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ABSTRACT
Hedonic games model how players form coalitions based on their

preferences about the coalitions they can join. Lang et al. [17] intro-

duced FEN-hedonic games where each player partitions the other

players into friends, enemies, and neutral players and ranks her

friends and enemies. They then use bipolar responsive extensions

to derive preferences over coalitions, and since such preferences

can be incomplete, they consider possible and necessary stability

for various stability notions and study the related verification and

existence problems in terms of computational complexity. However,

in their complexity analysis they left a number of cases open. We

settle several of these open problems for stability concepts based

on single-player deviations: We show that possible verification can

be solved in polynomial time for Nash stability, individual stabil-

ity, and contractually individual stability. Yet, necessary existence

is an NP-complete problem for individual stability while possible

existence is easy for contractually individual stability.
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1 INTRODUCTION
Hedonic games, originally proposed by Banerjee et al. [6] and inde-

pendently by Bogomolnaia and Jackson [7], are cooperative games

where players have preferences over the coalitions they can join.

Which coalition structure will form in the end can be modeled via

various stability concepts, including Nash stability, core stability,

individual stability, and contractually individual stability (see, e.g.,

the book chapters by Aziz and Savani [4] and Elkind and Rothe [14]

or the papers by Bogomolnaia and Jackson [7] and Aziz et al. [1, 3]).

A central issue in hedonic games is how they can be represented

efficiently. Woeginger [23] and Lang et al. [17] survey various ap-

proaches from the literature and discuss their pros and cons, includ-

ing the individually rational encoding and the anonymous encoding
due to Ballester [5], the additive encoding [3, 21, 22, 24], the “friends
and enemies” encoding due to Dimitrov et al. [13, 21], the singleton
encoding used by Cechlárová et al. [9–11], hedonic coalition nets due
to Elkind and Wooldridge [15], and fractional hedonic games due to
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Aziz et al. [2]. To overcome various issues with these former rep-

resentations, Lang et al. [17] proposed the notion of FEN-hedonic

game where players divide the other players into friends, enemies,

and neutral players and rank their friends and their enemies (so-

called weak rankings with double threshold). To derive preferences

over coalitions, they are then using the so-called polarized responsive
set extension, which is akin to and a generalization of the Bossong–

Schweigert set extension (see [8, 12]). Since such preferences can

be incomplete, they further consider possible and necessary stabil-
ity (inspired by the notions of possible and necessary winner in

voting [16, 25]) for a variety of stability concepts (such as those

mentioned above) and study the related verification and existence

problems in terms of their computational complexity.

However, in their complexity analysis Lang et al. [17] left a

number of cases open. The purpose of this paper is to settle some of

these open questions for stability concepts based on single-player

deviations. Specifically, we show that possible verification can be

solved in polynomial time for Nash stability, individual stability, and

contractually individual stability. On the other hand, we show that

necessary existence is NP-complete for individual stability while

possible existence is easy for contractually individual stability.

This paper is organized as follows. We present the needed no-

tions from game theory (in particular, concerning hedonic games)

and complexity theory in Section 2 and the formal details of FEN-

hedonic games introduced by Lang et al. [17] in Section 3. In Sec-

tion 4, we prove our complexity results. We conclude in Section 5

and give a brief outlook on future work.

2 PRELIMINARIES
We start by providing some basic definitions. After defining the

notion of hedonic game, we will explain some notions of stability

to be considered later in the paper. Finally, we will also give some

basic background of complexity theory, to be used later on in Sec-

tion 4 where we will present some complexity results regarding the

stability of FEN-hedonic games.

2.1 Hedonic Games
Let A = {1, ...,n} be a set of players (or agents). Every subset C of

A is called a coalition. Let, further, Ai = {C ⊆ A | i ∈ C} be the
set of all coalitions C ⊆ A containing agent i ∈ A. The preference
relation ⪰i of player i is a complete weak order over Ai . For any

two coalitions C,D ∈ Ai , we say that i weakly prefers C to D if

C ⪰i D; i prefers C to D (denoted by C ≻i D) if C ⪰i D and not

D ⪰i C; and i is indifferent between C and D (denoted by C ∼i D)
if C ⪰i D and D ⪰i C . As usual, we also define C ⪯i D ⇔ D ⪰i C
and C ≺i D ⇔ D ≻i C .

