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ABSTRACT
In hedonic games, players form coalitions based on individual pref-

erences over the group of players they belong to. Several concepts

to describe the stability of coalition structures in a game have been

proposed and analysed. However, prior research focuses on algo-

rithms with time complexity that is at least linear in the input size.

In the light of very large games that arise from, e.g., social networks

and advertising, we initiate the study of sublinear time property

testing algorithms for existence and verification problems under

several notions of coalition stability in a model of hedonic games

represented by graphs with bounded degree. In graph property

testing, one shall decide whether a given input has a property (e.g.,

a game admits a stable coalition structure) or is far from it, i.e., one

has to modify at least an ϵ-fraction of the input (e.g., the game’s

preferences) to make it have the property. In particular, we consider

verification of perfection, individual rationality, Nash stability, and

(contractual) individual stability. Furthermore, we show that while

there is always a Nash-stable coalition (which also implies individ-

ually stable coalitions), the existence of a perfect coalition can be

tested. All our testers have one-sided error and time complexity

that is independent of the input size.
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1 INTRODUCTION
Hedonic games are a form of coalition formation games, in which

players form teams in a decentralized manner based on individual

preferences over coalitions, i.e., subsets of players. The solution to

such a game is a coalition structure, i.e., a partition of the set of play-

ers. The main idea of hedonic games is that the players’ evaluation

of a coalition structure only depends on their own coalitions and

not on how other players work together [18]. These games have

been formalized by Banerjee et al. [6] and Bogomolnaia and Jackson

[9], independently. In order to evaluate the quality of a coalition
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structure, several solution concepts have been considered. These

include, e.g., Nash stability, which states that no individual player

wants to deviate from the coalition structure, and core stability,

which requires that no group of players wants to peel off and form

a coalition of their own.

Algorithmically, a key issue is to find suitable representations

of hedonic games: Since the number of possible coalitions for a

player is exponential in the number of players, there is a trade-off

between compactness and expressivity of the preference profile. In

the areas of Cooperative Games in Multiagent Systems (see, e.g., [12])
and Computational Social Choice (see, e.g., [4]), a number of rep-

resentations and stability concepts are analysed with respect to

the computational complexity of deciding whether there exists a

stable solution, verifying whether a given solution is stable, and

finding a stable solution. Even for restricted representations such

as additively separable games, these questions are often intractable.

For instance, it is often NP-complete to decide whether a given

game allows a Nash-stable coalition structure, see e.g., Peters [34].

The existence of core-stability is often even Σ
p
2
-complete to decide,

see e.g., Woeginger [38] and Ota et al. [33]. This strikes even harder

when the considered game instances are very large because they

arise from, e.g., social networks or the assignment of advertise-

ments to available slots on web pages such that adjacent ads do not

interfere. Here, it might already be impractical to read the whole

input once because the data does not fit into memory or the access

is slow or restricted.

In this paper, we study sublinear algorithms for hedonic games.

We aim to decide in sublinear time whether a game has a stable

coalition structure or is far from this with respect to the number of

required changes of preferences such that it admits one, as well as

whether a game is stable under a given coalition structure Γ or is

far from being stable under Γ. When a coalition can be stabilized

by only few compromises on the preferences, it may be acceptable

to sustain the situation or (if possible) make the changes. When,

however, too many modifications are required to obtain any stable

situation, the current situation is too far off the goal.

Graph representations provide a compact means to encode struc-

tural connections between players. A formal study of graphical

hedonic games is provided by Peters [34]. A popular variant is to

encode a game as a network where players correspond to vertices

and edges illustrate friendship relations. Players that are no friends

are often referred to as enemies. Preferences are extended either

by prioritising appreciation of friends or aversion to enemies [17].

However, if the game is very large, many players may not be in-

volved in any relationship. In this scenario, it is natural to consider

a more general model. For each player, the set of other players is

divided into three subsets: friends, enemies and neutral players [33],
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which is what we call the FEN-encoding. Furthermore, we bound

the number of friends and enemies per player by a constant (for

example, if the players are humans, this phenomenon is known as

Dunbar’s number [19], which describes the maximum number of

stable relationships a single person can maintain). Under restric-

tions such as bounded degree and bounded treewidth, some stability

questions become solvable in linear time [34]. Nevertheless, this

still incurs the evaluation of the whole game in order to verify

whether a coalition structure is stable. Given the local views of

individual vertices within hedonic games, it would be preferable

and much more practical to ask only a sample of players for their

individual preferences and deduce global properties.

The area of property testing provides a framework to relax such

decision problems in favour of sublinear complexity (see, e.g., [23]

for an overview). A property tester is a randomized algorithm

that decides, with error probability at most 1/3, whether the input

satisfies some property P or is far from satisfying P by probing

only a small part of it. In the setting of graph properties, a graphG =
(V , E) with bounded vertex degree d is ϵ-far from satisfying some

property P (e.g., bipartiteness) if one has to modify at least ϵdn
edges to make G have property P. If the property tester always

accepts graphs in P, it has one-sided error; otherwise, it has two-

sided error. The input graph G may be probed by the algorithm

through an oracle that provides access to the entries of the adjacency

lists of G, and the computational complexity of the property tester

is measured in terms of queries it asks.

In comparison to classic decision problems, property testing

problems allow for algorithms with sublinear complexity. For ex-

ample, a randomized decision algorithm for graph connectivity

needs to read the whole input to achieve constant error probability,

which implies a linear lower bound on the complexity. In contrast,

a property tester for connectivity has only constant complexity

[22]. This difference arises because the property tester does not

need to read the whole input, and, in fact, sublinear complexity

renders this impossible. Therefore, the input model plays an im-

portant role in property testing. While there is a characterization

for constant query testable properties in dense graphs (graphs with

Ω(|V |2) edges) [1], less is known for graphs with bounded degree

and general graphs.

