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ABSTRACT

How should a firm allocate its limited interviewing resources to

select the optimal cohort of new employees from a large set of job

applicants? How should that firm allocate cheap but noisy resume

screenings and expensive but in-depth in-person interviews? We

view this problem through the lens of combinatorial pure explo-

ration (CPE) in the multi-armed bandit setting, where a central

learning agent performs costly exploration of a set of arms be-

fore selecting a final subset with some combinatorial structure.

We generalize a recent CPE algorithm to the setting where arm

pulls can have different costs and return different levels of informa-

tion. We then prove theoretical upper bounds for a general class

of arm-pulling strategies in this new setting. We apply our general

algorithm to a real-world problem with combinatorial structure: in-

corporating diversity into university admissions. We take real data

from admissions at one of the largest US-based computer science

graduate programs and show that a simulation of our algorithm

produces a cohort with hiring overall utility while spending compa-

rable budget to the current admissions process at that university.
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1 INTRODUCTION

How should a firm, school, or fellowship committee allocate its

limited interviewing resources to select the optimal cohort of new

employees, students, or awardees from a large set of applicants?

Here, the central decision maker must first form a belief about the

true quality of an applicant via costly information gathering, and

then select a subset of applicants that maximizes some objective

function. Furthermore, various types of information gathering can

be performed—reviewing a résumé, scheduling a Skype interview,

Proc. of the 18th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2019), N. Agmon, M. E. Taylor, E. Elkind, M. Veloso (eds.), May 13–17, 2019,
Montreal, Canada. © 2019 International Foundation for Autonomous Agents and
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flying a candidate out for an all-day interview, and so on—to gather

greater amounts of information, but also at greater cost.

In this paper, we model the allocation of structured interviewing

resources and subsequent selection of a cohort as a combinatorial

pure exploration problem in the multi-armed bandit (MAB) setting.

Here, each applicant is an arm, and a decision maker can pull the
arm, at some cost, to receive a noisy signal about the underlying

quality of that applicant. We further model two different levels of

interviews as strong and weak pulls—the former costing more to

perform than the latter, but also resulting in a less noisy signal. We

introduce the strong-weak arm-pulls (SWAP) algorithm, generaliz-

ing an algorithm by Chen et al. [9], and provide theoretical upper

bounds for a general class of our various arm-pull strategies. To

complement these bounds, we provide simulation results compar-

ing pulling strategies on a toy problem that mimics our theoretical

assumptions.

We then validate our proposed method on a real-world scenario:

admitting an optimal cohort of graduate students. We take recent

data from one of the largest US-based Computer Science graduate

programs—applications including recommendation letters, state-

ments of purpose, transcripts, as well as the department’s reviews of

applications and final admissions decisions—and run experiments

comparing our algorithm’s performance under a variety of assump-

tions to reviews and decisions made in reality. We find that our

simulation of SWAP produced a cohort with higher top-K utility

using equivalent resources as in practice.

We also explore the empirical performance of our algorithm

optimizing a nonlinear objective function, motivated by the real-

world scenario of admitting a diverse cohort of graduate students.

In experiments, our simulations of SWAP increased a diversity score

(over gender and region of origin) with little loss in fit using roughly

the same amount of resources as in practice. This gain suggests

that SWAP can serve as a useful decision support tool to promote

diversity in practice.

2 RELATEDWORK

The multi-armed bandit (MAB) problem is a classic setting for

modeling sequential decision making; Bubeck et al. [7] provide an

in-depth overview. Previous work in the MAB setting has looked

at selecting a subset of arms to maximize some objective. Other

work focuses on varied rewards from and costs of pulling arms. To

the best of our knowledge, no work operates at the intersection

of these two spaces. Chen et al. [9] provide a general formulation

of top-K multi-armed bandits in the combinatorial setting. They

provide both a fixed confidence and a fixed budget algorithm. Our
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work builds on these contributions by adding varied—in terms of

cost and reward—arm pulls.

Several MAB formulations select an optimal subset using a single
type of arm pull, modeling decisions with focuses on different

problem features. Cao et al. [8] solve the top-K problem with MABs

for linear objectives. Locatelli et al. [22] address the thresholding

bandit problem, finding the arms above and below threshold τ with

precision ϵ . Jun et al. [17] identify the top-K set while pulling arms

in batches. Singla et al. [31] propose an algorithm for crowdsourcing

that hires a team for specific tasks, treating types of workers as

separate problems and an arm pull as a worker performing an action

with uniform cost.

To select the best subset while satisfying a submodular function,

Singla et al. [32] propose an algorithm maximizing an unknown

function accessed through noisy evaluations. Radlinski et al. [27]

learn a diverse ranking from the behavior patterns of different users

and then greedily select the next document to rank. They treat each

rank as a separate MAB instance, rather than our approach using

a single MAB to model the whole system. Yue and Guestrin [36]

introduce the linear submodular bandits problem to select diverse

sets of content in an online learning setting for optimizing a class

of feature-rich submodular utility models.