A hedonic game is defined as a pair (A, ⪰), where A = {1, ...,n}
is a set of players and ⪰ = (⪰1, ..., ⪰n ) is a profile of preference rela-
tions where each relation ⪰i gives the preference order of player i .
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A coalition structure Γ for a hedonic game (A, ⪰) is a partition of A
into disjoint coalitions, where Γ(i) denotes the coalition in Γ con-

taining i . We denote the set of all possible coalition structures for a

hedonic game (A, ⪰) by C(A,⪰). For simplicity, we omit stating the

hedonic game explicitly and just write C if (A, ⪰) is clear from the

context.

2.2 Notions of Stability
There are several stability concepts in hedonic games, indicating

whether some player(s) may have an incentive to deviate from a

given coalition structure. In the literature one distinguishes between

different types of stability concepts that concern the deviation of

single players or of groups of players or the comparison of coalition

structures; we here will focus on concepts concerning single-player

deviation only. While most of these concepts have already been

intensively studied for common hedonic games, we will apply them

to FEN-hedonic games introduced by Lang et al. [17] (see also

[20]) and formally defined here in Section 3, and will study the

complexity of the related decision problems in Section 4.

The stability concepts concerning single-player deviation are

based on the question of whether there are single players who

would prefer to be in another coalition than the one assigned to

them by the given coalition structure Γ.

Definition 2.1. Let (A, ⪰) be a hedonic game with A = {1, ...,n}
and ⪰ = (⪰1, ..., ⪰n ). A coalition structure Γ ∈ C(A,⪰) is

(1) perfect if each player weakly prefers her assigned coalition

to every other coalition containing her; formally:

(∀i ∈ A)(∀C ∈ Ai )
[
Γ(i) ⪰i C

]
;

(2) individually rational if every player weakly prefers her as-

signed coalition to being alone:

(∀i ∈ A)[Γ(i) ⪰i {i}] ;
(3) Nash stable if no player prefers another coalition in Γ:

(∀i ∈ A)(∀C ∈ Γ ∪ {∅})[Γ(i) ⪰i C ∪ {i}] ;
(4) individually stable if no player prefers another coalition in Γ

and could deviate to it without harming any player in that

new coalition:

(∀i ∈ A)(∀C ∈ Γ ∪ {∅})[
Γ(i) ⪰i C ∪ {i} ∨ (∃j ∈ C)[C ≻j C ∪ {i}]

]
;

(5) contractually individually stable if no player prefers another

coalition in Γ and could deviate to it without harming a

player in the new or her assigned coalition:

(∀i ∈ A)(∀C ∈ Γ ∪ {∅})[Γ(i) ⪰i C ∪ {i} ∨
(∃j ∈ C)[C ≻j C ∪ {i}] ∨ (∃k ∈ Γ(i))[Γ(i) ≻k Γ(i) \ {i}]

]
.

The known relations among these stability concepts are as fol-

lows (see, e.g., the book chapter by Aziz and Savani [4]): Perfectness

implies Nash stability (i.e., every perfect coalition structure is Nash

stable), which in turn implies individual stability, which implies

both contractually individual stability and individual rationality.

2.3 Notions from Complexity Theory
The reader is assumed to be familiar with the basic notions of com-

plexity theory; in particular, with the complexity classes P and

NP, the notion of polynomial-time many-one reducibility and the

notions of NP-hardness and NP-completeness. Recall that a (deci-

sion) problem X polynomial-time many-one reduces to a (decision)

problem Y (both encoded as sets of strings over some alphabet

representing the yes-instances of the problems) if there exists a

polynomial-time computable function f such that for each instance

x , x ∈ X if and only if f (x) ∈ Y . Further, Y is NP-hard if every

NP problem polynomial-time many-one reduces to Y , and Y is

NP-complete if Y is NP-hard and in NP. For more background on

computational complexity, we refer to the textbooks by Papadim-

itriou [18] and Rothe [19].

3 FEN-HEDONIC GAMES
In this section we present the definition of FEN-hedonic games

which were first introduced by Lang et al. [17]. The letters FEN

stand for “friends, enemies, and neutral players” to reflect the basic

assumption of FEN-hedonic games, which unlike the “friends and

enemies” encoding of hedonic games due to Dimitrov et al. [13]

(see also Sung and Dimitrov [21]) also have neutral players. In

more detail, in FEN-hedonic games players don’t submit complete

preferences over coalitions (which would be too costly) or ordinal

rankings over players. Instead, they submit so-called weak rankings
with double threshold, which partition the players into friends, ene-

mies, and neutral players with friends and enemies being ranked,

whereas neutral players are not ranked. In this representation differ-

ent models of expressing the players’ preferences were combined in

order to handle some crucial problems, as will be briefly explained

next (see [17] for more details).

