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ABSTRACT
In this paper, we consider a matroid generalization of the hospi-

tals/residents problem with ties. Especially, we focus on the situa-

tion in which we are given a master list and the preference list of

each hospital over residents is derived from this master list. In this

setting, Kamiyama proved that if hospitals have matroid constraints

and each resident is assigned to at most one hospital, then we can

solve the super-stable matching problem and the strongly stable

matching problem in polynomial time. In this paper, we generalize

these results to the many-to-many setting. More specifically, we

consider the setting where each resident can be assigned to multiple

hospitals, and the set of hospitals that this resident is assigned to

must form an independent set of a matroid. In this paper, we prove

that the super-stable matching problem and the strongly stable

matching problem in this setting can be solved in polynomial time.
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1 INTRODUCTION
The two-sided matching market model proposed by Gale and Shap-

ley [7] is one of the most fundamental mathematical models for

real-world assignment problems. In this model, each agent has a

preference list over potential partners. Gale and Shapley [7] proved

that if there does not exist a tie in the preference lists (i.e., the pref-

erence lists are strict), then there always exists a stable matching

and we can find a stable matching in polynomial time.

However, if there exist ties in the preference lists, then the situa-

tion dramatically changes (see, e.g., [12] and [21, Chapter 3] for a

survey of stable matchings with ties). For the stable matching prob-

lem with ties, three stability concepts were proposed by Irving [8].

The first concept is called weak stability. This stability concept

guarantees that there does not exist an unmatched pair {a,b} such
that a (resp., b) prefers b (resp., a) to the current partner. Irving [8]

proved that there always exists a weakly stable matching and we

can find a weakly stable matching in polynomial time by slightly
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modifying the algorithm of Gale and Shapley [7]. The second con-

cept is called strong stability. This stability concept guarantees that

there does not exist an unmatched pair {a,b} such that (i) a prefers

b to the current partner, and (ii) b prefers a to the current partner,

or is indifferent between a and the current partner. The last concept
is called super-stability. This stability concept guarantees that there

does not exist an unmatched pair {a,b} such that a (resp., b) prefers
b (resp., a) to the current partner, or is indifferent between b (resp.,

a) and the current partner.

One of the most notable differences between the last two con-

cepts and the stability concept in the stable matching problem with

strict preferences is that there does not necessarily exist a stable

matching [8]. From the algorithmic viewpoint, it is important to con-

sider the problem of checking the existence of matchings satisfying

these stability conditions. In the one-to-one setting, Irving [8] pro-

posed polynomial-time algorithms for finding a super-stable match-

ing and a strongly stable matching (see also [20]). In the many-to-

one setting, Irving, Manlove, and Scott [9] proposed a polynomial-

time algorithm for finding a super-stable matching, and Irving,

Manlove, and Scott [10] proposed a polynomial-time algorithm for

finding a strongly stable matching. Kavitha, Mehlhorn, Michail, and

Paluch [17] proposed faster algorithms for strong stability. In the

many-to-many setting, Scott [26] considered super-stability, and

Malhotra [19] and Chen and Ghosh [2] considered strong stability.

Olaosebikanand and Manlove [23] considered super-stability in the

student-project allocation problem with ties.

In this paper, we focus on the situation in which we are given

a master list and the preference list of each hospital over resi-

dents is derived from this master list. Master lists are motivated by

real-world applications (see [11]). In the one-to-one setting, Irving,

Manlove, and Scott [11] gave simple polynomial-time algorithms

for finding a super-stable matching and a strongly stable match-

ing. O’Malley [24] gave polynomial-time algorithms for finding a

super-stable matching and a strongly stable matching in the many-

to-one setting. Furthermore, Kamiyama [14] gave polynomial-time

algorithms for finding a super-stable matching and a strongly sta-

ble matching in the many-to-one setting with matroid constraints.

Matroids can represent not only capacity constraints but also more

complex constraints including hierarchical capacity constraints.

Thus, matroid generalizations are important from not only the

theoretical viewpoint but also the practical viewpoint. Matroid gen-

eralizations of several matching problems have been extensively

studied (see, e.g., [4–6, 13–16, 18, 22, 27]).

In this paper, we consider the problem of finding a many-to-

many super-stable matching and a many-to-many strongly stable

matching with master preference lists and matroid constraints. Our

results generalize the results of Kamiyama [14]. More specifically, in

Session 2E: Game Theory 1 AAMAS 2019, May 13-17, 2019, Montréal, Canada

583



the setting of [14], each resident is assigned to at most one hospital.

On the other hand, in our setting, each resident can be assigned

to multiple hospitals, and the set of hospitals that this resident is

assigned to must form an independent set of a matroid. Notice that

the extension from the many-to-one case to the many-to-many case

is generally a non-trivial task (see, e.g., [1, 2]).

2 PRELIMINARIES
For each set X and each element x , we define X + x := X ∪ {x}
and X − x := X \ {x}, respectively. For each positive integer n, we
define [n] := {1, 2, . . . ,n}. Define [0] := ∅.

A pair M = (U ,I) of a finite setU and a non-empty family I of

subsets ofU is called a matroid if for every pair of subsets I , J ofU ,

the following conditions are satisfied.

(I1) If I ∈ I and J ⊆ I , then J ∈ I.

(I2) If I , J ∈ I and |I | < |J |, then there exists an element u in

J \ I such that I + u ∈ I.

A subset of U belonging to I is called an independent set of M.

In this paper, we are given a finite simple (not necessarily com-

plete) bipartite graph G = (V , E) such that its vertex set V is parti-

tioned into disjoint subsets R and H , and each edge in E connects

a vertex in R and a vertex in H . We call a vertex in R (resp., H ) a

resident (resp., hospital). For each resident r in R and each hospital h
inH , if there exists an edge in E connecting r and h, then we denote

by (r ,h) this edge. For each vertexv inV and each subset F of E, we
denote by F (v) the set of edges in F that are incident to v . For each
resident r in R, we are given a matroid Pr = (E(r ), Fr ) such that for

every edge e in E(r ), {e} ∈ Fr . Furthermore, we are given a matroid

Q = (E,G) such that for every edge e in E, {e} ∈ G. We assume

that we can decide whether each subset of E is an independent set

of the above matroids in time bounded by a polynomial in the input

size of G. (That is, we consider the oracle model.)

For each resident r in R, we are given a complete and transitive

binary relation ≿r on E(r ). Furthermore, we are given a complete

and transitive binary relation ≿H on R. For each resident r in R and

each pair of edges e, f in E(r ) such that e ≿r f and f �r e (resp.,
e ≿r f and f ≿r e), we write e ≻r f (resp., e ∼r f ). For each pair

of residents r , s in R such that r ≿H s and s �H r (resp., r ≿H s and
s ≿H r ), we write r ≻H s (resp., r ∼H s).

A subsetM of E is called a matching in G if the following condi-

tions are satisfied.

(M1) M(r ) ∈ Fr for every resident r in R.
(M2) M ∈ G.

For each matchingM inG and each edge e = (r ,h) in E \M , we say

that r weakly prefers (resp., strongly prefers) e onM if at least one

of the following conditions is satisfied.

(R1) M(r ) + e ∈ Fr .