We are motivated by the observation that, in many real-world

settings, different levels of information gathering can be performed

at varying costs. Previous work uses stochastic costs in the MAB

setting. However, our costs are fixed for specific types of arm pulls.

Ding et al. [11] look at a MAB problem with variable rewards and

cost with budget constraints. When an arm is pulled, a random

reward is received, and a random cost is taken from the budget.

Similarly, Xia et al. [35] propose a batch-arm-pull MAB solution

to a problem with variable, random rewards and costs. Jain et al.

[15] use MABs with variable rewards and costs to select individual

workers in a crowdsourcing setting. They select workers to do

binary tasks with an assured accuracy for each, where workers’

costs are unknown.

Lux et al. [23] and Waters and Miikkulainen [33] use supervised

learning to model admissions decisions. They develop accurate

classifiers; none decide how to allocate interviewing resources or

maximize a certain objective, unlike our aim to select a more diverse

cohort via a principled semi-automated system.

The behavioral science literature shows that scoring candidates

via the same rubric, asking the same questions, and spending the

same amount of time are interviewing best practices [2, 13, 29, 34].

Such structured interviews reduce bias and provide better job success
predictors [18, 25].We incorporate these results into our model

through our assumption that we can spend the same budget and

get the same information gain across different arms.

3 PROBLEM FORMULATION

We now formally describe the stochastic multi-armed bandit set-

ting in which we operate. For exposition’s sake, we do so in the

context of a decision-maker reviewing a set of job applicants. How-

ever, the formulation itself is fully general. We represent a set of

n applications A as arms ai ∈ A for i ∈ [n]. Each arm has a true

utility, u(ai ) ∈ [0, 1], which is unknown; an empirical estimate

û(ai ) ∈ [0, 1] of that underlying true utility; and an uncertainty

bound rad(ai ). Once arm ai is pulled (e.g., application reviewed or

applicant interviewed), û(ai ) and rad(ai ) are updated.
The set of potential cohorts, or subsets of arms, is defined by

a decision classM ⊆ 2
[n]

. Note thatM need not be the power

set of arms, but can include cardinality and other constraints. The

total utility for a cohort is given by some linear functionw : Rn ×
M → R that takes as input the (unknown) true utilities u(·) of the
arms and the selected cohort. Throughout the paper, we assume

a maximization oracle, defined as Oracle(v) = arg maxM ∈Mw(M),
where v ∈ Rn is a vector of weights—in this case, estimated or true

utilities for each arm. Our overall goal is to accurately estimate the

true utilities of arms and then select the optimal subset of arms

using the maximization oracle.

Problem hardness. Following the notation of Chen et al. [9], we

define a gap score for each arm. For each arm a that is in the optimal

cohortM∗, the gap is the difference in optimality betweenM∗ and
the best set without a. For each arm a that is not in the optimal

setM∗, the gap is the sub-optimality of the best set that includes a.
Formally, the gap is defined as

∆a =

{
w(M∗) −maxM ∈M:a∈M w(M), if a < M∗

w(M∗) −maxM ∈M:a<M w(M), if a ∈ M∗.
(1)

This gap score serves as a useful signal for problem hardness,

which we use in our theoretical analysis. Formally, the hardness of

the problem can be defined as the sum of inverse squared gaps

H =
∑
a∈A

∆−2

a . (2)

Chen et al. defined the concept of width(M). When comparing

all combinations of two sets A,A′ ∈ M, where A , A′, define
dist(A,A′) = |A − A′ | + |A′ − A|. Therefore, define width(M) =
min{A,A′ |A,A′∈M∧A,A′ } dist(A,A′). In other words, the width is

the smallest distance between any two sets inM. See Chen et al.

for an in-depth explanation of width(M).

Strong and weak pulls. In reality, there is more than one way

to gather information or receive rewards. Therefore, we introduce

two kinds of arm pulls which vary in cost j and information gain

s . Information gain s is defined as how sure one is the reward is

close to the true utility. We model the information gain as s parallel
arm pulls with the resulting rewards being averaged together. A

weak arm pull has cost j = 1 but results in a small amount of

information s = 1. In our domain of graduate admissions, weak

arm pulls are standard application reviews, which involve reading

submitted materials and then making a recommendation. A strong
arm pull, in contrast, has cost j > 1, but results in s > 1 times

the information as a weak arm pull. In our domain, strong arm

pulls extend reading submitted materials with a structured Skype

interview, followed by note-taking and a recommendation.

In our experience, the latter can reduce uncertainty considerably,

which we quantify and discuss in Section 5. However, due to their

high cost, such interviews are allocated relatively sparingly. We

formally explore this problem in Section 4 and provide an algorithm

for selecting which arms to pull, along with nonasymptotic upper

bounds on total cost.