1.1 Our Contribution
We study property testing of stability problems in FEN-hedonic

games, where each player has a bounded number of symmetric rela-

tionships to friends and enemies as represented by labelled edges of

an undirected graph, and preferences are extended to coalitions by

any utility function linear in the number of friends and enemies in

a coalition. The setting of hedonic games enhances graphs by rich

semantics, which stands in contrast to purely combinatorial and

geometric properties previously studied in graph property testing.

We model the semantics of hedonic games as an additional layer

on top of the combinatorial graph structure and analyse existence

and verification problems for various stability concepts. In particu-

lar, we study common individual-based stability concepts such as

perfection, individual rationality, Nash stability, and (contractual)

individual stability.

While individually rational, Nash-stable, individually stable, and

contractually individually stable coalitions always exist, there are

games which do not allow a perfect coalition structure.

Theorem 1.1. Given a FEN-hedonic game G with bounded degree
d , it can be tested whetherG admits a perfect coalition structure with
bounded coalition size c with one-sided error and query complexity
poly(ϵ, c,d).

While the existence problem as to whether a game allows a

stable outcome is a property of edge-labelled graphs, the verification

problem of whether a game satisfies stability according to a fixed

coalition structure Γ requires additional modelling: We assume

that next to oracle access to the adjacency lists of the underlying

bounded-degree graph of a game G, we have additional access to
an oracle to Γ, i.e., a partition of the vertex set.

We show the testability of verification problems independent of

any bound on the coalition size.

Theorem 1.2. Given a FEN-hedonic game G with bounded degree
d and a coalition structure Γ, it can be tested whether G is stable
under Γ with respect to perfection, individual rationality, Nash sta-
bility, individual stability and contractual individual stability with
one-sided error and query complexity poly(ϵ,d).

Note that while we consider c and d to be of constant size, in-

dependent of the input size n, our statements remain valid if, for

instance,d ∈ O(logn). We provide some extensions of our theorems

to weighted and directed graphs in Section 4.3.

1.2 Related Work
Hedonic games were formally defined by Banerjee et al. [6] and

Bogomolnaia and Jackson [9]. A well-known application of a re-

stricted variant with size-two coalitions is the stable-roommates

problem [10] for the allocation of student houses. Mostly, hedonic

games have been analysed from a computational complexity point

of view with respect to a trade-off between expressivity, succinct

representation and tractability of stability decision problems. The

complexity of general hedonic games has first been studied by

Ballester [5]. The worst-case complexity of stability problems for

various representations and different stability concepts has been

studied extensively: Popular representations include additively sep-

arable hedonic games [2, 9, 38], singleton encodings [11], hedonic

coalition nets [21], and dichotomous preferences [3]; see also Aziz

and Savani [4] and Chalkiadakis et al. [12] for an overview. Peters

and Elkind [35] analyse causes of and conditions for hardness. The

existence of Nash stability and other individual stability concepts is

often (if not guaranteed) NP-complete to decide (see, e.g., Sung and

Dimitrov [37] for additively separable games). For core stability,

this is often even harder, namely Σ
p
2
-complete [33, 38]. Dimitrov

et al. [17] define restricted hedonic games based on a network of

friends and enemies. A more general version including neutral play-

ers is defined by Ota et al. [33]. Games with neutral players and

partial individual evaluations are studied by Lang et al. [28] and

Peters [34]. Peters, in particular, considers a constant bound on the

number individual preferences and studies graphical hedonic games

with bounded treewidth. With this restriction, it can be decided in

linear time whether, for instance, a Nash stability coalition struc-

ture exists. A graphical model restricting the formation of feasible
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coalitions is studied by Igarashi and Elkind [26]. Darmann et al. [16]

study games where players have preferences over different types of

coalitions (activities) and their sizes instead of other players, which

can be expressed as a hedonic game, though. For the case that there

is only one type of coalition, Lee and Shoham [29] and Lee and

Williams [30] extend this setting such that each player may have a

bounded number of friend-enemy relationships to other players.

Goldreich and Ron [22] showed that classic graph problems like

connectivity, being Eulerian and cycle freeness are testable with

constant query complexity. On the other hand, it is known that

testing bipartiteness [24] and expansion [15, 27, 31] have upper and

lower bounds of roughly Θ(
√
n). Turning to more general results,

Benjamini et al. [8] proved that every minor-closed property is

constant query testable, and Newman and Sohler [32] extended

this result to hold for every hyperfinite property. Property testing

of annotated (or labelled) graphs has been studied for geometric

graphs mainly. For example, testing whether a graph that is em-

bedded into the plane is a Euclidean minimum spanning tree has

been studied by Ben-Zwi et al. [7] and Czumaj and Sohler [14]. Ben-

Zwi et al. show that any non-adaptive tester has to make Ω(
√
n)

queries, and that any adaptive tester has query complexity Ω(n1/3).
Czumaj and Sohler provide a one-sided error tester with query com-

plexity Õ(
√
n/ϵ). Hellweg et al. [25] develop a tester for Euclidean

(1 + δ )-spanners.
Learning hedonic games was studied by Sliwinski and Zick [36].

While property testing focuses on testing whether a game admits

a stable outcome or whether an outcome is stable with sublinear

complexity, PAC learning constructs a good hypothesis and PAC sta-
bilization uses this hypothesis to learn a stable outcome (if possible)

using a superlinear number of samples (with possibly linear size).

