1,
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which is injective when 𝑗 < 𝑇
2
and surjective otherwise. Note:

if 𝐴 is matched to 𝐵 in these matchings, it must hold 𝐴 ⊂ 𝐵.

Let CW, CCW be short for clockwise and counterclockwise.

Definition 3.3 (CCW-rotating-subset). Assume 𝐴 ⊂ [𝑇 ]
and |𝐴| ≤ 𝑇/2. By two steps we define a subset 	 (𝐴) = 𝐴′

with equal size as 𝐴 and is disjoint with 𝐴.
Step 1. Put 1, . . . , 𝑇 in CW into a cycle.
Step 2. Enumerate each number 𝑎 in 𝐴, find the CCW

first number near 𝑎 that is not in 𝐴 ∪𝐴′ and add it to 𝐴′.
Note: the order of this enumeration does not matter. Take

𝑇 = 10 and 𝐴 = {1, 3, 8, 9} for example. If we enumerate in
order 1, 3, 8, 9, the numbers added to 𝐴′ would be 10, 2, 7, 6.
Alternatively, if we enumerate in order 3, 9, 8, 1, the numbers
added to 𝐴′ would also be 2, 7, 6, 10.)

Definition 3.4. Assume 𝑗 < 𝑇/2. For any subset 𝐴 of [𝑇 ]
with size 𝑗, define 𝛾𝑇

𝑗 (𝐴) = [𝑇 ]− 	 (𝐴).

We omit the superscript 𝑇 in 𝛾𝑇
𝑗 when 𝑇 is clear.

Apparently, 𝛾𝑗 is a perfect matching between 𝒫𝑗 and 𝒫𝑇−𝑗 .

We define the CW-rotating-subset � (𝐴) symmetrically
and let 𝛾′

𝑗(𝐴) := [𝑇 ]− � (𝐴) for 𝑗 < 𝑇/2. Note that � (·) is
the reverse function of 	 (·); namely, � (	 (𝐴)) = 𝐴.

We now introduce a matching 𝜑𝑇
𝑗 between 𝒫𝑗 and 𝒫𝑗+1.

To this end we distinguish two cases as shown below.

Definition 3.5 (Case1: 𝑗 < 𝑇/2). Consider an example

where 𝑗 = 1, 𝑇 = 4. To define 𝜑4
1(𝐴) from

(︀
[4]
1

)︀
to

(︀
[4]
2

)︀
, we

borrow 𝛾5
2 :

(︀
[5]
2

)︀
→

(︀
[5]
3

)︀
– first add 5 to 𝐴 and compute

𝛾5
2(𝐴), then remove 5 from 𝛾5

2(𝐴). See the top of Figure 6.
In general, let 𝑐 = (𝑇 − (𝑗 + 1)) − 𝑗 = 𝑇 − 2𝑗 − 1, and

𝐶 = {𝑇 + 1, . . . , 𝑇 + 𝑐}. For 𝐴 ⊂ [𝑇 ] and |𝐴| = 𝑗, define

𝜑𝑇
𝑗 (𝐴) = 𝛾𝑇+𝑐=2𝑇−2𝑗−1

𝑗+𝑐=𝑇−𝑗−1 (𝐴 ∪ 𝐶)− 𝐶. (2)

1

5

2 2

5

3 3

5

1

5

4 1

1-12 2-23 3-13 4-14

1

23

1

3

4 14

2 23

4

12-123 13-134 14-124 23-234

Φ1

Φ2

4

4

Figure 6: Illustration of the definitions of 𝜑4
1 and 𝜑4

2.

Definition 3.6 (Case 2: 𝑗 ≥ 𝑇/2). Consider an example

where 𝑗 = 2, 𝑇 = 4. To define 𝜑4
2(𝐴) from

(︀
[4]
2

)︀
to

(︀
[4]
3

)︀
, we

also borrow 𝛾5
2 :

(︀
[5]
2

)︀
→

(︀
[5]
3

)︀
– If 𝛾5

2(𝐴) does not contain 5,

then it is defined to be 𝜑4
2(𝐴). Clearly, 𝜑4

2(𝐴) will be defined
for only

(︀
4
3

)︀
choices of 𝐴. See the bottom of Figure 6.