(R2) There exists an edge f inM(r ) such thatM(r ) + e − f ∈ Fr
and e ≿r f (resp., e ≻r f ).

For each matchingM inG and each edge e = (r ,h) in E \M , we say

that H weakly prefers (resp., strongly prefers) e onM if at least one

of the following conditions is satisfied.

(H1) M + e ∈ G.

(H2) There exists an edge (s,p) inM such thatM + e − (s,p) ∈ G

and r ≿H s (resp., r ≻H s).

A matchingM in G is said to be super-stable if there does not exist
an edge (r ,h) in E\M such that r andH weakly prefer (r ,h) onM . A

matchingM inG is said to be strongly stable if there does not exist an
edge (r ,h) in E \M such that r andH weakly prefer (r ,h) onM , and

at least one of r and H strongly prefers (r ,h) onM . The goal of the

super-stable (resp., strongly stable) matching problem is to decide

whether there exists a super-stable (resp., strongly stable) matching

inG, and find a super-stable (resp., strongly stable) matching if a

super-stable (resp., strongly stable) matching exists.

2.1 Notation
We denote by R1,R2, . . . ,Rn the partition of R satisfying the fol-

lowing conditions.

• For every integer i in [n] and every pair of residents r , s in
Ri , r ∼H s .

• For every pair of integers i1, i2 in [n] such that i1 < i2 and
every pair of residents r in Ri1 and s in Ri2 , r ≻H s .

Then for each integer i in [n], we define R[i] :=
⋃i
x=1 Rx .

For each resident r in R, we denote by E1r , E
2

r , . . . , E
mr
r the parti-

tion of E(r ) satisfying the following conditions.

• For every integer i in [mr ] and every pair of edges e, f in Eir ,
e ∼r f .

• For every pair of integers i1, i2 in [mr ] such that i1 < i2 and

every pair of edges e in Ei1r and f in Ei2r , e ≻r f .

Then for each resident r in R and each integer i in [mr ], we define

Er [i] :=
⋃i
x=1 E

x
r . For each resident r in R, we define Er [0] := ∅.

2.2 Example
Here we give an example of our model. Assume that we are given

a positive integer ur for each resident r in R, and we are given a

positive integer uh for each hospital h in H . Then for each resident

r in R, we define Fr as the family of subsets F of E(r ) such that

|F | ≤ ur . Furthermore, we define G as the family of subsets F of E
such that |F (h)| ≤ qh for every hospital h in H . Then a subsetM of

E is a matching in G if the following conditions are satisfied.

• |M(r )| ≤ ur for every resident r in R.
• |M(h)| ≤ uh for every hospital h in H .

Assume that we are given a matchingM inG and an edge e = (r ,h)
in E \M . Then r weakly (resp., strongly) prefers e onM if at least

one of the following conditions is satisfied.

• |M(r )| < ur .
• e ≿r f (resp., e ≻r f ) for some edge f inM(r ).

Furthermore, H weakly (resp., strongly) prefers e onM if at least

one of the following conditions is satisfied.

• |M(h)| < uh .
• r ≿H s (resp., r ≻H s) for some edge (s,h) inM(h).

Thus, our problem in this setting can be regarded as a many-to-

many generalization of the hospitals/residents problem with ties

and master lists.

3 MATROIDS
Assume that we are given a matroid M = (U ,I). A subset C of

U is called a circuit of M if C is not an independent set of M, but
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every proper subset of C is an independent set ofM. The following

property of circuits is known.

Lemma 3.1 (See, e.g., [25, Lemma 1.1.3]). Assume that we are
given a matroidM = (U ,I). Then for every pair of distinct circuits
C1,C2 of M such that C1 ∩C2 , ∅ and every element u in C1 ∩C2,
there exists a circuit C of M such that C ⊆ (C1 ∪C2) \ {u}.

Assume that we are given a matroid M = (U ,I) and an inde-

pendent set I ofM. It is not difficult to see that for every element

u in U \ I such that I + u < I, I + u contains a circuit of M as a

subset, and (I1) implies that u belongs to this circuit. Furthermore,

Lemma 3.1 implies that such a circuit is uniquely determined. We

call this circuit the fundamental circuit of u with respect to I and
M, and we denote by CM(u, I ) this circuit. It is well known (see,

e.g., [25, p.20, Exercise 5]) that for every element u in U \ I such
that I + u < I, CM(u, I ) is the set of elementsw in I + u such that

I + u −w ∈ I. For each element u inU \ I such that I + u < I, we
define DM(u, I ) := CM(u, I ) − u.

For each matchingM inG and each edge e = (r ,h) in E \M such

thatM(r ) + e < Fr , (R2) can be restated as follows.

(R2) e ≿r f (resp., e ≻r f ) for some edge f in DPr (e,M(r )).

For each matching M in G and each edge e = (r ,h) in E \M such

thatM + e < G, (H2) can be restated as follows.

(H2) r ≿H s (resp., r ≻H s) for some edge (s,p) in DQ(e,M).

We can easily prove the following lemma by Lemma 3.1.

Lemma 3.2. Assume that we are given a matroid M = (U ,I),
independent sets I , J of M such that I ⊆ J , and an element u inU \ J
such that I + u < I. Then J + u < I and CM(u, I ) = CM(u, J ).

Lemma 3.3 (See, e.g., [14, Lemma 2]). Assume that we are given
a matroid M = (U ,I), circuits C,C1,C2, . . . ,Cx of M, and distinct
elements u1,u2, . . . ,ux inU satisfying the following conditions.

• ui ∈ C ∩Ci for every integer i in [x].
• ui1 < Ci2 for any pair of distinct integers i1, i2 in [x].
• C \ (C1 ∪C2 ∪ · · · ∪Cx ) , ∅.

Then there exists a circuit C ′ of M such that C ′ is a subset of (C ∪

C1 ∪C2 ∪ · · · ∪Cx ) \ {u1,u2, . . . ,ux }.

Assume that we are given a matroidM = (U ,I). Then a maximal

independent set ofM is called a base ofM. The condition (I2) implies

that all bases ofM have the same size. For each subset X ofU , we

define I|X as the family of subsets I of X such that I ∈ I, and we

defineM|X := (X ,I|X ). It is known [25, p.20] that for every subset

X ofU ,M|X is a matroid. For each subset X ofU , we define rM(X )

as the size of a base of M|X . Define r(M) := rM(U ). Furthermore,

for each pair of disjoint subsets X , J of U , we define p(J ;X ) as

rM(J ∪ X ) − rM(X ). For each subset X ofU , we define I/X as the

family of subsets I of U \ X such that p(I ;X ) = |I |, and we define

M/X := (U \ X ,I/X ). It is known [25, Proposition 3.1.6] that for

every subset X ofU ,M/X is a matroid.

Lemma 3.4 (See, e.g., [25, Proposition 3.1.25]). Assume that we
are given a matroidM = (U ,I). Then for every pair of disjoint subsets
X ,Y ofU , (M/X )|Y = (M|(X ∪ Y ))/X .

Lemma 3.5 (See, e.g., [15, Lemma 1]). Assume that we are given
a matroid M = (U ,I), a subset X of U , and a base B of M|X . Then

for every subset I of U \ X , I is an independent set (resp., a base) of
M/X if and only if I ∪ B is an independent set (resp., a base) of M.