As far as we know, no sublinear algorithms have been developed

for hedonic games, yet.

2 PRELIMINARIES
In this paper, we consider undirected graphs with vertex degrees

bounded by a constant d . For a graph G = (V , E) at hand, we write
n = |V |. Without loss of generality, we assume that V = [n] =
{1, . . . ,n}.

2.1 Hedonic Games
A hedonic game (N , ⪰) consists of a set of players N = [n] and a

preference profile ⪰= (⪰1, . . . , ⪰n ), where ⪰i is player i’s preference
relation over Ni = {C ⊆ N | i ∈ C}. A subset C ⊆ N of players is

called coalition. An output of a hedonic game is a coalition structure,
i.e., a partition Γ of the player set. Let Γ(i) ∈ Γ be the coalition

containing i ∈ N . We say that a player i weakly prefers a coalitionA
to a coalition B, ifA ⪰i B. Player i prefersA to B, denoted byA ≻i B,
if A ⪰i B, but B ⪰̸i A; i is indifferent between A and B, denoted by

A ∼i B, if A ⪰i B and B ⪰i A.
Since the set Ni of coalitions a player is contained in, has an

exponential size in the number of players, a central question in

the study of hedonic games is to define representations that are

adequately compact and at the same time as expressive as possible.

One common representation is that of a graph network G =
(N , E), where the players are vertices in the graph. In the encoding

as defined by Ota et al. [33], for each player i ∈ N , there exists a

set N+i ⊆ N \ {i} of friends, set N−i \ {i} of enemies, N+i ∩ N
−
i = ∅.

The remaining players are considered as neutral N 0

i = N \ (N+i ∪
N−i ∪ {i}). We call this representation FEN-encoding. It can be

represented by a labelled graphG = (N , F∪E)with F∩E = ∅, where
j ∈ N+i if and only if (i, j) ∈ F , and j ∈ N−i if and only if (i, j) ∈ E.
This conforms to the definition of a graphical hedonic game [34]

such that a player i’s preference of a coalition C ∈ Ni over a

coalitionD ∈ Ni only depends on i’s neighbourhoodNi = N+i ∪N
−
i :

C ⪰i D ⇐⇒ C ∩ Ni ⪰i D ∩ Ni . (1)

Here, we extend the players’ relations to preferences in the

following manner. A value function is specified such that each

player i ∈ N assigns a positive value f ∈ R to each j ∈ N+i
and a negative value −e ∈ R to each j ∈ N−i . The correspond-

ing utility function ui : Ni → R, i ∈ N , is defined additively by

ui (C) = f · |C ∩ N+i | − e · |C ∩ N−i |. For instance, under friends
appreciation we have f = d and e = 1, and under enemies aversion
this corresponds to f = 1 and e = d . The preference extension is

obtained by A ⪰i B ⇐⇒ ui (A) ≥ ui (B).

Definition 2.1. We call a hedonic game represented by an FEN-

encoding with a preference profile extended via a utility function

linear in the number of friends and enemies, FEN-hedonic game.

Note that responsiveness is always satisfied by the considered

preference extensions, i.e.,C ∪ {j} ≻i C andC ≻i C ∪ {j
′}, for each

i ∈ N , and each C ∈ Ni and j ∈ N+i , j
′ ∈ N−i . Since we consider

undirected graphs, we obtain symmetric preferences, i.e., i ∈ N+j if

and only if j ∈ N+i and i ∈ N−j if and only if j ∈ N−i .

Furthermore, we make the following assumptions. We consider

graphs of bounded degree |Ni | ≤ d represented by an adjacency list;

in particular, it can be decided in time independent of the number n
of players whether C ⪰i D, and independent of the coalition size

|C | and |D |. Moreover, it is often useful to restrict the coalition

size, e.g., when players are people that have to communicate or

when a coalition represents all ads displayed on a single web page.

Therefore, we also consider a bounded coalition size of |C | ≤ c .
ByGn we denote the set of graphs with n vertices that represent

such a game. The set of coalition structures partitioning n players

is denoted by Cn . For a stability concept, questions of interest are:

• Verification: Given a game and a coalition structure, is it

stable?

• Existence: Is a given game stable, i.e., does there exist a stable

coalition structure?

• Search: Find a stable coalition structure for a given game.

In the following, let G = (N , F ∪ E) be a graph that represents a

FEN-hedonic game and let Γ ∈ Cn be a coalition structure solving

this game. There are several solutions concepts motivated from

different perspectives on the game.

On the one hand, Γ is called

perfect if each player i ∈ N weakly prefers Γ(i) to every coalition,

i.e., Γ(i) ⪰i C for each C ∈ Ni , |C | ≤ c .

This property reflects an ideal situation, but is rather rarely fulfilled.

On the other hand, Γ is called

individually rational if for each player i ∈ N , Γ(i) is acceptable, i.e.,
Γ(i) ⪰i {i}.
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Individual rationality is guaranteed by {{i} | i ∈ N }.
Other stability notions are based, for example, on the lack of

deviations of a single player to another (possibly empty) existing

coalition. Let Fav(i) denote the set of i’s favourite coalitions of size
at most c , i.e., those coalitions that i weakly prefers over all other

coalitions of size at most c . A coalition structure Γ is called

Nash-stable if no player wants tomove to another existing or empty

coalition, i.e., for each player i ∈ N and each coalition C ∈
Γ ∪ {∅} with |C | < c , it holds that Γ(i) ⪰i C ∪ {i};

individually stable if no player can move to another preferred coali-

tion without making a player in the new coalition worse off,

i.e., for each player i ∈ N and for each coalitionC ∈ Γ ∪ {∅}
with |C | < c , it holds that Γ(i) ⪰i C ∪ {i} or there exists a
player j ∈ C such that C ≻j C ∪ {i};

contractually individually stable if no player can move to another

preferred coalition without making a player in the new coali-

tion or in the old coalitionworse off, i.e., for each player i ∈ N
and for each coalition C ∈ Γ ∪ {∅} with |C | < c , it holds
that Γ(i) ⪰i C ∪ {i}, or there exists a player j ∈ C such that

C ≻j C ∪ {i}, or there exists a player j
′ ∈ Γ(i) \ {i} such that

Γ(i) ≻j′ Γ(i) \ {i}.