In general, Let 𝑐 = 𝑗 − (𝑇 − (𝑗 + 1)) = 2𝑗 + 1 − 𝑇 , and
𝐶 = {𝑇 + 1, . . . , 𝑇 + 𝑐}. For 𝐴 ⊂ [𝑇 ] and |𝐴| = 𝑗, define

𝜑𝑇
𝑗 (𝐴) =

{︂
𝛾𝑇+𝑐=2𝑗+1
𝑗 (𝐴), if 𝛾2𝑗+1

𝑗 (𝐴) ∩ 𝐶 = ∅;

undefined, otherwise.
(3)

Lemma 3.7. 𝜑𝑇
𝑗 is a matching. Moreover, it is injective

when 𝑗 < 𝑇/2 and surjective when 𝑗 ≥ 𝑇/2. (Proof omitted.)

To get better understanding of {𝛾𝑇
𝑗 } and {𝜑𝑇

𝑗 }, the reader
can find their alternative definitions in subsection 3.3.

3.2 Explicit Strategies for One-right Rule

We now apply {𝛾𝑇
𝑗 , 𝜑

𝑇
𝑗 } to construct explicit strategies.

I. 𝑛 = 2. When Player 1 observes set 𝐵, she guesses 	
(𝐵). When player 2 observes set 𝐴, he guesses 	 (𝐴).
To prove its optimality, we shall prove that players
never guess right simultaneously. Observe that 𝛾𝑗 , 𝛾

′
𝑗

are two perfect matchings that are disjoint; namely,
	 (𝐴) ̸=� (𝐴) for any 𝐴 such that |𝐴| < 𝑇/2. When
player 1 guesses right, we have 𝐴 =	 (𝐵), so 𝐵 =� (𝐴).
This means 𝐵 ̸=	 (𝐴), so player 2 guesses wrong.

II. 𝑘 = 1, 𝑑 = 𝑛− 1. Let 𝐴 denote the set of 𝑛 hats of
the players. Let 𝐴𝑖 denote the set of hats on all players
except player 𝑖. After observing 𝐴𝑖, player 𝑖 answers
the 1-element set 𝛾𝑛−1(𝐴𝑖)−𝐴𝑖. Since 𝛾𝑛−1 is a perfect
matching between 𝒫𝑛−1 and 𝒫𝑛, there exists one and
only one element 𝑎 ∈ 𝐴 such that 𝛾𝑛−1(𝐴− {𝑎}) = 𝐴.
Apparently, the player whom is placed by 𝑎 is the only
one who guesses right. So, exact one player is correct.

II’. 𝑘 = 1. Let 𝐴𝑖 and 𝐴 be the same as II. Player 𝑖 an-
swers the 1-element set in 𝜑𝑇

𝑛−1(𝐴𝑖) − 𝐴𝑖. Note that

player 𝑖 can answer arbitrarily when 𝜑𝑇
𝑛−1(𝐴𝑖) is un-

defined (which may happen when 𝑛 − 1 ≥ 𝑇
2
= 𝑛+𝑑

2
;

namely, when 𝑑 ≤ 𝑛 − 2). When 𝑑 ≥ 𝑛 − 1, at most
one player would guess right since 𝜑𝑇

𝑛−1 is injective (by
Lemma 3.7), so this strategy achieves a winning proba-
bility of 𝑛/(𝑑+ 1) which is optimum. When 𝑑 ≤ 𝑛− 1,
the winning probability is 1 because 𝜑𝑇

𝑛−1 is surjective.

Observe that all the strategies above have two features:
First, the players are unbiased – they use the same (individu-
al) strategy to guess. Second, when applying such strategies,
the players can put on masks so that no one recognized the
identities of the others – as a player only needs to observe
the set of hats assigned to the other players but not the full
information including how the hats are distributed.