Session 2F: Agent Societies and Societal Issues 2 AAMAS 2019, May 13-17, 2019, Montréal, Canada

602



4 SWAP: AN ALGORITHM FOR ALLOCATING

INTERVIEW RESOURCES

In this section, we propose a new multi-armed bandit algorithm,

strong-weak arm-pulls (SWAP), that is parameterized by s and j.
SWAP uses a combination of strong and weak arm pulls to gain

information about the true utility of arms and then selects the

optimal cohort. Our setting and the algorithmwe present generalize

the CLUCB algorithm proposed by Chen et al. [9], which can be

viewed as a special case with s = j = 1.

Algorithm 1 Strong Weak Arm Pulls (SWAP)

Require: Confidence δ ∈ (0, 1); Maximization oracle: Oracle(·) :

Rn →M
1: Weak pull each arm a ∈ [n] once to initialize empirical means

ûn
2: ∀i ∈ [n] set Tn (ai ) ← 1,

3: Costn ← n, total resources spent
4: for t = n,n + 1, . . . do

5: Mt ← Oracle(ût )
6: for ai = 1, . . . ,n do

7: radt (ai ) = σ

√
2 log

(
4nCost3

t
δ /Tt (ai )

)
8: if ai ∈ Mt then

9: ũt (ai ) ← ût (ai ) − radt (ai )
10: else

11: ũt (ai ) ← ût (ai ) + radt (ai )
12: M̃t ← Oracle(ũt )
13: if w(M̃t ) = w(Mt ) then
14: Out← Mt
15: return Out
16: pt ← arg maxa∈(M̃t \Mt )∪(Mt \M̃t ) radt (a)
17: α ← spp(s, j)
18: with probability α do

19: Strong pull pt
20: Tt+1(pt ) ← Tt (pt ) + s
21: Costt+1 ← Costt + j
22: else

23: Weak pull pt
24: Tt+1(pt ) ← Tt (pt ) + 1

25: Costt+1 ← Costt + 1

26: Update empirical mean ût+1 using observed reward

27: Tt+1(a) ← Tt (a) ∀a , pt

Algorithm 1 gives pseudocode for SWAP. It starts byweak pulling

all arms once to initialize an empirical estimate of the true under-

lying utility of each arm. It then iteratively pulls arms, chooses

to weak or strong pull based on a general strategy, updates em-

pirical estimates of arms, and terminates with the optimal (i.e.,

objective-maximizing) subset of arms with probability 1 − δ , for
some user-supplied parameter δ .

During each iteration t , SWAP starts by finding the set of arms

Mt that, according to current empirical estimates of their means,

maximizes the objective function via an oracle. It then computes a

confidence radius, radt (a), for each arm a and estimates the worst-

case utility of that arm with the corresponding bound. If an arm a

ût(a1) 

ût(a2) 
ût(a3) 

U
til

ity
 

Figure 1: Example with n = 3 after running SWAP for t steps.
Dots are the empirical utility ut (a) while flags represent the

radius of confidence radt (a). Here, radt (a2) and radt (a3) over-
lap; SWAP may pull a3.

is in the setMt then the worst case is when the true utility of a is

less than our estimate (a might not be in the true optimal set M∗).
Alternatively, if an arm is not in the setMt then the worst case is

when the true utility of a is greater than our estimate (a might be

in the true optimal setM∗). Using the worst-case estimates, SWAP

computes an alternate subset of arms M̃t . If the utility of the initial

setMt and the worst-case set M̃t are equal, then SWAP terminates

with outputMt , which is correct with probability 1 − δ as we show

in Theorems 4.2 and 4.4. Ifw(Mt ) andw(M̃t ) differ, SWAP looks at a

set of candidate arms in the symmetric difference ofMt and M̃t and

chooses the arm pt with the largest uncertainty bound radt (pt ).
SWAP then chooses to either strong or weak pull the selected

arm pt using a strong pull policy, depending on parameters s and j.
A strong pull policy is defined as spp : R ≥ 1 × (R ≥ 1) → [0, 1].
For example, in the experiments in Section 5, we use the following

pull policy:

spp(s, j) = s − j
s − 1

. (3)

This policy tries to balance information gain and cost. When

the strong pull gain is high relative to cost then many more strong

pulls will be performed. When the weak pull gain is low relative

to cost then fewer strong pulls will be performed, as discussed in

Example 4.1.

Once an arm is pulled, the empirical mean ût+1(pt ) and the

information gain Tt+1(pt ) is updated. A reward from a strong arm

is counted s times more than a weak pull.

Example 4.1. Suppose we wish to find a cohort of sizeK = 2 from

three arms A = {a1,a2,a3}. Run SWAP for t iterations. Figure 1
shows that SWAPmaintains empirical utilities ût (·) and uncertainty
bounds radt (·). In this caseM = {a1,a2} and M̃ = {a1,a3}. Arm a3,

therefore, is the arm in the symmetric difference {a2,a3} with the

highest uncertainty, which therefore needs to be pulled. Further,

assume that a3 needs x information gain for SWAP to end. When

j = 1 and s = 1, the best pulling strategy would be to weak pull a3

for x times. When j = 1 and s = y where y > 1, the best pulling

strategy would be to strong pull a3 for ceil( xy ) times. Finally when

j = z and s = y where y > z > 1, the best pulling strategy would be

to strong pull a3 for floor( xy ) + 1[z − (x mod y)] times and weak

pull a3 for 1[z − (x mod y)] ∗ (x mod y) times, where 1[a] = 1

when a ≥ 0 and 0 otherwise. In reality, we do not know how many

times an arm needs to be pulled, which is why we introduce a

probabilistic strong pull policy, like that in Equation 3.