Note that Nash stability implies individual stability, which, in turn,

implies contractual individual stability.

2.2 Graph Property Testing
LetG = (V , E) be a graph with vertex degrees bounded by d and let

P be a graph property, i.e., a set of graphs (e.g., let P be all graphs

that admit a perfect coalition structure). We say that G is ϵ-far
from a property P if more than ϵdn edges ofG have to be modified

in order to convert it into a graph that satisfies the property P,

otherwise G is ϵ-close to P. A property tester has access to G by

querying a function fG : V×[n] → [n]∪{⋆}, where fG (v, i) denotes

the ith neighbour of v if v has at least i neighbours. Otherwise,
fG (v, i) = ⋆.

Definition 2.2 (One-sided testers). A one-sided error ϵ-tester for a
property P of bounded degree graphs with query complexity q is a

randomized algorithm A that makes q queries to fG for a graphG .
The algorithmA accepts ifG has the property P. IfG is ϵ-far from
P, then A rejects with probability at least 2/3.

A graph property P is edge monotone if for everyG = (V , E) ∈ P,
{(V , E ′) | E ′ ⊆ E} ⊆ P. In other words, every subgraph ofG is also

in P.

3 PROPERTY TESTING OF STABILITY
CONCEPTS

To test stability concepts, we generalize the standard edit distance

of graph property testing as follows. Since we consider graphs G =
(V , F ∪ E) that represent FEN-hedonic games, we have to account

for the two types of edges: friends and enemies. Therefore, an edge

modification is one insertion of an element to or one removal of

an element from F ∪ E, respectively, while maintaining F ∩ E = ∅.
In particular, turning a friend edge into an enemy edge is counted

as two edge modifications (removing it from F and inserting it

into E). The intuition of these semantics is that edge modifications

measure the number of compromises that are needed to reach a

stable situation. If a partition is too far from being stable, too many

compromises are necessary, and the partition should be discarded.

Everything in-between is not an ideal situation, but only a few

compromises may be affordable.

Now, the existence of a stable outcome in a game is modelled as

a graph property as follows.

Definition 3.1 (stability existence property). The set of stable

graphs with respect to some stability concept (e.g., Nash stabil-

ity) is the set of all graphs G that admit a stable coalition structure.

For some stability concepts, the existence of a stable outcome

is guaranteed. Nevertheless, the question of whether a given parti-

tion Γ satisfies the stability property can still be hard to decide. The

worst case time that is needed to verify stability of Γ for all stability

concepts mentioned above is at least linear in the number of players.

We can, however, tackle the following problem in sublinear time:

Given a graphG and a partition of vertices Γ, is Γ a stable outcome

for the game represented by G, or is G ϵ-far from being a stable

instance for Γ?

Definition 3.2 (Γ-stability verification property). Let n ∈ N, and
let Γ be a partition of [n]. The set of Γ-stable graphs with respect

to some stability concept (e.g., Nash stability) is the set of n-vertex
graphs G such that Γ is a stable coalition structure of G.

Note that, unlike the existence of a stable coalition structure, a

stability property is not closed under isomorphism as long as Γ is

not permuted additionally. Therefore, extending the basic model of

graph property testing to reflect the semantics of hedonic games is

the foundation of our main contribution. Access to Γ is provided by

a set oracle that supports two queries. A find query returns, given a

vertexv , the key of the set that containsv . A member query returns,

given a key k and an index i , the i-th element of the set represented

by k , or ⋆ if no such element exists.

One beneficial feature of bounded degree graphs is the bounded

size of neighbourhoods, i.e., the number of graphs that have con-

stant distance to a given vertex. In hedonic games, this is mirrored

by the maximum coalition size, and therefore, we take the coalition

size as a parameter into our analysis.

4 PROPERTY TESTING IN THE FEN-MODEL
In this section we study property testers for stability verification

problems, resulting in Theorem 1.2, as well as stability existence

problems, resulting in Theorem 1.1, for various individual-based sta-

bility notions within the previously defined model of FEN-hedonic

games.

4.1 Testing Verification Problems
In the following we aim to prove Theorem 1.2, the testability of

verification problems with query complexity dependent only on the

degree bound, but independent of the graph size or any coalition

bound, which is restated in Theorem 4.6 below. In our constructions

we relate to the players’ favourite coalitions and make use of the

following lemma that states that we can easily modify a player’s

local surroundings to turn the current coalition into a favourite

coalition. In other words, only a constant number of compromises

suffice to optimise one player’s current situation.

Session 3E: Game Theory 2 AAMAS 2019, May 13-17, 2019, Montréal, Canada

885



Lemma 4.1. For every graphG = (N , F ∪ E) with |F ∪ E | bounded
by d , each coalition structure Γ of N , it holds that for each i ∈ N ,
O(d) queries and d edge modifications are sufficient to turn Γ(i) into
one of i’s favourite coalitions in the FEN-hedonic game represented
by G.