3.1 Former Models
Eliciting the players’ preferences has always been a main issue in

game theory and the related area of computational social choice.

When preferences over sets are required, there is always the prob-

lem that these preferences have exponential size. The same holds in

our case: Hedonic games require complete orders over all coalitions

containing a given agent and there are exponentially many of those

coalitions in the number of agents. Hence, asking players to specify

their entire rankings would result in preference representations of

exponential size.

Another issue is that it might be considered an unrealistic as-

sumption that agents have complete preferences over all coalitions.

They may not be willing or not even be able to state a complete

ranking. Some authors tried to handle this issue by asking the play-

ers only for a small part of their preferences (e.g., in the individually
rational encoding due to Ballester [5]), but this brings up another

problem: Eliciting only partial preferences always comes along with

a loss of expressivity.

To address these issues, Lang et al. [17] considered some existing

preference representations in hedonic games and then defined their

new representation of weak rankings with double thresholds. By do-

ing so, they combined aspects of various former concepts and tried

to avoid all issues—exponential size of the requested preference

representations, too harsh or too unrealistic assumptions, and the
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loss of expressivity. An interesting discussion of how to approach

the above issues can be found in Section 1 of their paper [17] (see

also the book chapter by Aziz and Savani [4] for a more detailed

treatise).

3.2 Weak Rankings with Double Threshold
Let A = {1, ...,n} be a set of players. A weak ranking with double
thresholds for an agent i ∈ A is denoted by �+0−i . It is obtained by a

partition of the remaining players A \ {i} into friends of i , enemies

of i , and neutral players that i is indifferent about. Additionally,
player i has to submit a ranking of her friends as well as of her ene-

mies. We write �+0−i = (�+i |A
0

i |�
−
i ) or �+0−i = (�+i |j1 · · · jk |�

−
i ),

where �+i is a weak order over the set A+i of i’s friends, �−i a weak

order over the set A−i of i’s enemies, and A0

i = {j1, . . . , jk } is the
set of i’s neutral players.

Every player i is assumed to prefer her friends to her neutral

players and her neutral players to her enemies. The weak ranking
with double thresholds �+0−i therefore induces a weak order �i ,

defined as follows (extracted from [17]): �i coincides with �+i on

A+i ; f �i j for each f ∈ A+i and j ∈ A0

i ; j1 ∼i j2 ∼i · · · ∼i jk for

A0

i = {j1, j2, . . . , jk }; j �i e for each j ∈ A0

i and e ∈ A−i ; and �i
coincides with �−i on A−i .

Example 3.1. Let A = {1, ..., 10}. Some possible weak rankings
with double thresholds are
�+0−
1
= (2 �+

1
3 ∼+

1
4 | 5 6 7 | 8 ∼−

1
9 �−

1
10 ),

�+0−
2
= (6 ∼+

2
7 ∼+

2
8 ∼+

2
9 | 3 4 5 10 | 1 ),

�+0−
3
= ( | 5 6 7 8 9 10 | 1 �−

3
2 �−

3
4 ).

The weak orders �1, �2, and �3 induced by �+0−
1

, �+0−
2

, and

�+0−
3

are then given by

2 �1 3 ∼1 4 �1 5 ∼1 6 ∼1 7 �1 8 ∼1 9 �1 10,

6 ∼2 7 ∼2 8 ∼2 9 �2 3 ∼2 4 ∼2 5 ∼2 10 �2 1, and

5 ∼3 6 ∼3 7 ∼3 8 ∼3 9 ∼3 10 �3 1 �3 2 �3 4.

3.3 FEN-Hedonic Games
A FEN-hedonic game is a pair (A,�+0−) consisting of a set of agents
A = {1, ...,n} and a profile �+0− =

(
�+0−
1
, . . . ,�+0−n

)
of pref-

erences, where �+0−i is a weak ranking with double threshold for

agent i ∈ A. Again, a coalition structure for a FEN-hedonic game
(A,�+0−) is a partition of A into disjoint coalitions and we denote

the set of all possible coalition structures by C(A,�+0−).
So far, we got preferences over players, but what we require are

preferences over coalitions. To obtain these, set extensions are used.
As Lang et al. [17] do, we will make use of the polarized responsive
extension, which is defined as follows:

3.3.1 Polarized responsive extension. The extended preference
⪰+0−i for a weak ranking with double threshold �+0−i is defined as

follows. For any two coalitions X ,Y ∈ Ai , X ⪰+0−i Y if and only if

the following two conditions hold:

(1) There is an injective function σ : Y ∩ A+i → X ∩ A+i such

that for every y ∈ Y ∩A+i , we have σ (y)�i y.
(2) There is an injective function θ : X ∩ A−i → Y ∩ A−i such

that for every x ∈ X ∩A−i , we have x �i θ (x).