Such features in general are not enjoyed by the strategies
computing from the network flow technique given with Theo-
rem 3.2. However, using similar techniques we find that for
any value of (𝑛, 𝑘, 𝑑) there always exists an optimal strategy
that enjoys the above two features (for one-right rule). This
result will be reported in the full version of this paper.

Also, observe that if 𝛾𝑛−1 is replaced by a Latin matching
of order 𝑛 in our strategy for the case (𝑘 = 1, 𝑑 = 𝑛 − 1),
another good feature can be proved (while the two features
above still hold): In every possible assignment of the hats, in
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addition to the fact that exactly one player is right, the 𝑛− 1
incorrect players would guess 𝑛− 1 different colors which are
exactly the 𝑑 = 𝑛− 1 colors remain in dealer’s hand.

3.3 A Chain Decomposition of the Subset
Lattice and Its Connections with 𝛾, 𝜑

Recall the matchings {𝛾} and {𝜑} given in subsection 3.1.
We point out that in literature there are equivalent defini-
tions for these matchings. We review these definitions in this
subsection to help the reader to know better of {𝛾} and {𝜑}.
Parenthesis sequence of a set. Given 𝐴 ⊆ [𝑇 ]. We can
associate with 𝐴 a sequence of parenthesis of length 𝑇 . First,
write down numbers 1, . . . , 𝑇 in order. If 𝑥 ∈ 𝐴, replace 𝑥 by
a right parenthesis; otherwise, replace 𝑥 by a left parenthesis.
For example, if 𝑇 = 10, the sequence associated with 𝐴 =
{1, 3, 4, 8, 9} is )1 (2 )3 )4 (5 (6 (7 )8 )9 (10.
This sequence of parenthesis can be parenthesized uniquely in
the usual way, and there may remain several parenthesis un-
paired. For the example, “(2,(6,(7” are paired with “)3,)9,)8”.
All the others are unpaired. Clearly, any unpaired right paren-
thesis occur to the left of any unpaired left parenthesis.

Definition of 𝜆𝑇
𝑗 [15]. Assume 𝐴 is a 𝑗-element subset of [𝑇 ]

associated with sequence 𝑆. Replace the leftmost unpaired ’(’
in 𝑆 by ’)’ and assume that the new sequence corresponds to
subset 𝐴′, then 𝜆𝑇

𝑗 (𝐴) is defined as 𝐴′. For the above example,

the leftmost unpaired ’(’ is (5, so 𝜆10
5 (𝐴) = {1, 3, 4, 5, 8, 9}.

The functions 𝜆𝑇
0 , . . . , 𝜆

𝑇
𝑇−1 lead to a chain-decompos-

ition of the subset lattice of [𝑇 ] [15]. We regard that
two subsets of [𝑇 ] are in the same chain, if and only if their
associated sequences contain the same paired parenthesis. The
entire chain containing {1, 3, 4, 8, 9} is {3, 8, 9} - {1, 3, 8, 9} -
{1, 3, 4, 8, 9} - {1, 3, 4, 5, 8, 9} - {1, 3, 4, 5, 8, 9, 10}. The entire
chain-decomposition for 𝑇 = 4 is depicted as follows.

{} → {1} → {1, 2} → {1, 2, 3} → {1, 2, 3, 4}
{2} → {2, 3} → {2, 3, 4}
{3} → {1, 3} → {1, 3, 4}
{4} → {1, 4} → {1, 2, 4}

{2, 4}
{3, 4}

Definition of 𝛽𝑇
𝑗 [15]. All chains in the above decomposition

are symmetric - if a chain contains some member 𝐴, it must
contain a member with size 𝑇 − |𝐴|. Therefore, for each 𝑗 <
𝑇
2
, this chain-decomposition implicitly defines an antipodal

matching 𝛽𝑗 between the two antipodal layers 𝒫𝑗 and 𝒫𝑇−𝑗 .