Assume that we are given k matroids M1 = (U1,I1), . . . ,Mk =

(Uk ,Ik ) such thatU1,U2, . . . ,Uk are pairwise disjoint. Define⊕k
i=1Ii :=

{
X ⊆

⋃k
i=1Ui

��� X ∩Ui ∈ Ii for every integer i in [k]
}
.⊕k

i=1Mi :=
(⋃k

i=1Ui ,
⊕k

i=1Ii

)
.

It is not difficult to see that

⊕k
i=1Mi is a matroid.

Assume that we are given two matroids M1 = (U ,I1) and M2 =

(U ,I2). A subset I of U is called a common independent set of M1

and M2 if I ∈ I1 ∩ I2. It is well known (see, e.g., [3]) that we can

find a maximum-size common independent set of M1 and M2 in

time bounded by a polynomial in |S | and EO, where EO is the time

required to decide whether X is an independent set ofMi for every

subset X ofU and every integer i in {1, 2}.

4 SUPER-STABLE MATCHINGS
In this section, we propose an algorithm for the super-stable match-

ing problem (see Algorithm 1). This algorithm is based on the

algorithm of [14] for the super-stable matching problem in the

many-to-one setting with matroid constraints. For proving that

Algorithm 1 is a polynomial-time algorithm, it is sufficient to prove

that we can decide whether each subset of E is an independent set

of the matroids in Algorithm 1 in time bounded by a polynomial

in the input size of G. We can easily prove this by Lemma 3.5 as

follows. At Line 7 of Algorithm 1, to check whether {e} is an inde-

pendent set of Zr /Dr [i − 1] for each edge e in Eir ∩At−1, it suffices

to find a base B of Zr |Dr [i − 1] and check whether {e} ∪ B is an

independent set of Zr . If the time complexity of the independence

oracle for the given matroids is EO, then it is not difficult to see

that we can implement Algorithm 1 in O(n |E |EO) time, where we

assume that EO = Ω(|E |) and max{|R |, |H |} ≤ |E |.
What remains is to prove the correctness of Algorithm 1. In the

rest of this section, we assume that Algorithm 1 halts when t = k .

Lemma 4.1. If Algorithm 1 outputsMn , thenMn is a super-stable
matching in G.

Proof. DefineM := Mn . For every resident r in R, sinceM(r ) =
Tr , Lines 12 and 13 of Algorithm 1 imply thatM(r ) ∈ Fr . Further-

more, Lines 16 to 19 imply thatM ∈ G. Thus,M is a matching inG .
What remains is to prove that M is super-stable. Let e = (r ,h) be
an edge in E \M . Notice that e < Tr . Assume that r ∈ Rz .

We first assume that e < Az−1. Then there exists an integer ℓ in

[z − 1] such that e ∈ Lℓ . Thus, Mℓ + e < G and s ≻H r for every
edge (s,p) in DQ(e,Mℓ). Furthermore, since Mℓ ⊆ M , Lemma 3.2

implies thatM + e < G and CQ(e,M) = CQ(e,Mℓ). Thus, for every

edge f = (s,p) in DQ(e,M), s ≻H r . This completes the proof.

We next consider the case where e ∈ Az−1 \Tr . Here we prove
thatM ∩ Er [i] is a base of Zr |Dr [i] for every integer i in [mr ]. Let

i be an integer in [mr ]. Since M(r ) = Tr , M ∩ Er [i] = Dr [i]. Since
M(r ) ∈ Fr , this and (I1) imply that Dr [i] ∈ Fr . Thus, Dr [i] is an
independent set of Zr |Dr [i]. Furthermore, for every independent

set I of Zr |Dr [i], I ⊆ Dr [i]. Thus, Dr [i] is a base of Zr |Dr [i].
Assume that e ∈ Exr . Since e < Tr , e < D

x
r . This implies that {e}

is not an independent set of Zr /Dr [x − 1]. SinceM ∩ Er [x − 1] is a
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Algorithm 1:

1 DefineM0 := ∅ and A0 := E.

2 Set t := 1.

3 while t ≤ n do
4 for each resident r in Rt do
5 Define Zr := Pr |At−1(r ) and Dr [0] := ∅.

6 for each integer i in [mr ] do
7 Define Di

r as the set of edges e in Eir ∩At−1 such
that {e} is an independent set of Zr /Dr [i − 1].

8 Define Dr [i] := Dr [i − 1] ∪ Di
r .

9 end
10 Define Tr := Dr [mr ].

11 end
12 if there exists a resident r in Rt such that Tr < Fr . then
13 Output null, and halt.

14 end
15 Define Ft :=

⋃
r ∈Rt Tr .

16 if Mt−1 ∪ Ft < G then
17 Output null, and halt.

18 end
19 DefineMt := Mt−1 ∪ Ft .

20 Define Lt as the set of edges (r ,h) in At−1 such that

r < R[t] andMt + (r ,h) < G.

21 Define At := At−1 \ Lt .

22 Set t := t + 1.

23 end
24 OutputMn , and halt.

base of Zr |Dr [x − 1], Lemma 3.5 implies that

(M ∩ Er [x − 1]) + e < Fr .

Thus,M(r ) + e < Fr . Furthermore, Lemma 3.2 implies that

CPr (e,M(r )) = CPr (e,M ∩ Er [x − 1]).

Thus, for every edge f in DPr (e,M(r )), f ≻r e . This completes the

proof. □

Recall that we assume that Algorithm 1 halts when t = k .

Lemma 4.2. Assume that k ∈ [n] and there exists a super-stable
matching in G. Then for every super-stable matching N in G and
every resident r in R[k], N (r ) ⊆ Tr .

Proof. An edge (r ,h) in E is called a bad edge if the following
conditions (i) to (iii) are satisfied. (i) r ∈ R[k]. (ii) (r ,h) < Tr . (iii)
There exists a super-stable matching N in G such that (r ,h) ∈ N .

For proving this lemma, it is sufficient to prove that there does

not exist a bad edge. We prove this by contradiction. Assume that

there exists a bad edge in E. For every bad edge (r ,h) in E such that

r ∈ Rℓ , one of the following statements holds.

• (r ,h) < Aℓ−1, i.e., (r ,h) ∈ Lz for some integer z in [ℓ − 1].

• (r ,h) ∈ Aℓ−1 \Tr .

We denote by ∆1 the set of integers ℓ in [k − 1] such that there

exists a bad edge in Lℓ . We denote by ∆2 the set of integers ℓ in [k]
such that for some resident r in Rℓ , there exists a bad edge (r ,h) in

Aℓ−1 \Tr . Notice that ∆1 ∪ ∆2 , ∅. For each integer i in {1, 2}, we

denote by zi the minimum integer in ∆i (if ∆i = ∅, then we define

zi := ∞).

We first assume that z1 < z2. Define z := z1. Let e = (r ,h) be a
bad edge in Lz . Furthermore, let N be a super-stable matching in

G such that e ∈ N . Since z ≤ k − 1, Lines 16 to 19 of Algorithm 1

imply that Mz ∈ G. Furthermore, since e ∈ Lz , Mz + e < G.