Analysis. We now formally analyze SWAP. We define X̄Cost =

E[Cost] as the expected cost (or expected j value) and X̄Gain =
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E[Gain] as the expected gain (or the expected s value). Assume

that each arm a ∈ [n] has mean u(a) with an σ -sub-Gaussian tail.

Following Chen et al., set radt (a) = σ

√
2 log

(
4nCost3

t
δ

)
/Tt (a) for

all t > 0.

Notice that if we use strong pull policy spp(s, j) = 0, then we

only perform weak arm pulls, and SWAP reduces to Chen et al.’s

CLUCB. We call this reduction the weak only pull problem. Chen et

al. proved that CLUCB returns the optimal setM∗ and uses at most

Õ(width(M)2H) samples. Similarly, if we set spp(s, j) = 1 then we

only perform strong arm pulls—dubbed the strong only pull problem.

We show that this version of SWAP returns the optimal setM∗ and
costs at most Õ(width(M)2H/s).

Theorem 4.2. Given any δ ∈ (0, 1), any decision class M ⊆
2
[n], and any expected rewards u ∈ Rn , assume that the reward
distribution φa for each arm a ∈ [n] has mean u(a) with an σ -sub-
Gaussian tail. LetM∗ = arg maxM ∈M w(M) denote the optimal set.

Set radt (a) = σ

√
2 log

(
4nt 3 j3

δ

)
/Tt (a) for all t > 0 and a ∈ [n]. Then,

with probability at least 1 − δ , the SWAP algorithm with only strong
pulls where j ≥ 1 and s > j returns the optimal set Out = M∗ and

T ≤ O

(
σ 2width(M)2H log(nj3σ 2H/δ )

s

)
(4)

where T denotes the total cost used by the SWAP algorithm and H is
defined in Eq.2.

Although s and j are problem-specific, it is important to know

when to use the strong only pull problem over the weak only pull

problem. Corollary 4.3 provides weak bounds for s and j for the
strong only pull problem. We also explore its ramifications experi-

mentally in Figure 3a as discussed in Section 5.1.

Corollary 4.3. SWAP with only strong pulls is equally or more
efficient than SWAP with only weak pulls when s > 0 and 0 < j ≤
C

s
3
− 1

3 where C = 4nH̃/δ .

We now address the general case of SWAP, for any probabilistic

strong pull policy parameterized by s and j. In Theorem 4.4 we

show that SWAP returnsM∗ in Õ
(
width(M)2H/X̄Gain

)
samples.

Theorem 4.4. Given any δ1,δ2,δ3 ∈ (0, 1), any decision class
M ⊆ 2

[n], and any expected rewards u ∈ Rn , assume that the reward
distribution φa for each arm a ∈ [n] has mean u(a) with an σ -sub-
Gaussian tail. LetM∗ = arg maxM ∈M w(M) denote the optimal set.

Set radt (a) = σ

√
2 log

(
4nCost3

t
δ

)
/Tt (a) for all t > 0 and a ∈ [n], set

ϵ1 = σ

√
2 log

(
1

2
δ2/T

)
, and set ϵ2 = σ

√
2 log

(
1

2
δ3/n

)
. Then, with

probability at least (1 − δ1)(1 − δ2)(1 − δ3), the SWAP algorithm
(Algorithm 1) returns the optimal set Out = M∗ and

T ≤ O
©­­«
σ 2width(M)2H log

(
nσ 2

(
X̄Cost − ϵ1

)
3 H/δ1

)
X̄Gain − ϵ2

ª®®¬ , (5)

where T denotes the total cost used by Algorithm 1, and H is defined
in Eq. 2.

103 105 107

H

105

107

109

T

T vs Hardness
Theoretical bound

Actual cost

Figure 2: Exploration of bounds in practice vs. the theoret-

ical bounds of Theorem 4.4 with respect to hardness (note

that both axes are a log scale).

It is nontrivial to determine where the general version of SWAP is

better than both the SWAP algorithm with only strong pulls and the

SWAP algorithm with only weak pulls, given the non-asymptotic

nature of all three bounds (Chen et al. results and Theorems 4.2

and 4.4). Based on our experiments (§5), we conjecture that there is

a of s and j pairs where SWAP is the optimal algorithm, even for

relatively low numbers of arm pulls, though it is problem-specific.

This is discussed more in Section 7.3.

5 TOP-K EXPERIMENTS

In this section, we experimentally validate the SWAP algorithm

under a variety of arm pull strategies. We first explore (§5.1) the

efficacy of our bounds in Theorem 4.4 and Corollary 4.3 in simu-

lation. Then we deploy SWAP on real data (§5.2) drawn from one

of the largest computer science graduate programs in the United

States. We show that SWAP provides a higher overall utility with

equivalent cost to the actual admissions process.