Proof. If for player i , it already holds that Γ(i) ∈ Fav(i), no
modification is required. Otherwise we can proceed as follows:

Accessing the (at most d) members of Ni requires at most d oracle

queries. Moreover, we can ask one oracle query each in order to

find out, whether a player j ∈ Ni = N+i ∪ N−i is contained in

Γ(i). For each j ∈ Γ(i) ∩ N−i , delete the edge (i, j) from E; for each
j ∈ N+i \ Γ(i): remove the edge (i, j) from F . This requires at most

|N+i | + |N
−
i | ≤ d edge modifications. Note that this is independent

of any bound c of the coalition size. The obtained coalition now

only contains friends of i’s and i does not have any friends outside

of Γ(i). Hence, for all considered preference extensions, no coalition
is preferred to the current coalition Γ(i). □

Many stability concepts are of the form such that stability holds

if and only if no player i satisfies a certain condition ϕ(i). If there
exists a player j that satisfies this condition ϕ(j), we call j a witness
for non-stability.

Next, we observe that due to responsiveness and symmetry in

all considered preference extensions, an edge modification that

benefits one player, can never be a disadvantage for other players.

Observation 4.2. Let i, j ∈ N be two players in the FEN-hedonic
game represented by a graph G = (N , F ∪ E). Furthermore, let ⪰i
be i’s original preference relation, and ⪰′i the preference relation of i
after a modification of edge (i, j), i.e., in the new game represented by
G ′ = (N , F ′ ∪ E ′) with the same preference extension. The following
statements hold:

(1) If (i, j) is deleted from E, for each C ∈ Ni , j < C , it holds that
C ≻i C ∪ {j} and C ∪ {j} ∼′i C ,

(2) If (i, j) is deleted from F , for each C ∈ Ni , j < C , it holds that
C ∪ {j} ≻i C and C ∪ {j} ∼′i C ,

(3) If (i, j) is deleted from E, andC ≻i D for two coalitionsC,D ∈
Ni with j ∈ C , it holds that C ≻′i D.

(4) If (i, j) is deleted from F , andC ≻i D for two coalitionsC,D ∈
Ni with j < C , it holds that C ≻′i D.

The considered stability concepts are defined via properties that

need to be avoided for each player. Let ϕ denote such a player prop-

erty assigning each player i either value 1 (i is a witness against
the property) or value 0 (i is not a witness). In the following proofs

we require certain conditions to hold for ϕ and show that all con-

sidered concepts share these conditions, which enables us to devise

a unified testing scheme.

Definition 4.3. Let γ be a stability concept for which there exists

a property ϕ : Gn × Cn → {0, 1}n , n ∈ N, such that for any

game represented by G = (N , F ∪ E), |N | = n and a coalition

structure Γ ∈ Cn it holds that ϕi (G, Γ) = 0 for each i ∈ N , if and

only if Γ is stable inG with respect to γ . We say that ϕ is feasible in
our setting if for each n and each G = (N , F ∪ E) ∈ Gn and Γ ∈ Cn
the following conditions are met for each i ∈ N .

(i) Γ(i) ∈ Fav(i) =⇒ ϕi (G, Γ) = 0.

(ii) The value ϕi (G, Γ) can be determined with a constant num-

ber of queries to the oracles for G and Γ (i.e., dependent on

ϵ,d , but independent of n).
(iii) If ϕi (G, Γ) = 0 and an edge (j, i), j < Γ(i) is removed from

F , resulting in a new game G ′, it holds that ϕi (G
′, Γ) = 0

remains valid.

(iv) If ϕi (G, Γ) = 0 and an edge (j, i), j ∈ Γ(i) is removed from

E, resulting in a new game G ′, it holds that ϕi (G
′, Γ) = 0

remains valid.

We note that if ϕ is feasible, then ϕ is edge monotone.

Lemma 4.4. Let G = (N , F ∪ E) be a graph that represents a FEN-
hedonic game and Γ a coalition structure of N . Let, furthermore, γ be
a stability concept, for which there exists a feasible player property ϕ.
If there are at most k witnesses, k · d edge modifications are sufficient
to make the game stable with respect to γ .

Proof. By Lemma 4.1, for each witness i , d edge modifications

are enough to turn Γ(i) into a favourite coalition, thus, ϕ(i) =
1 is no longer satisfied. For each player j that is not a witness,

ϕ(j) = 0 already holds which does not change due to Conditions (iii)

and (iv) of Definition 4.3. If there are at most k witnesses, k ·d edge

modifications are sufficient such that no player satisfies ϕ(i), thus,
stability with respect to γ holds. □

With the help of this lemma we are now ready to prove that

Algorithm 1 provides a property tester for the verification problem

of each stability concept with a feasible player property.

Algorithm 1

Require: access to G = (N , F ∪ E) and Γ is provided by an oracle,

ϕ(G, Γ) is the corresponding boolean stability function

1: function VerificationTester(N , F , E, s)
2: s ← 1

ϵ ln 3

3: sample s players iid from N
4: for each sampled player i do
5: if ϕi (G, Γ) = 1 then
6: return reject

7: return accept

Theorem 4.5. Let γ be a stability concept for which there exists
a feasible player property ϕ. It holds that Algorithm 1 is a one-sided
error property tester for Γ-stability verification with respect to γ .

Proof. If γ holds, there is no witness for non-stability, i.e., for

each sampled vertex ϕ(i) = 0 holds. Therefore, the tester decides in

Line 6 that γ holds with probability 1.