Thus, CQ(e,Mz ) is well-defined. DefineC := CQ(e,Mz ). Then since

C ⊆ N contradicts N ∈ G, C \ N , ∅. Since e ∈ Lz , r < R[z]. Thus,
for every edge (s,p) inC \N , s ≻H r follows from s ∈ R[z]. For each
edge f in C \ N such that N + f < G, we define Cf := CQ(f ,N ).

Claim 1. For any edge f in C \ N , N + f < G. Furthermore, for
every pair of edges f = (s,p) in C \ N and (ŝ, p̂) in Cf − f , ŝ ≻H s .

Proof. To prove this claim, we prove that for every edge f =
(s,p) in C \ N , N (s) ⊆ Mz . Assume that there exists an edge f =
(s,p) in C \ N such that N (s) ⊈ Mz . Let д be an edge in N (s) \Mz .

Since s ∈ R[z], s ∈ Rℓ for some integer ℓ in [z]. Assume that

д ∈ Aℓ−1 \Ts . Since N is super-stable and д ∈ N , z2 ≤ ℓ. However,

this contradicts z1 < z2. Thus, д < Aℓ−1 \Ts . If д ∈ Ts , then since

ℓ ≤ z ≤ k − 1, д ∈ Ts ⊆ Mz . This contradicts д ∈ N (s) \Mz . Thus,

д < Aℓ−1. This implies that there exists an integer j in [ℓ − 1] such

that д ∈ Lj . Since N is super-stable and д ∈ N , д is a bad edge.

Thus, j ∈ ∆1. Since j < ℓ ≤ z1, this contradicts the fact that z1 is
the minimum integer in ∆1. This completes the proof.

We are now ready to prove this claim. Assume that there exists

an edge f = (s,p) inC\N satisfying one of the following conditions.

(i) N + f ∈ G. (ii) N + f < G and there exists an edge (ŝ, p̂) inCf − f
such that s ≿H ŝ . Since N is super-stable, N (s) + f < Fs . Define

C ′
:= CPs (f ,N (s)). Since C ′ − f ⊆ N (s) and N (s) ⊆ Mz , C

′ ⊆ Mz .

However, this contradicts Mz (s) = Ts ∈ Fs . This completes the

proof. □

For any edge f = (s,p) in C \ N , since e ∈ N , e , f . Thus, for
every edge f = (s,p) in C \ N , since s ≻H r , e < Cf follows from

Claim 1. For every edge f in C \ N , f ∈ C ∩Cf . Thus, Lemma 3.3

implies that there exists a circuit C ′
of Q such that

C ′ ⊆ (C ∪C∗) \ (C \ N ),

where C∗
is

⋃
f ∈C\N Cf . Thus, since Cf − f ⊆ N for every edge f

inC \N ,C ′ ⊆ N . However, this contradicts N ∈ G. This completes

the proof.

We next assume that z2 ≤ z1. Define z := z2. Let r be a resident
in Rz such that there exists an edge e = (r ,h) in Az−1 \Tr . Let N
be a super-stable matching in G such that e ∈ N .

We first prove that N (r ) ⊆ Az−1. Assume that N (r ) ⊈ Az−1. Let
f be an edge in N (r ) \Az−1. Then there exists an integer ℓ in [z−1]

such that f ∈ Lℓ . Since N is super-stable and f ∈ N , ℓ ∈ ∆1. This

implies that z1 ≤ ℓ < z2. However, this contradicts z2 ≤ z1. This
completes the proof.

Assume that e ∈ Exr . Without loss of generality, we assume that

(Az−1 \Tr ) ∩ Eir ∩ N = ∅ (1)

for every integer i in [x − 1]. Since N (r ) ⊆ Az−1, (1) implies N ∩

Er [i] ⊆ Dr [i] for every integer i in [x − 1].

Claim 2. N ∩ Er [x − 1] is a base of Zr |Dr [x − 1].
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Proof. Define B := N ∩ Er [x − 1]. Since N (r ) ∈ Fr , (I1) implies

that B is an independent set of Zr |Dr [x − 1]. Assume that B is not

a base of Zr |Dr [x − 1]. Then (I2) implies that there exists an edge f
in Dr [x − 1] \ N such that B + f ∈ Fr . Assume that N (r ) + f < Fr .
Since B + f ∈ Fr , DPr (f ,N (r )) is not a subset of B. For every edge

д in DPr (f ,N (r )) \B, since f ∈ Er [x − 1] and д < Er [x − 1], f ≻r д.
Since N is super-stable, N + f < G and s ≻H r for every edge (s,p)
in DQ(f ,N ).

Since { f } ∈ G, DQ(f ,N ) , ∅. Thus, z ≥ 2. Since f ∈ Az−1 and
Az−1 = Az−2 \ Lz−1,Mz−1 + f ∈ G. In what follows, we prove that

DQ(f ,N ) ⊆ Mz−1. This contradictsMz−1 + f ∈ G. Let д = (s,p) be
an edge in DQ(f ,N ). Then it is sufficient to prove that д ∈ Mz−1.

Since s ≻H r , s ∈ Rℓ for some integer ℓ in [z − 1]. If we can prove

that N (s) ⊆ Ts , then д ∈ N (s) ⊆ Ts = Mz−1(s). This completes the

proof.

Assume that N (s) ⊈ Ts . Let д̂ be an edge in N (s) \Ts . Assume

that д̂ < Aℓ−1. Then there exists an integer j in [ℓ − 1] such that

д̂ ∈ Lj . Since N is super-stable and д̂ ∈ N , j ∈ ∆1. However, since

z1 ≤ j < ℓ < z2, this contradicts z2 ≤ z1. Thus, д̂ ∈ Aℓ−1. Recall

that д̂ < Ts . This implies that д̂ ∈ Aℓ−1 \Ts . Since N is super-stable

and д̂ ∈ N , ℓ ∈ ∆2. Since ℓ < z2, this contradicts the fact that z2 is
the minimum integer in ∆2. This completes the proof. □

Define

B := (N ∩ Er [x − 1]) + e .

Since N (r ) ∈ Fr , (I1) implies that B ∈ Fr . Recall that N (r ) ⊆ Az−1.
Thus, B is an independent set of Zr . Lemma 3.5 and Claim 2 imply

that {e} is an independent set of Zr /Dr [x − 1]. That is, e ∈ Dx
r .

This contradicts e < Tr . This completes the proof. □

Lemma 4.3. Assume that k ∈ [n] and there exists a super-stable
matching in G. Then for every super-stable matching N in G and
every resident r in R[k − 1], N (r ) = Tr .

Proof. Lemma 4.2 implies that for every super-stable matching

N inG and every resident r inR[k−1],N (r ) ⊆ Tr . Assume that there

exist a super-stable matchingN inG and a resident r inR[k−1] such
that N (r ) ⊊ Tr . Since Tr ,N (r ) ∈ Fr and |N (r )| < |Tr |, (I2) implies

that there exists an edge e in Tr \ N (r ) such that N (r ) + e ∈ Fr .

Thus, since N is super-stable, N + e < G and s ≻H r for every

edge (s,p) in DQ(e,N ). Assume that r ∈ Rz . Then since e ∈ Az−1,
Mz−1 + e ∈ G.