5.1 Gaussian Arm Experiment

We begin by validating the tightness of our theoretical results in a

simulation setting that mimics the assumptions made in Section 4.

We pull from a Gaussian distribution around each arm. When arm

a is weak pulled, a reward is pulled from a Gaussian distribution

with mean ua , the arm’s true utility, and standard deviation σ .
Similarly, when arm a is strong pulled, the algorithm is charged j
cost, and a reward is pulled from a distribution with mean ua and

standard deviation σ/
√
s . This strong pull distribution is equivalent

to pulling the arm s times and averaging the reward, thus ensuring

an information gain of s .
We ran all three algorithms—SWAP with the strong pull policy

defined in Equation 3, SWAPwith only strong pulls, and SWAPwith

only weak pulls—while varying s and j. For each s and j pair we
ran the algorithms at least 4, 000 times with a randomly generated

set of arm values. Random seeds were maintained across policies.

We then compared the cost of running each of the algorithms.
1

To test Corollary 4.3, Figure 3a compares SWAP with only weak

pulls to SWAP with only strong pulls. We found that Corollary 4.3

is a weak bound on the boundary value of j. The general version
of SWAP should be used when it performs better—costs less—than

1
All code to replicate this experiment can be found here: https://github.com/

principledhiring/SWAP.

Session 2F: Agent Societies and Societal Issues 2 AAMAS 2019, May 13-17, 2019, Montréal, Canada

604

https://github.com/principledhiring/SWAP
https://github.com/principledhiring/SWAP


5 10 15

s values

5

10

15

j
va

lu
es

Strong vs Weak Pull

−200

−100

0

100

200

(a) Weak vs Strong

5 10 15

s values

5

10

15

j
va

lu
es

Optimal zone of SWAP

(b) SWAP Optimal Zone

Figure 3: Cost comparisons. Figure 3a compares only strong

to only weak pulls. Green indicates better performance by

strong pulls, and intensity indicates magnitude. The blue

line is the Corollary 4.3 bound on j. Figure 3b shows where

the general version of SWAP outperformed (green) both

SWAP with only strong pulls as well as SWAP with only

weak pulls, and (maroon)where it outperformed at least one

of the latter.

both the strong only and weak only versions of SWAP. The zone

where SWAP is effective varies with the problem (See §7.3 for

a deeper discussion). Figure 3b shows the optimal zone for the

Gaussian Arm Experiment.

5.2 Graduate Admissions Experiment

Finally, we describe a preliminary exploration of SWAP on real

graduate admissions data from one of the largest CS graduate pro-

grams in the United States. The experiment was approved by the

university’s Institutional Review Board. Our dataset consists of

three years of graduate admissions applications, graduate com-

mittee application review text and ratings, and final admissions

decisions. Information was gathered from the first two academic

years (treated as a training set), while the data from last academic

year was used to evaluate the performance of SWAP (treated as a

test set).

Dataset. During the admissions process, potential students from

all over the world send in their applications. A single applica-

tion consists of quantitative information such as GPA, GRE scores,

TOEFL scores, nationality, gender, previous degrees and so on, as

well as qualitative information in the form of recommendation

letters and statements of purpose. In the 2016-17 academic year,

the department received approximately 1,600 applications, with

roughly 4,500 applications over all three years. The most recent

1,600 applications are roughly split into 1,000 Master’s applications

and 600 Ph.D. applications. The acceptance rate is 3% for Masters

students and 20% for Ph.D. students.

Once all applications are submitted, they are sent to a review

committee. Generally, applicants at the top (who far exceed ex-

pectations) and applicants at the bottom (who do not fulfill the

program’s strict requirements) only need one review. Applicants

on the boundary, however, may go through multiple reviews with

different committee members. Once all reviews have been made,

the graduate chair chooses the final applicants to admit.

w T

SWAP 80.1 (0.5) 1978 (53)

Actual 73.96 ~2000

Table 1: Graduate Admissions Simulation of SWAP. Compar-

ison of top-K utilityw and costT of SWAPwith results of the

actual admissions process. The values in parentheses are the

standard deviations.

By administering an anonymous survey of past admissions com-

mittee members, we estimated that interviews are approximately

six times longer than reviewing a written application. Therefore,

we set our j value (the cost of a strong pull) to be 6. The gain of an

interview is uncertain, so we ran tests over a wide range of s values
(the information gain of a strong pull). The number of reviews and

interviews (×6) were summed to get a cost T of the actual review

process.

Experimental Setup. We simulate an arm pull by returning a real

score that a reviewer gave during the admissions process (in the

order of the original reviews) or a score from a probabilistic classifier

(if all committee members’ reviews have been used). An arm pull

returns a score drawn from a distribution around the probabilistic

result from the classifier to simulate some human error or bias.