If Γ is ϵ-far from being stable with respect to γ , at least ϵdn edge

modifications are required. Thus, by Lemma 4.4, there are at least

ϵdn/d = ϵn witnesses. Hence, the probability that a sampled player

is a witness is at least ϵn · 1/n = ϵ .
Then, the algorithm correctly rejects if at least one witness is

sampled, i.e., the condition in Line 5 is true. The probability of this

event is 1 minus the probability that for each sampled player the
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condition in Line 5 is false, i.e., ϕi (G, Γ) = 0. The latter probability

is at most

(1 − ϵ)s ≤ e−(ϵ ·s) = e− ln 3 =
1

3

.

Thus, the probability that the tester correctly rejects is at least 2/3.

Since ϕ is feasible, ϕi (G, Γ) can be determined in constant query

time. Hence, the tester requires constant query time dependent on

the applied function ϕ. □

Now it remains to show that each considered stability property

has such a feasible player property ϕ. By Theorem 4.5, we obtain a

verification tester by Algorithm 1 with a query complexity depend-

ing on ϕ.

Theorem 4.6. For the FEN-hedonic game model, the Γ-stability
verification property can be tested with respect to

(1) perfection and individual rationality with query complexity
in O(d/ϵ),

(2) Nash stability, individual and contractual individual stability
with query complexity in O(d/ϵ).

Proof. For each considered stability concept we show that there

exists a feasible player property such that Theorem 4.5 can be

applied. In each case we determine the query complexity of the

tester.

perfect: The corresponding player property is

ϕi (G, Γ) = 1 ⇐⇒ ∃C ∈ Ni : C ≻i Γ(i).

Condition (i) holds by definition of perfection. We have

ϕi (G, Γ) = 1 if and only if Γ(i) does not contain all of i’s
friends and none of i’s enemies, which can be verified in

constant query time by asking whether j is in the same coali-

tion as i for each j ∈ Ni . Therefore, Condition (ii) is met

with d queries per sampled player. In total, the query com-

plexity is in O(d/ϵ). Conditions (iii) and (iv) can be implied

immediately by Observation 4.2, since the relation Γ(i) ⪰i C
remains valid in each relevant case.

individually rational: Here, the player property is

ϕi (G, Γ) = 1 ⇐⇒ {i} ≻i Γ(i).

Condition (i) holds, since C ∈ Fav(i) implies that C ⪰i {i}.
Since the decision whether {i} ≻i Γ(i) only depends on

|Γ(i) ∩ Ni |, d queries are sufficient, i.e., a total query com-

plexity in O(d/ϵ), which satisfies Condition (ii). Again, Con-

ditions (iii) and (iv) can be implied by Observation 4.2.

Nash-stable: A witness i against Nash stability satisfies

ϕi (G, Γ) = 1 ⇐⇒ ∃C ∈ Γ ∪ {∅} : C ∪ {i} ≻i Γ(i)

Condition (i) holds, since Γ(i) ∈ Fav(i) implies Γ(i) ⪰i C in

particular for C such that C = C ′ ∪ {i}, C ′ ∈ Γ ∪ {∅}. We

consider the following cases regarding Condition (ii):

(a) If Γ(i) ∩ N+i , ∅, i wants to deviate to a coalition C
with ui (C ∪ {i}) > ui (Γ(i)). Due to the linearity of the

preferences, this can only be {i} (with ui ({i}) = 0) or a

coalition in Γ that contains at least one friend. There are

at most |N+i | ≤ d coalitions in Γ that contain a friend,

namely Γ(j), j ∈ N+i . Hence, at most d comparisons of

coalitions are sufficient, which can be done with at most

d neighbour and d find queries by Equation (1).

(b) If Γ(i) ∩ N+i = ∅, but N
+
i , ∅, the analysis is analogous

to (a).

(c) If N+i = ∅ and Γ(i) ∩ N−i = ∅, Γ(i) is already one of i’s
favourite coalitions, hence ϕi (G, Γ) = 0.

(d) If N+i = ∅ and Γ(i) ∩ N−i , ∅, i wants to deviate to the

single player coalition {i}, hence ϕi (G, Γ) = 1.

It can be decided with d neighbour queries which of the four

cases holds for Γ(i). The at most d coalition comparisons

require at most d additional find queries. Therefore, ϕi (G, Γ)
can be decided with O(d) queries, satisfying Condition (ii).

The total query complexity of Algorithm 1 is O(d/ϵ).
Again, Conditions (iii) and (iv) can be implied by Observa-

tion 4.2.

individually stable: A witness i against individual stability satisfies

ϕi (G, Γ) = 1 ⇐⇒ ∃C ∈ Γ ∪ {∅} : C ∪ {i} ≻i Γ(i) and

∀j ∈ C : C ∪ {i} ⪰j C .

Hence, if i is not a witness for a Nash deviation, it cannot be a
witness here, either. Therefore, Condition (i) holds. If i wants
to deviate, this is due to one of the cases (a), (b), or (d) above.

In the latter case, again, Γ(i) is not acceptable, and i is always
welcome in {i}. In cases (a) and (b), we have to consider at

most |N+i | candidate coalitions, i can deviate to. For each

neutral player j ∈ N 0

i , it holds that Γ(j) ∼j Γ(j) ∪ {i}. Thus,
we only have to ask i’s neighbours for permission to enter

the new coalition, which are in total at most d . In fact, due

to the symmetry of preferences, friends always welcome i ,
and enemies always don’t.