Let f = (s,p) be an edge in DQ(e,N ). Then since s ≻H r , there
exists an integer ℓ in [z − 1] such that s ∈ Rℓ . Thus, Lemma 4.2

implies that N (s) ⊆ Ts . This implies that f ∈ N (s) ⊆ Ts = Mz−1(s).
Thus, DQ(e,N ) ⊆ Mz−1. However, this contradicts Mz−1 + e ∈ G.

This completes the proof. □

Lemma 4.4. Assume that k ∈ [n] and there exists a super-stable
matching in G. Then for every super-stable matching N in G and
every resident r in Rk such that Tr ∈ Fr , N (r ) = Tr .

Proof. Let r be a resident in Rk such that Tr ∈ Fr . Notice that

Lemma 4.2 implies that N (r ) ⊆ Tr for every super-stable matching

N inG . Assume that there exist a super-stable matchingN inG such

that N (r ) ⊊ Tr . Since Tr ,N (r ) ∈ Fr and |N (r )| < |Tr |, (I2) implies

that there exists an edge e in Tr \ N (r ) such that N (r ) + e ∈ Fr .

Thus, since N is super-stable, N + e < G and s ≻H r for every edge

(s,p) in DQ(e,N ). Since e ∈ Ak−1,Mk−1 + e ∈ G.

Let f = (s,p) be an edge in DQ(e,N ). Then since s ≻H r , there
exists an integer ℓ in [k − 1] such that s ∈ Rℓ . Thus, Lemma 4.2

implies that N (s) ⊆ Ts . This implies that f ∈ N (s) ⊆ Ts = Mk−1(s).
Thus, DQ(e,N ) ⊆ Mk−1. However, this contradictsMk−1 + e ∈ G.

This completes the proof. □

Lemma 4.5. If Algorithm 1 outputs null, then there does not exist
a super-stable matching in G.

Proof. Notice that in this case, k ∈ [n]. We prove this lemma

by contradiction. Assume that there exists a super-stable matching

N in G.
We first assume that Algorithm 1 outputs null at Line 13. Since

Algorithm 1 outputs null when t = k , there exists a resident r in
Rk such thatTr < Fr . Recall that Lemma 4.2 implies that N (r ) ⊆ Tr .
Thus, since Tr < Fr and N (r ) ∈ Fr , N (r ) ⊊ Tr .

Since N (r ) ⊆ Tr , N ∩ Eir ⊆ Di
r for every integer i in [mr ]. Let x

be the minimum integer in [mr ] such that N ∩ Exr ⊊ Dx
r . Let e be

an edge in Dx
r \ N . Notice that N ∩ Eir = Di

r for every integer i in
[x − 1]. Since N (r ) ∈ Fr , (I1) implies that

N ∩ Er [x − 1] = Dr [x − 1]

is an independent set of Zr |Dr [x − 1]. Thus, since I ⊆ Dr [x − 1]

for every independent set I of Zr |Dr [x − 1], N ∩ Er [x − 1] is a base

of Zr |Dr [x − 1]. This and e ∈ Dx
r imply that

(N ∩ Er [x − 1]) + e ∈ Fr .

This implies that if N (r ) + e < Fr , then DPr (e,N (r )) is not a subset
of Er [x − 1]. Furthermore, since e ∈ Exr , e ≿r f for every edge f
in DPr (e,N (r )) \ Er [x − 1]. Since N is super-stable, N + e < G and

s ≻H r for every edge (s,p) in DQ(e,N ).

Since e ∈ Tr , e ∈ Ak−1. Thus,Mk−1 + e ∈ G. On the other hand,

Lemma 4.3 implies that N (s) = Ts = Mk−1(s) for every resident s
in R[k − 1]. Furthermore, since r ∈ Rk , s ∈ R[k − 1] for every edge

(s,p) in DQ(e,N ). Thus, CQ(e,N ) is a subset ofMk−1 + e . However,
this contradictsMk−1 + e ∈ G. This completes the proof.

We next assume that Algorithm 1 outputs null at Line 17. As-
sume that there exists a super-stable matching N in G. Lines 12
and 13 of Algorithm 1 imply that Tr ∈ Fr for every resident r in
R[k]. Thus, Lemmas 4.3 and 4.4 imply thatMk−1 ∪ Fk ⊆ N . Since

Algorithm 1 outputs null at Line 17,Mk−1 ∪ Fk < G. Thus, N < G.

This contradicts N ∈ G. This completes the proof. □

Theorem 4.6. Algorithm 1 can solve the super-stable matching
problem.

Proof. This theorem follows from Lemmas 4.1 and 4.5. □

5 STRONGLY STABLE MATCHINGS
In this section, we propose an algorithm for the strongly stable

matching problem (see Algorithm 2). This algorithm is based on

the algorithm of [14] for the strongly stable matching problem in

the many-to-one setting with matroid constraints. For proving that

Algorithm 2 is a polynomial-time algorithm, it is sufficient to prove

that we can decide whether each subset of E is an independent set

of the matroids in Algorithm 2 in time bounded by a polynomial

in the input size of G. We can easily prove this by Lemma 3.5 as

Algorithm 1. By using the algorithm of [3] at Line 19 of Algorithm 2,

Session 2E: Game Theory 1 AAMAS 2019, May 13-17, 2019, Montréal, Canada

587



we can implement Algorithm 2 inO(|E |3.5EO) time, where EO is the

time complexity of the independence oracle for the given matroids.

Algorithm 2:

1 DefineM0 := ∅, A0 := E, and F [0] := ∅.

2 Set t := 1.

3 while t ≤ n do
4 for each resident r in Rt do
5 Define Zr := Pr |At−1(r ) and Dr [0] := ∅.

6 for each integer i in [mr ] do
7 Define Di

r as the set of edges e in Eir ∩At−1 such
that {e} is an independent set of Zr /Dr [i − 1].

8 Define Dr [i] := Dr [i − 1] ∪ Di
r .

9 Define Zir := (Zr /Dr [i − 1])|Di
r .

10 end
11 Define Tr := Dr [mr ] and Sr :=

⊕
i ∈[mr ]

Zir .
12 end
13 Define Ft :=

⋃
r ∈Rt Tr and F [t] := F [t − 1] ∪ Ft .

14 Define Qt := (Q/F [t − 1])|Ft .

15 Define σt :=
∑
r ∈Rt r(Sr ).

16 if r(Qt ) > σt then
17 Output null, and halt.

18 end
19 Find a maximum-size common independent set It of⊕

r ∈Rt Sr and Qt .

20 if |It | < σt then
21 Output null, and halt.

22 end
23 DefineMt := Mt−1 ∪ It .

24 Define Lt as the set of edges (r ,h) in At−1 such that

r < R[t] andMt + (r ,h) < G.

25 Define At := At−1 \ Lt .

26 Set t := t + 1.

27 end
28 OutputMn , and halt.

What remains is to prove the correctness of Algorithm 2. In the

rest of this section, we assume that Algorithm 2 halts when t = k .

Lemma 5.1. For every integer ℓ in [k − 1], every resident r in Rℓ ,
and every integer i in [mr ], Iℓ ∩ Dr [i] is a base of Zr |Dr [i].