We ran SWAP using the strong pull policy defined in Eq. 3, where

we define the utility of each arm by the probabilistic result from

the classifier. For our results, we compare SWAP’s selections with

the real decisions made during the admissions process.

Results. Running SWAP consistently resulted in a higher overall

utility than the actual admissions process while using roughly

equivalent cost (Table 1). We see that the overall top-K utility w
is higher in SWAP than in practice. We also see that SWAP uses

roughly equivalent resources T than what is used in practice. This

suggests that SWAP is a viable option for admissions. There are,

however, some limitations of only using a top-K policy, such as

potentially overlooking the value diverse candidates bring to a

cohort. For instance, when hiring a software engineering team, if

the top candidates are all back-end developers, it may beworthwhile

to hire a front-end developer with slightly lower utility.

6 PROMOTING DIVERSITY THROUGH A

SUBMODULAR FUNCTION

Motivated by recent evidence that diversity in the workforce can

increase productivity [10, 14], we explore the effect of formally

promoting diversity in the cohort selection problem. First, we define

a submodular function that promotes diversity (Section 6.1). Then

empirically, we show that SWAP performs well with a submodular

objective function (Section 6.2). In experiments on real data, we

show a significant increase in diversity with little loss in fit while

using roughly the same resources as in practice (Section 6.3).

6.1 Diversity Function

Quantifying the diversity of a set of elements is of interest to a vari-

ety of fields, including recommender systems, information retrieval,

computer vision, and others [3, 26, 27, 30]. For our experiments, we

choose a recent formalization from Lin and Bilmes [20] and apply it
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to both simulated and real data. Their formulation assumes that the

arms can be split into L partitions where a partition is denoted as Pi
and a cohort is defined asM = P1∪P2∪ . . .∪PL . At a high level, the
diversity functionwdiv is defined aswdiv(M) =

∑L
i=1

√∑
a∈Pi u(a).

Lin and Bilmes showed that wdiv is submodular and monotone.

Underwdiv(M) there is typically more benefit to selecting an arm

from a class that is not already represented in the cohort, if the

empirical utility of an arm is not substantially low. As soon as an

arm is selected from a class, other arms from that class experience

diminishing gain due to the square root function. Example 6.1 il-

lustrates whenwdiv results in a different cohort selection than the

top-K functionwtop(M) =
∑
a∈M u(a).

Example 6.1. Return to a similar setting to Example 4.1, with

three arms {a1,a2,a3} = A and true utilities u(a1) = 0.6, u(a2) =
0.5, and u(a3) = 0.3. Assume there exist L = 2 classes, and let arms

a1 and a2 belong to class 1, and arm a3 belong to class 2. Then, for a

cohort of size K = 2,wtop will select cohortM
∗
top
= {a1,a2}, while

wdiv will select cohort M∗
div
= {a1,a3}. Indeed, wtop(M∗top) =

1.1 > 0.9 = wtop(M∗div), while wdiv(M∗top) =
√

1.1 ≈ 1.05 < 1.3 ≈√
0.6 +

√
0.3 = wdiv(M∗div).

Maximizing a general submodular function is computationally

difficult. Nemhauser et al. [24] proved that a close to optimal—that is,

wdiv(M∗) ≥
(
1 − 1

e

)
OPT—greedy algorithm exists for submodular,

monotone functions that are subject to a cardinality constraint. We

use that standard greedy packing algorithm in our implementation

of the oracle.

6.2 Diverse Gaussian Arm Experiments

To determine if SWAP works in this submodular setting, we ran

simulations over a variety of hardness levels. We instantiated the

problem similarly to that of Section 5.1 with the added complexity

of dividing the arms into three partitions.

Figure 4a shows the cost of running SWAP compared to the

theoretical bounds of the linear model over increasing hardness

levels. The results show that SWAP performs well for the majority

of cases. However, for some cases, the cost becomes very large. To

deal with those situations, we can use a probably approximately

correct (PAC) relaxation of Algorithm 1 where Line 13 becomes

If
��w(M̃t ) −w(Mt )

�� ≤ ϵ . The results from this PAC relaxation

where ϵ = 0.01 can be found in Figure 4b. Note that the definition

of hardness found in Equation 2 does not quite fit this situation

since the graphs in Figure 4 have higher costs for some lower hard-

ness problems while having lower cost for some higher hardness

problems. Given that the PAC relaxation performs well with low

costs over all of the tested hardness problems, we propose that

SWAP can be used withwdiv and perhaps other submodular and

monotone functions.

6.3 Diverse Graduate Admissions Experiment

Using the same setting as described in Section 5.2, we simulate a

SWAP admissions process with the submodular functionwdiv. We

partition groups by gender (which is binary in our dataset) and

multi-class region of origin. We found that we did not have to resort

to the PAC version of SWAP to tractably run the simulation over

various partitions of the graduate admissions data.
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(a) SWAP with wdiv
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(b) PAC relaxation with wdiv

Figure 4: Exploration of bounds in practice for SWAP with

wdiv (4a) and the PAC relaxation of SWAP with wdiv (4b) vs.

the theoretical bounds of Theorem 4.4 with respect to hard-

ness (Note that both axes are a log scale).
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Figure 5: Comparison of true and SWAP-simulated admis-

sions: gender (5a, 5b) & region (5c), 5d).