We obtain ϕi (G, Γ) = 0 if and only if there are no enemies

in C , which we can decide with at most d queries. Thus, we

can employ the same queries as for Nash stability in order to

determine ϕi (G, Γ), which satisfies Condition (ii). The total

query complexity of Algorithm 1 is O(d/ϵ).
If i wants to move to another coalition C ⊆ Γ ∪ {∅} but
there exists a player j ∈ C with C ≻j C ∪ {i}, then j is i’s
enemy due to Observation 4.2. Therefore, deleting edges

from F cannot makeC ∪ {i} a feasible deviation if it was not

feasible before. Thus, Condition (iii) is met. If an edge (i, j) is
deleted from E and j ∈ Γ(i), Condition (iv) can only be false

if Γ(j) ≻j Γ(j) ∪ {i}. However, i ∈ Γ(j) because Γ(j) = Γ(i),
which is a contradiction, and Condition (iv) is met. If i is
not a witness because there does not exist any preferred

coalition to move to, the arguments for Nash stability can

be applied.

contractually individually stable: A witness i against contractual
individual stability satisfies ϕi (G, Γ) = 1 which holds if and

only if there exists some C ∈ Γ ∪ {∅} such that the two

conditions for individual stability (C ∪ {i} ≻i Γ(i) and ∀j ∈
C : C∪{i} ⪰j C) and an additional condition (∀j

′ ∈ Γ(i)\{i} :
Γ(i) \ {i} ⪰j′ Γ(i)) hold. Condition (i) holds analogously to

individual stability.

Observe that for neutral players j ′ ∈ N 0

i ∩ Γ(i) it holds that
Γ(i) ∼j′ Γ(i) \ {i} and for enemies j ′ ∈ N−i it holds that

Γ(i) \ {i} ≻j′ Γ(i). Again, if i wants to deviate to a coali-

tion, cases (a), (b) and (d) remain. In case (a) i has friends
in Γ(i) that i contractually depends on. Here ϕi (G, Γ) =
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0. In cases (b) and (d) there are no friends in Γ(i), which
means there is no contractual dependence. Then, i is a wit-
ness against contractual individual stability if and only if

it is a witness against individual stability. Thus, in case (d)

ϕi (G, Γ) = 1 and in case (b) that same queries as above can be

applied. Thus, we need at most O(d) queries in order to de-

termine ϕi (G, Γ). The total query complexity of Algorithm 1

is O(d/ϵ), which satisfies Condition (ii).

Conditions (iii) and (iv) hold with analogous arguments as

above. □

4.2 Testing Existence Problems
Now we prove Theorem 1.1. In general, there always exists an

individually rational coalition structure. Bogomolnaia and Jackson

[9] show that in symmetric additively separable hedonic games

there always exists a Nash stable coalition structure. Note that

in our model the argument that if a player deviates, the social

welfare increases, remains valid, even for bounded coalition size.

We provide a sketch of the formal proof for completeness.

Observation 4.7. Each symmetric FEN-hedonic game (all consid-
ered preference extensions) allows a Nash-stable, and consequently
individually stable and contractually individually stable coalition
structure.

Proof sketch. Let Γ be a coalition structure containing coali-

tions Γ(i) andC ⊆ N with |C | ≤ c−1.We assume thatC∪{i} ≻i Γ(i).
Moreover, let Γ′ be the coalition structure obtained if i deviates to
C , i.e., Γ′ contains Γ(i) \ {i} and C ∪ {i}. The social welfare SW(Γ)
of a coalition structure Γ is the sum of all players’ utilities of their

current coalition. We observe that the difference of the social wel-

fare of Γ′ and Γ always increases, which means that there exists

a local maximum resulting in a Nash-stable coalition structure. It

holds that the difference SW(Γ′) − SW(Γ) equals∑
j ∈N

(
uj (Γ

′(j)) − uj (Γ(j))
)

= ui (C ∪ {i}) − ui (Γ(i))︸                     ︷︷                     ︸
>0

+
∑

j ∈C∩Ni

(
uj (C ∪ {i}) − uj (C)

)
+

∑
j ∈Γ(i)∩Ni

(
uj (Γ(i) \ {i}) − uj (Γ(i))

)
= ui (C ∪ {i}) − ui (Γ(i))︸                     ︷︷                     ︸

>0

+f · |C ∩ N+i | − e · |C ∩ N+i |

− f · |Γ(i) ∩ N+i | + e · |Γ(i) ∩ N+i | > 0

Hence, there always exists a Nash-stable coalition structure, even if

the coalition size is bounded. Since Nash stability implies individual

and contractual individual stability, they are guaranteed to exist as

well. □

There does not necessarily exist a perfect coalition structure. For

example, there does not exist any perfect coalition structure for

G = ({1, 2, 3}, F ∪ E), where F = ((1, 2), (2, 3)), E = (3, 1). On the

other hand, if E = ∅, the utility of any coalition structure is at most

0, so singleton coalitions are perfect; if F = ∅, there exists a perfect
coalition structure if and only if no connected component is larger

than c . For the general case |E |, |F | ≥ 0, we show that there exists a

tester with one-sided error.

Theorem 4.8. There is a one-sided error tester with constant query
complexity for the existence of a perfect coalition structure in the
FEN-hedonic game model with a constant coalition size bound.