Proof. Let ℓ be an integer in [k − 1]. Since Iℓ is an indepen-

dent set of

⊕
r ∈Rℓ

Sr , |Iℓ | ≤ σℓ . Lines 20 and 21 of Algorithm 2

imply that σℓ ≤ |Iℓ |. Thus, |Iℓ | = σℓ . Furthermore, since Iℓ is an

independent set of

⊕
r ∈Rℓ

Sr , Iℓ(r ) is an independent set of Sr for

every resident r in Rℓ . Thus, |Iℓ(r )| = r(Sr ) for every resident r in
Rℓ . This implies that Iℓ(r ) is a base of Sr for every resident r in Rℓ .
Thus, Iℓ ∩ Di

r is a base of Zir for every resident r in Rℓ and every

integer i in [mr ].

Let r be a resident in Rℓ . Let x be an integer in [mr ]. Assume

that Iℓ ∩Dr [x − 1] is a base of Zr |Dr [x − 1]. (That is, if x = 1, then

we make no assumption.) Notice that

Zr |Dr [x − 1] = (Zr |Dr [x])|Dr [x − 1].

Thus, since Lemma 3.4 implies that

Zxr = (Zr |Dr [x])/Dr [x − 1]

and Iℓ ∩ Dx
r is a base of Zxr , Lemma 3.5 imply that Iℓ ∩ Dr [x] is a

base of Zr |Dr [x]. This completes the proof. □

Lemma 5.2. For every integer ℓ in [k − 1],Mℓ is a base of Q|F [ℓ].

Proof. Let ℓ be an integer in [k − 1]. Since Iℓ is an independent

set ofQℓ , |Iℓ | ≤ r(Qℓ). Furthermore, Lines 16 and 20 of Algorithm 2

imply that r(Qℓ) ≤ σℓ and σℓ ≤ |Iℓ |. Thus, |Iℓ | = r(Qℓ). Since Iℓ is

an independent set of Qℓ , this implies that Iℓ is a base of Qℓ .

Assume thatMℓ−1 is a base of Q|F [ℓ − 1]. (That is, if ℓ = 1, then

we make no assumption.) Notice that

Q|F [ℓ − 1] = (Q|F [ℓ])|F [ℓ − 1].

Since Lemma 3.4 implies that

(Q/F [ℓ − 1])|Fℓ = (Q|F [ℓ])/F [ℓ − 1]

and Iℓ is a base of Qℓ = (Q/F [ℓ − 1])|Fℓ , Lemma 3.5 implies that

Mℓ−1 ∪ Iℓ is a base of Q|F [ℓ]. This completes the proof. □

Lemma 5.3. If Algorithm 2 outputs Mn , then Mn is a strongly
stable matching in G.

Proof. Notice that in this case, k = n + 1. DefineM := Mn . We

first prove that for every resident r in R,Mn (r ) ∈ Fr . For proving

this, it suffices to prove that for every integer ℓ in [n] and every

resident r in Rℓ , Iℓ(r ) ∈ Fr . Lemma 5.1 implies that for every

integer ℓ in [n] and every resident r in Rℓ , Iℓ ∩ Dr [mr ] is a base of

Zr |Dr [mr ]. Thus, for every integer ℓ in [n] and every resident r in
Rℓ , since Iℓ(r ) ⊆ Tr , Iℓ(r ) ∈ Fr . Furthermore, Lemma 5.2 implies

thatM ∈ G. Thus,M is a matching in G. What remains is to prove

thatM is strongly stable. Let e = (r ,h) be an edge in E \M . Assume

that r ∈ Rz . Let x be the integer in [mr ] such that e ∈ Exr .
We first assume that e < Az−1. Then e ∈ Lℓ for some integer ℓ

in [z − 1]. Thus, Mℓ + e < G and s ≻H r for every edge (s,p) in
DQ(e,Mℓ). SinceMℓ ⊆ M , Lemma 3.2 implies thatM + e < G and

CQ(e,M) = CQ(e,Mℓ). Thus, for every edge f = (s,p) in DQ(e,M),

s ≻H r . This completes the proof.

We next assume that e ∈ Az−1 \ Tr . In this case, e < Dx
r . This

implies that {e} is not an independent set of Zr /Dr [x − 1]. Since

M ∩ Er [x − 1] = Iz ∩ Dr [x − 1], Lemma 3.5 and Lemma 5.1 imply

that

(M ∩ Er [x − 1]) + e < Fr .

Thus,M(r ) + e < Fr . Furthermore, Lemma 3.2 implies that

CPr (e,M(r )) = CPr (e,M ∩ Er [x − 1]).

Thus, for every edge f in DPr (e,M(r )), f ≻r e . This completes the

proof.

Lastly, we consider the case where e ∈ Tr , i.e., e ∈ Dx
r . Lemma 5.1

implies thatM ∩ Er [x] is a base of Zr |Dr [x]. This implies that

(M ∩ Er [x]) + e < Fr .

Thus,M(r ) + e < Fr . Furthermore, Lemma 3.2 implies that

CPr (e,M(r )) = CPr (e,M ∩ Er [x]).

This implies that for every edge f in DPr (e,M(r )), f ≿r e . What

remains is to prove thatM + e < G and for every edge f = (s,p) in
DQ(e,M), s ≿H r .
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Since Lemma 5.2 implies thatMz is a base of Q|F [z] and e ∈ Fz ,
Mz + e < G. Thus,M + e < G. Lemma 3.2 implies that CQ(e,M) =

CQ(e,Mz ). Thus, for every edge (s,p) in DQ(e,M), s ∈ R[z]. This
completes the proof. □

Recall that we assume that Algorithm 2 halts when t = k .

Lemma 5.4. Assume that k ∈ [n] and there exists a strongly stable
matching in G. Then for every strongly stable matching N in G and
every resident r in R[k], N (r ) ⊆ Tr .

Proof. An edge (r ,h) in E is called a bad edge if the following
conditions (i) to (iii) are satisfied. (i) r ∈ R[k]. (ii) (r ,h) < Tr . (iii)
There exists a strongly stable matching N inG such that (r ,h) ∈ N .

For proving this lemma, it is sufficient to prove that there does

not exist a bad edge. We prove this by contradiction. Assume that

there exists a bad edge in E. For every bad edge (r ,h) in E such that

r ∈ Rℓ , one of the following statements holds.

• (r ,h) < Aℓ−1, i.e., (r ,h) ∈ Lz for some integer z in [ℓ − 1].

• (r ,h) ∈ Aℓ−1 \Tr .

We denote by ∆1 the set of integers ℓ in [k − 1] such that there

exists a bad edge in Lℓ . We denote by ∆2 the set of integers ℓ in [k]
such that for some resident r in Rℓ , there exists a bad edge (r ,h) in
Aℓ−1 \Tr . Notice that ∆1 ∪ ∆2 , ∅. For each integer i in {1, 2}, we

denote by zi the minimum integer in ∆i (if ∆i = ∅, then we define

zi := ∞).

We first consider the case where z1 < z2. Define z := z1. Let
e = (r ,h) be a bad edge in Lz . Furthermore, let N be a strongly

stable matching in G such that e ∈ N . Since z ≤ k − 1, Lemma 5.2

implies that Mz ∈ G. Furthermore, since e ∈ Lz , Mz + e < G.