Gender Region of Origin

√
wtop wdiv

√
wtop wdiv

SWAP 8.5 (0.03) 12.1 (0.06) 8.0 (0.03) 22.1 (0.03)

Actual 8.6 11.8 8.6 20.47

Table 2: SWAP’s average gain in diversity over different

classes.

Results. We compare two objective functions, wtop and wdiv.

wtop treats all applicants as members of one global class. This

mimics a top-K objective, where applicants are valued based on

individual merit alone. wdiv promotes diversity using reported

gender and region of origin for class memberships. We use those

classes as our objective during separate runs of SWAP.
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Figure 6: Cost vs utility function comparisons of Actual,

SWAP, Random, and Uniform.

Table 2 and Figure 5 show experimental results on the test set

(most recent year) of real admissions data. We report

√
wtop instead

ofwtop to align units across objective functions. Because the square

root function is monotonic, this conversion does not impact the

maximum utility cohort. Since SWAP uses a diversity oracle (§6.1),

we notice a slight drop in top-K utility. However, there is a large

gain in diversity.

SWAP, on average, used 1.17 pulls per arm, of which 5% were

strong. During the last admissions decision process each applicant

was reviewed on average 1.21 times. Interviews were not consis-

tently documented. SWAP performedmore strong pulls (interviews)

of applicants than our estimation of interviews by the graduate ad-

missions committee, but did fewer weak pulls. SWAP spent roughly

the same amount of total resources as the committee did with strong

pull cost j = 6 and weak pull cost of 1. Given the gains in diversity,

this supports SWAP’s potential use in practice.

We also compare SWAP to both uniform and random pulling

strategies, shown in Table 6. The uniform strategy weak pulls each

arm once and strong pulls each arm once. This had a cost approxi-

mately 9 times that of SWAP and resulted in a general utility of 8.3

and a diversity value of 11.8. The random strategy weak or strong

pulls arms randomly. Even when spending 10 times the cost of

running SWAP, the random strategy has only a general utility of

7.9 and a diversity value of 11.16. SWAP significantly outperforms

both of these strategies.

7 DISCUSSION

Admissions and hiring are extremely important processes that affect

individuals in very real ways. Lack of structure and systematic bias

in these processes, present in application materials or in resource

allocation, can negatively affect applicants from traditionally un-

derrepresented minority groups. We suggest a formally structured

process to help prevent disadvantaged people from falling through

the cracks. We discuss benefits (Section 7.1) and limitations (Sec-

tion 7.2) to this approach, as well as mechanism design suggestions

for deploying SWAP in practice (Section 7.3).

7.1 Benefits

Weestablished SWAP, a clear-cutway tomodel a sequential decision-

making process where the aim is to select a subset using two kinds

of information-gathering strategies as a multi-armed bandit algo-

rithm. This process could have a number of benefits when used in

practical hiring/admissions settings.

Over the course of designing and running our experiments, we

noticed what seemed like bias in the application materials of candi-

dates belonging to underrepresented minority groups. Our initial

observations were similar to those of scholars such as Schmader

et al. [28], who found that recommendation letters for female ap-

plicants to faculty jobs contained fewer work-specific terms than

male applicants. After revisiting and coding application materials

in our experiments, we found similar results for female and other

minority candidates.

Our process hopes to mitigate this bias by providing a completely

structured process, informed by the many studies showing that

structured interviewing reduces bias (see Section 2). As we showed

in our experiments, one can take additional steps to encourage

diversity (by usingwdiv) to select a more diverse team, which can

result in a less biased, more productive work environment [14].

Furthermore, by including a diversity measure in the objective

function, candidates from disadvantaged groups are given a higher

chance of being pulled through the cracks since we prioritize rec-

ommending diverse candidates for additional resource allocation.

A practical benefit to SWAP is that it avoids spending unneces-

sary resources on outlier candidates and quickly finds uncertain

candidates. This give us more information about the applicant pool

as whole, allowing us to make better decisions when choosing a

cohort while using roughly equivalent resources.

Finally, in our simulations of running SWAP during the graduate

admissions process, we also select a more diverse student cohort at

low cost to cohort utility.

7.2 Limitations

One significant limitation of a large-scale system like SWAP is that

it relies on having a utility score for each applicant. In our graduate

admissions experiment, we assume the true utility of an applicant

can be modeled by our classifier, which is not entirely accurate. In

reality, the true utility of an applicant is nontrivial to estimate as

it is subjective and depends on a wide range of factors. Finding

an applicant’s true utility would require following and evaluating

the applicant through the end of the program, perhaps even after

they have left the university. Even if that were possible, being

able to quantify true utility is nontrivial due to the subjectivity of

success and its qualitative properties. This problem is not limited

to SWAP–it is present in any admissions, hiring, peer review, and

other processes that attempt to quantify the value of qualitative
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properties. Therefore in these settings there is no choice but to rely

on proxy values for the true utility, such as reviewer scores.