Lemma 3.8. [17] 1. 𝛽𝑗 = 𝛾𝑗. 2. 𝜆
𝑇
𝑗 = 𝜑𝑇

𝑗 .

By Lemma 3.8, subsection 3.1 in fact provides new equiva-
lent definitions of the well-known matchings 𝜆 and 𝛽. Our
definition of 𝛽 (i.e. 𝛾) however seems more intuitive. Our
method for defining 𝜆 (i.e. 𝜑) is original, which borrows the
matching 𝛾. In contrast, the authors in [15] first defined the
matchings between any two consecutive layers (𝜆) and then
used them to define the antipodal matchings (𝛽). Also, note
that [2] provides another equivalent definition of 𝜆.

4 CONCLUDING REMARKS

We study an interesting variant of the hat guessing game
and show its strong connections to several combinatorial
structures such as ordered designs, antipodal matchings, and
Latin Matchings. We summarize our results in Table 2.

Rule Max winning
probability

Cases with an explicit
optimal strategy

One-right min{1, 𝑛/
(︀
𝑘+𝑑
𝑑

)︀
} 𝑛 = 2 or 𝑘 = 1

All-right
smaller than or
equal to 1/

(︀
𝑘+𝑑
𝑑

)︀ 𝑛 = 2 or (𝑘 = 1 &
∃𝑂𝐷1(𝑛− 1, 𝑛, 𝑛+ 𝑑))

Table 2: Summary of the main results

Comparing our unbiased strategy (where everybody use
the same strategy for guessing) for one-right rule with our
almost-unbiased strategy (where there is a leader and the
other players are unbiased) for all-right rule under the case
(𝑛, 1, 𝑛 − 1), we observe an interesting phenomenon that a
leader / dictator might be necessary for making consensus
but is unnecessary for decentralization in team cooperation.

Some applications of these strategies are already mentioned
in the remark of subsection 2.2, while another is as follows.
Since the strategy to our variant has the same favor as the
known strategies (e.g. Hamming codes) to the original version,
they fit in a similar de-randomization technique for protocols
or auctions. Take (𝑛, 𝑘, 𝑑) = (𝑛, 1, 𝑛 − 1) for an example.
Clearly, the number of correct guesses is 1 in expectation,
since each player has 1/𝑛 chance to be right. Using our
one-right strategy, this becomes deterministic 1. Using our
all-right strategy, we can design an 𝑛-round deterministic
strategy so that all right guesses happen in the same round.

The Latin matching has rich structural properties and may
find applications in factorial experiments, block cipher design,
secret sharing (see such applications of similar structures
in [16]) and also in other combinatorial designs. Following
Lemma 2.9, our construction of Latin matchings leads to
the construction of the large set of 𝑂𝐷(𝑛 − 1, 𝑛, 2𝑛 − 1)
(denoted by 𝐿𝑂𝐷(𝑛 − 1, 𝑛, 2𝑛 − 1) [10]). Thus we obtain
𝐿𝑂𝐷(1, 2, 3), 𝐿𝑂𝐷(2, 3, 5), 𝐿𝑂𝐷(4, 5, 9) as byproducts. In
particular, 𝑂𝐷(4, 5, 9) and 𝐿𝑂𝐷(4, 5, 9) are the first time
reported. A curious yet challenging open problem is how to
design 𝑂𝐷(6, 7, 13) or 𝐿𝑂𝐷(6, 7, 13), and in general, 𝑂𝐷(𝑛−
1, 𝑛, 2𝑛− 1) for prime 𝑛 larger than 5. We hope this paper
could stimulate the ongoing research on ordered designs.

To the best of our knowledge, Latin matchings have not
been reported in literature. Exploring other such matchings is
important in further study. At the end of this paper, we note
that the Latin matching depicted in Figure 4 enjoys some
symmetries: if 𝐴 is mapped to 𝐵, [9]/𝐵 is mapped to [9]/𝐴
and −𝐴 is mapped to −𝐵, where −𝐴 := {9− 𝑎 | 𝑎 ∈ 𝐴}.
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