Thus, CQ(e,Mz ) is well-defined. DefineC := CQ(e,Mz ). Then since

C ⊆ N contradicts N ∈ G, C \ N , ∅. Since e ∈ Lz , r < R[z]. Thus,
for every edge (s,p) inC \N , s ≻H r follows from s ∈ R[z]. For each
edge f in C \ N such that N + f < G, we define Cf := CQ(f ,N ).

Claim 3. For every edge f = (s,p) inC\N such thatN (s)+ f < Fs ,
there exists an edge д in DPs (f ,N (s)) such that f ≿s д.

Proof. We first prove that N (s) ⊆ Ts for every edge f = (s,p)
in C \ N . Assume that there exists an edge f = (s,p) in C \ N such

that N (s) ⊈ Ts . Let д be an edge in N (s) \Ts . Since s ∈ R[z], s ∈ Rℓ
for some integer ℓ in [z]. Assume that д ∈ Aℓ−1 \ Ts . Then since

N is strongly stable and д ∈ N , z2 ≤ ℓ. However, this contradicts

z1 < z2. Thus, д < Aℓ−1 \Ts . Since д < Ts , д < Aℓ−1. This implies

that there exists an integer j in [ℓ − 1] such that д ∈ Lj . Since N is

strongly stable and д ∈ N , д is a bad edge. Thus, j ∈ ∆1. However,

since j < ℓ ≤ z1, this contradicts the fact that z1 is the minimum

integer in ∆1. This completes the proof.

We now ready to prove this claim. Let f = (s,p) be an edge in

C \ N such that N (s) + f < Fs . Assume that f ∈ Exs . Then since

f ∈ C , f ∈ Ts . Thus, f ∈ Dx
s . Since N (s) ⊆ Ts ,

N ∩ Es [x − 1] ⊆ Ds [x − 1].

Thus, since (I1) implies that N ∩ Es [x − 1] is an independent set of

Zr |Ds [x − 1], (I2) implies that there exists a base B of Zr |Ds [x − 1]

such that N ∩ Es [x − 1] ⊆ B. Since f ∈ Dx
s , Lemma 3.5 implies that

B + f ∈ Fs . This and (I1) imply that

(N ∩ Es [x − 1]) + f ∈ Fs .

Thus, DPs (f ,N (s)) is not a subset of Es [x − 1]. Let д be an edge in

DPs (f ,N (s)) \ Es [x − 1]. Since f ∈ Exs and д < Es [x − 1], f ≿s д.
This completes the proof. □

Claim 4. For any edge f in C \ N , N + f < G. Furthermore, for
every pair of edges f = (s,p) in C \ N and (ŝ, p̂) in Cf − f , ŝ ≿H s .

Proof. Assume that there exists an edge f = (s,p) inC \N such

that one of the following conditions is satisfied. (i) N + f ∈ G. (ii)

N + f < G and there exists an edge (ŝ, p̂) inCf − f such that s ≻H ŝ .
Since N is strongly stable, N (s)+ f < Fs . Claim 3 implies that there

exists an edge д in DPs (f ,N (s)) such that f ≿s д. This contradicts
that fact that N is strongly stable. This completes the proof. □

For any edge f = (s,p) in C \ N , since e ∈ N , e , f . Thus, for
every edge f = (s,p) in C \ N , since s ≻H r , e < Cf follows from

Claim 4. For every edge f in C \ N , f ∈ C ∩Cf . Thus, Lemma 3.3

implies that there exists a circuit C ′
of Q such that

C ′ ⊆ (C ∪C∗) \ (C \ N ),

where C∗
is

⋃
f ∈C\N Cf . Thus, since Cf − f ⊆ N for every edge f

in C \ N , C ′
is a subset of N . This contradicts the fact that N ∈ G.

This completes the proof.

We next consider the case where z2 ≤ z1. Define z := z2. Let r be
a resident in Rz such that there exists an edge e = (r ,h) inAz−1 \Tr .
Let N be a strongly stable matching in G such that e ∈ N .

Here we prove that N (s) ⊆ Aℓ−1 for every integer ℓ in [z] and
every resident s in Rℓ . Assume that there exist an integer ℓ in [z]
and a resident s in Rℓ such that N (s) ⊈ Aℓ−1. Furthermore, let f
be an edge in N (s) \Aℓ−1. Then there exists an integer j in [ℓ − 1]

such that f ∈ Lj . Since N is strongly stable and f ∈ N , j ∈ ∆1. This

implies that z1 ≤ j < ℓ ≤ z2. This contradicts z2 ≤ z1.
We next prove that N (s) ⊆ Ts for every integer ℓ in [z − 1] and

every resident s in Rℓ . Assume that there exist an integer ℓ in [z−1]

and a resident s in Rℓ such that N (s) ⊈ Ts . Furthermore, let f be

an edge in N (s) \Ts . Then since N (s) ⊆ Aℓ−1, f ∈ Aℓ−1 \Ts . Since
N is strongly stable and f ∈ N , ℓ ∈ ∆2. This contradicts the fact

that z2 is the minimum integer in ∆2. This completes the proof.

Assume that e ∈ Exr . Without loss of generality, we assume that

(Az−1 \Tr ) ∩ Eir ∩ N = ∅ (2)

for every integer i in [x − 1]. Since N (r ) ⊆ Az−1, (2) implies N ∩

Er [i] ⊆ Dr [i] for every integer i in [x − 1].

Claim 5. N ∩ Er [x − 1] is a base of Zr |Dr [x − 1].

Proof. We prove this claim by contradiction. Define B := N ∩

Er [x − 1]. Since N (r ) ∈ Fr , (I1) implies that B is an independent set

ofZr |Dr [x−1]. Assume thatB is not a base ofZr |Dr [x−1]. Then (I2)
implies that there exists an edge f inDr [x−1]\N such that B+ f ∈

Fr . Assume that N (r ) + f < Fr . Since B + f ∈ Fr , DPr (f ,N (r ))
is not a subset of B. For every edge д in DPr (f ,N (r )) \ B, since
f ∈ Er [x − 1] and д < Er [x − 1], f ≻r д. Thus, since N is strongly

stable, N + f < G.

Since f ∈ Az−1,Mz−1 + f ∈ G. Thus, since Lemma 5.2 implies

thatMz−1 is a base of Q|F [z − 1], Lemma 3.5 implies that { f } is an
independent set of Q/F [z − 1]. Furthermore, since (I1) implies that

N ∩ F [z − 1] is an independent set of Q|F [z − 1], (I2) implies that
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there exists a base B̂ of Q|F [z − 1] such that N ∩ F [z − 1] ⊆ B̂. Since
Lemma 3.5 implies that B̂ + f ∈ G, (I1) implies that

(N ∩ F [z − 1]) + f ∈ G.

This implies that there exists an edge (s,p) in DQ(f ,N ) \ F [z − 1].

Assume that s ∈ Rℓ . If ℓ ≤ z − 1, then since N (s) ⊆ Ts , (s,p) ∈ Fℓ .
This contradicts (s,p) < F [z − 1]. Thus, s < R[z − 1]. Since r ∈ Rz ,
r ≿H s . However, this contradicts the fact that N is strongly stable.