Similarly, even though the cost of a resource, j , may be inherently

quantifiable, the information gain s , is harder to define in such a

process. For example, how much more information one gains from

an interview over a resume review is subjective and, by nature,

more qualitative than quantitative. Also, the information gain from

expending the same resource may vary over applicants, though this

is slightly mitigated by using structured interviews.

Another limiting factor is that not every admitted applicant will

matriculate into the program. We assume that all applicants will

accept our offer, but in reality, that is not the case. Therefore, we

potentially reject applicants that would matriculate, as opposed to

accepting higher quality applicants that will ultimately not.

Finally, our graduate admissions experiment simulated strong

arm pulls: reviewers did not give additional interviews of applicants

during the experiment. Although our results are promising, SWAP

should be run in conjunction with an actual admissions process to

assess its true performance.

7.3 Design Choices

Our motivation in designing SWAP and exploring related exten-

sions is to aid hiring and admissions processes that use structured

interviewing practices and aim to hire a diverse cohort of work-

ers. As with any algorithm deployed in practice, actually running
SWAP alongside a hiring process requires adaptation to the specific

environment in which it will be used (e.g., batch versus sequential

review), as well as estimation of parameters involving correctness

guarantees (e.g., δ and ϵ) or population estimates (e.g., σ ).
In general, we recommend that the policymaker or mechanism

designer tasked with setting parameters for SWAP, or a SWAP-style

algorithm, should conduct a study on past admissions/hiring de-

cisions. This study should include quantitative information (e.g.,

how many people applied, how many were accepted, how many

were interviewed, how long did interviews take) and qualitative

information (e.g., how confident was reviewer A after reviewing an

applicant B). From this a mechanism designer could determine esti-

mates of population parameters like σ , information gain parameters

s , and interview cost parameter j.
To estimate σ , a policymaker could perform a study on past

reviews and interviews to determine the range of scores for arms.

However, this method could incorporate various biases that may

already exist in prior review and scoring processes. That consider-

ation should be taken into account, but exactly how is situation-

specific. The introduction of and strict adherence to the structured

interview paradigm is a general method to alleviate some of these

concerns.

To estimate the value of s , the information gain of a strong

pull, one could quantify the difference in confidence level for a

particular applicant after performing weak and strong pulls; e.g.,

how confident was reviewer A after reviewing an applicant B, how
much more confident was A after interviewing B, and so on. For

j, policy makers could use the average relative difference in time

(and possibly monetary) resources spent on different information

gathering strategies.

The choice of δ and ϵ could be determined via a sensitivity-

analysis-style study, where simulations are run using various set-

tings of δ and ϵ . Policymakers can then judge the simulated risks

and rewards to define the parameters.

Once the hyper-parameters have been found, simulations can

be performed to find the optimal zone (as discussed in Section 5.1).

This will allow the designer to determine the best strong pull policy.

Ideally, both studies should include a run focused on past de-

cisions and one run every time the selection process occurs, to

ensure SWAP’s parameters align with the experiences and values

of human decision-makers.

8 CONCLUSION

In this paper, we modeled the allocation of interviewing resources

and subsequent selection of a cohort of applicants as a combina-

torial pure exploration (CPE) problem in the multi-armed bandit

setting. We generalized a recent CPE algorithm to the setting where

arm pulls can have different costs–where a decision maker can

perform strong and weak pulls, with the former costing more than

the latter, but also resulting in a less noisy signal. We presented the

strong-weak arm-pulls (SWAP) algorithm and proved theoretical

upper bounds for a general class of arm pulling strategies in that

setting. We also provided simulation results to test the tightness

of these bounds. We then applied SWAP to a real-world problem

with combinatorial structure: incorporating diversity into univer-

sity admissions. On real admissions data from one of the largest

US-based computer science graduate programs, we showed that

SWAP produces more diverse student cohorts at low cost to student

quality while spending a budget comparable to that of the current

admissions process.

It would be of both practical and theoretical interest to tighten

the upper bounds on convergence for SWAP, either for a reduced or

general set of arm pulling strategies. We would also like to extend

SWAP to include more than two types of pulls or information gath-

ering strategies. We aim to incorporate a more realistic version of

diversity and achieve a provably fair multi-armed bandit algorithm,

as formulated by Joseph et al. [16] and Liu et al. [21]. Additionally,

we aim to create a version of SWAP that incorporates applicant ma-

triculation into the candidate-recommending and selection process.

An interesting direction that may be worth pursuing is drawing

connections between our work—the selection of a diverse subset of

arms—to recent work inmulti-winner voting [12], a setting in social

choice where a subset of alternatives are selected instead of a single

winner. Recent work in that space looks at selecting a “diverse

but good” committee of alternatives via social choice methods [4,

6]. Similarly, drawing connections to diversity in allocation and

matching problems [1, 5, 19] is also potentially of interest.
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