Proof. Let v ∈ V , and observe that C is a favourite coalition of

v if and only if C ∩ F (v) = F (v) and C ∩ E(v) = ∅. It follows that
there exists a perfect coalition structure Γ if and only if there does

not exist any edge in E between vertices of the same connected

component of G[VF ], where VF is the set of endpoints in F , i.e.,
VF = {u | (u,v) ∈ F }. This suggests the following algorithm: first,

sample a set S of |S | = 1/ϵ ln 3 vertices at random. For each v ∈ S ,
we run a BFS that follows only edges in F . If one of these BFS’s sees
more than c vertices or it discovers two endpoints u,v of the same

edge (u,v) ∈ E, the tester rejects. Otherwise it accepts the graph.
By the above observation, every path in G that contains only

edges from F must be in the same coalition in a perfect coalition

structure. The algorithm rejects only when it finds a path P such

that for every coalition structure Γ such that some coalition C ∈ Γ
contains P , C also contains (u,v) ∈ E, which is a witness against

the existence of a perfect coalition structure.

If G is ϵ-far from having a perfect coalition structure, then at

least ϵdn edges in F ∪ E have to be removed in order to make G
have a perfect coalition structure because having a perfect coalition

structure is an edge-monotone property. Let R be a minimal set of

edges that have to be removed. Since every vertex is incident to

at most d other vertices, at least 2|R |/d > 2ϵdn/d > ϵn vertices

must be incident to an edge from |R |. Therefore, the probability
that none of the vertices in S is incident to an edge in R is at most(

1 −
ϵn

n

) 1

ϵ ln 3

≤
1

3

,

As argued above, if a vertex in S is incident to an edge from R, the
tester finds (u,v) and rejects. □

4.3 Extensions to Weighted and Directed
Graphs

A natural extension of Definition 2.1 (FEN-hedonic game) is to

allow arbitrary weights for edges instead of f for friends and e for
enemies. If each edge contributes equally to the edit distance, this

does not affect our proofs and Observation 4.7 because they rely

on the linearity of the utility function only. If an edge contributes

proportional to its weight, we can use the following standard tech-

niques from property testing. Either, we require that the weights

are bounded by some valueW and we increase the sampling size

in our algorithms by a factor ofW . To see why this works, imagine

an edge with weight w as w parallel edges, which essentially in-

creases the bound on the vertex degrees toW ·d . On the other hand,

unbounded weights cannot be handled in the standard model by

constant-query testers because a single edge that has weight 2ϵdn
can make a graph ϵ-far, yet it is almost impossible to find this edge

by sampling O(1) vertices uniformly. Therefore, another option is

to allow vertex sampling proportional to the weights of incident

edges.

Another extension is to consider directed graphs. In property

testing, there are two different models of directed graphs. In the
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bidirectional model, we may see all incoming and outgoing edges.

In the unidirectional model, we may see only one type - usually

outgoing edges. Although there is a lossy but still sublinear trans-

formation from constant-query testers in the bidirectional model

into the unidirectional model [13], the unidirectional model is often

much harder to analyse and yields testers with worse query com-

plexity. Nevertheless, assuming bounded out-degree, verification is

not affected by the bidirectional model. For the unidirectional model

with outgoing edges, the query complexity for individual stability

and contractually individual stability depends on (the minimum

of) the in-degree or the maximum coalition size: the case analysis

changes because we are required to evaluate the preferences of

the other members of the (still at most O(d)) affected coalitions.

Observation 4.7 is not true anymore (see [9] for an example). A per-

fect coalitions structure exists if the weakly connected components

induced by F do not induce any edges from E. Exploring weakly con-
nected components causes no problem in the bidirectional model,

but in the unidirectional model it can render exploration almost

impossible. For example, consider a cycle of length c with alternat-

ing edge direction and all but one edge being friend edges. This

graph makes it impossible to form perfect coalitions, and having

ϵdn copies of it as subgraphs makes a graph ϵ-far from admitting a

perfect coalition structure. The unidirectional model with incoming

edges seems to require new techniques even for verification.

5 OPEN QUESTIONS
A natural question that is related to finding stable partitions is the

following: Given a graph G and a partition Γ, is the partition Γ
far from being stable in G (instead of the graph being far from

Γ-stable)? This can be generalized further: Property testing is a

special case of local computation algorithms (LCA), where one shall
provide oracle access to a solution, given oracle access to the input.

In property testing, the solution is a single bit (accept or reject).

While it is beyond the scope of sublinear algorithms to actually

compute a stable partition, one may seek to develop an LCA that

gives oracle access to it.

Generalizing the results we obtained, one may seek to obtain

sublinear algorithms for games with unbounded coalition size. Here,

the main difficulty is to obtain insights into the local structure of

very large, say, linear sized coalitions. Following a slightly different

line of thought, one may consider other graphs models like the

dense model, where (almost) all players relate to each other and

one may ask how two players i, j relate, or the general graph model,

where vertices have arbitrary degrees. These models are quite dif-

ferent from the bounded degree model, as well as from each other.

For the dense graph model, a characterization using Szemerédi

regular partitions is known [1], and it seems possible that coalition

formation could be expressed in terms of regular partitions. Much

less is known about the general model. So far, most research is still

focused on elementary graph problems like counting the number

of constant-size cliques [20]. It would be interesting to see whether

stability properties are also constant-query testable in these two

models. Another direction for further studies is property testers

with two-sided error. These testers do not need to provide a witness

against the property, but rather sufficient statistics that a graph is

far from a property with constant probability.

As mentioned in the introduction, there exist also plenty of

other stability concepts like (strict) core stability, Pareto-optimality

and popularity that can operate on the same preference extension,

which may be interesting to analyse in order to obtain a deeper

understanding of locality mechanics in FEN-hedonic games. Here,

the main difficulty is to circumvent the usually high computational

complexity of the exact decision problems.

Finally, one may study other models of hedonic games, in partic-

ular with ordinal preferences (e.g., rankings over known edges [28]).

This requires further modelling of the oracle access and considered

distance measures.
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