This completes the proof. □

Define

B := (N ∩ Er [x − 1]) + e .

Since N (r ) ∈ Fr , (I1) implies that B ∈ Fr . Recall that N (r ) ⊆ Az−1.
Thus, B is an independent set of Zr . Lemma 3.5 and Claim 5 imply

that {e} is an independent set of Zr /Dr [x − 1], i.e., e ∈ Dx
r . This

contradicts e < Tr . This completes the proof. □

Lemma 5.5. Assume that k ∈ [n] and there exists a strongly stable
matching inG . Then for every strongly stable matching N inG , every
resident r in R[k], and every integer i in [mr ], N ∩ Eir is a base of Zir .

Proof. Assume that we are given a strongly stable matching N
in G, a resident r in R[k], and an integer x in [mr ]. Furthermore,

we assume that for every integer i in [x − 1], N ∩ Eir is a base of Zxr .
(That is, if x = 1, then we make no assumption.) Then Lemmas 3.4

and 3.5 imply that N ∩ Er [x − 1] is a base of Zr |Dr [x − 1]. Since

N (r ) ∈ Fr and N (r ) ⊆ Tr follows from Lemma 5.4, (I1) implies that

N ∩Er [x] is an independent set of Zr |Dr [x]. Thus, Lemmas 3.4 and

3.5 imply that N ∩ Exr is an independent set of Zxr . Assume that

N ∩ Exr is not a base of Zxr . Then (I2) implies that there exists an

edge e in Dx
r \N such that (N ∩Exr )+e is an independent set of Zxr .

Lemmas 3.4 and 3.5 imply that (N ∩ Er [x]) + e is an independent

set of Zr |Dr [x]. Thus, if N (r ) + e < Fr , then there exists an edge f
in DPr (e,N (r )) such that e ≻r f . Thus, since N is strongly stable,

N + e < G.

Assume that r ∈ Rz . Since e ∈ Az−1,Mz−1 + e ∈ G. Thus, since

Lemma 5.2 implies that Mz−1 is a base of Q|F [z − 1], Lemma 3.5

implies that {e} is an independent set of Q/F [z − 1]. Furthermore,

since (I1) implies that N ∩ F [z − 1] is an independent set of Q|F [z −
1], (I2) implies that there exists a base B of Q|F [z − 1] such that

N ∩ F [z − 1] ⊆ B. Lemma 3.5 implies that B + e ∈ G. Thus, (I1)

implies that

(N ∩ F [z − 1]) + e ∈ G.

Thus, there exists an edge (s,p) inDQ(e,N ) such that (s,p) < F [z−1].
Assume that s ∈ Rℓ . If ℓ ≤ z − 1, then since N (s) ⊆ Ts follows from
Lemma 5.4, (s,p) ∈ Fℓ . This contradicts (s,p) < F [z − 1]. Thus,

s < R[z − 1]. Since r ∈ Rz , r ≿H s . However, this contradicts the
fact that N is strongly stable. This completes the proof. □

Lemma 5.6. Assume that k ∈ [n] and there exists a strongly stable
matching in G. Then for every strongly stable matching N in G and
every integer ℓ in [k], N ∩ Fℓ is a base of Qℓ .

Proof. Assume that we are given a strongly stable matching

N in G and an integer ℓ in [k]. Furthermore, we assume that N ∩

F [ℓ − 1] is a base of Q|F [ℓ − 1]. (That is, if ℓ = 1, then we make no

assumption.) Notice that (I1) implies thatN ∩F [ℓ] is an independent
set of Q|F [ℓ]. Thus, Lemmas 3.4 and 3.5 imply that N ∩ Fℓ is an

independent set of Qℓ . Assume that N ∩ Fℓ is not a base of Qℓ .

Then Lemma 3.5 implies that N ∩ F [ℓ] is not a base of Q|F [ℓ]. Thus,
(I2) implies that there exists an edge e = (r ,h) in F [ℓ] \N such that

(N ∩ F [ℓ]) + e ∈ G. Thus, if N + e < G, then DQ(e,N ) ⊈ F [ℓ]. Let
f = (s,p) be an edge in DQ(e,N ) \ F [ℓ]. Then Lemma 5.4 implies

that s < R[ℓ]. Since r ∈ R[ℓ], this implies that r ≻H s . Thus, since
N is strongly stable, this implies that N (r ) + e < Fr .

Assume that e ∈ Exr . Define B := N ∩ Er [x − 1]. It follows from

Lemma 5.4 that B ⊆ Dr [x − 1]. Furthermore, since N (r ) ∈ Fr , (I1)

implies that B ∈ Fr . Thus, (I2) implies that there exists a base of

B̂ of Zr |Dr [x − 1] such that B ⊆ B̂. Since e ∈ Exr ∩ F [ℓ] = Dx
r , it

follows from Lemma 3.5 that B̂ + e ∈ Fr . Thus, (I1) implies that

B + e ∈ Fr . This implies that DPr (e,N (r )) ⊈ B. Thus, there exists
an edge f in DPr (e,N (r )) such that f < Er [x − 1]. This implies that

since e ∈ Exr , e ≿r f . However, this contradicts the fact that N is

strongly stable. This completes the proof. □

Lemma 5.7. If Algorithm 2 outputs null, then there does not exist
a strongly stable matching in G.

Proof. Notice that in this case, k ∈ [n]. We first consider the

case where Algorithm 2 outputs null at Line 17. That is, r(Qk ) >

σk . Assume that there exists a strongly stable matching N in G.
Lemma 5.6 implies that N ∩ Fk is a base of Qk . Thus, |N ∩ Fk | =
r(Qk ). On the other hand, for every resident r in Rk and every

integer i in [mr ], Lemma 5.5 implies that N ∩ Eir is an independent

set of Zir . This implies that for every resident r in Rk , N (r ) is an
independent set of Sr . Thus, (I1) implies that for every resident r
in Rk , N (r ) ∩ Fk is an independent set of Sr . Thus, |N ∩ Fk | ≤ σk .
This contradicts r(Qk ) > σk .

We next assume that Algorithm 2 outputs null at Line 21. That
is, |Ik | < σk . Assume that there exists a strongly stable matching

N inG . Lemma 5.5 implies that for every resident r in Rk , N (r ) is a
base of Sr . Furthermore, Lemma 5.4 implies that for every resident

r in Rk , N (r ) = N (r ) ∩ Fk . Thus, |N ∩ Fk | = σk . On the other hand,

since Lemma 5.6 implies that N ∩ Fk is a common independent set

of

⊕
r ∈Rk Sr and Qk , |N ∩ Fk | ≤ |Ik |. This contradicts |Ik | < σk .

This completes the proof. □

Theorem 5.8. Algorithm 2 can solve the strongly stable matching
problem.

Proof. This theorem follows from Lemmas 5.3 and 5.7. □

6 CONCLUSION
In this paper, we consider the problem of finding a many-to-many

super-stable matching and a many-to-many strongly stable match-

ing with master preference lists and matroid constraints, and we

prove that these problems can be solved in polynomial time. It

is interesting to clarify whether the results in this paper can be

extended to the general preference list case.
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