As usual, we define X ≻+0−i Y ⇔ X ⪰+0−i Y ∧ ¬Y ⪰+0−i X ;

X ∼+0−i Y ⇔ X ⪰+0−i Y ∧ Y ⪰+0−i X ; X ⪯+0−i Y ⇔ Y ⪰+0−i X ;

and X ≺+0−i Y ⇔ Y ≻+0−i X .

3.3.2 Explanation and incompleteness. Let us explain the above

definition of the responsive extension principle in some more detail.

A coalition X is preferred to a coalition Y by player i if, firstly, for
each friend fY of i in Y there is a friend fX of i in X that is at

least as preferred by i as fY (i.e., fX �i fY ) and, secondly, for each
enemy eX of i in X there is an enemy eY of i in Y that is at least as

disliked by i as eX (i.e., eX �i eY ). Additionally, these friends in X
and enemies in Y both have to be chosen pairwise distinctly. Thus

this condition also implies that there have to be at least as many of

i’s friends in X as in Y and at most as many enemies of i in X as

in Y .
A coalition becomes more preferred by adding a friend and less

preferred by adding an enemy. Moreover, exchanging a friend for a

neutral player or an enemy makes a coalition less preferred, while

the opposite operation makes it more preferred. Similarly, exchang-

ing a neutral player for an enemy makes a coalition less preferred

and the opposite operation makes it more preferred. When a friend

is replaced by a better (i.e., preferred) friend, the new coalition

is preferred to the old one. Likewise, by replacing an enemy by

a more preferred enemy a coalition becomes more preferred. But

there are also some coalitions that are incomparable according to

the responsive extension. For instance, when two players, a friend

and an enemy, are added to or removed from a coalition, it is not

specified by the responsive extension principle which coalition,

the new or the old one, is preferred—they remain incomparable.

Another case of incomparable coalitions is described below.

Example 3.2. Consider the FEN-hedonic game

(A,�+0−) = ({1, 2, 3, 4}, (�+0−
1
, . . . ,�+0−

4
))

with

�+0−
1
= (2 �1 3 �1 4 | | ) and

�+0−
2
= ( | 1 3 | 4 ).

Then the polarized responsive extension ⪰+0−
1

of �+0−
1

is in-

complete (or partial). In Figure 1, an arrow from a coalition C to a

coalition D means that C is preferred to D.
As can be seen in Figure 1, coalitions {1, 3, 4} and {1, 2} are

incomparable with respect to ⪰+0−
1

. By contrast, the polarized re-

sponsive extension ⪰+0−
2

of �+0−
2

is complete:

{2} ∼+0−
2
{1, 2} ∼+0−

2
{2, 3} ∼+0−

2
{1, 2, 3} ≻+0−

2
{2, 4}

∼+0−
2
{1, 2, 4} ∼+0−

2
{2, 3, 4} ∼+0−

2
{1, 2, 3, 4}.

3.3.3 Extension to complete preferences. Since the polarized re-

sponsive extension can lead to incomplete preferences by leaving

the relation between some coalitions undecided, we consider the

following definition of extensions to complete preferences.

Definition 3.3. A complete relation ⪰i overAi extends a (possibly
incomplete) relation ⪰+0−i if C ≻+0−i D implies C ≻i D and C ∼+0−i
D impliesC ∼i D for all coalitionsC,D ∈ Ai . We define Ext(⪰+0−i )
as the set of all complete relations extending ⪰+0−i .
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Figure 1: The polarized responsive extension ⪰+0−
1

of player 1’s preference �+0−
1

in Example 3.2

Example 3.4. The partial preference relation ⪰+0−
1

shown in Fig-

ure 1 can be extended to either of the following two complete re-

lations: {1, 2, 3, 4} ≻1 {1, 2, 3} ≻1 {1, 2, 4} ≻1 {1, 3, 4} ≻1 {1, 2} ≻1
{1, 3} ≻1 {1, 4} ≻1 {1} and {1, 2, 3, 4} ≻′

1
{1, 2, 3} ≻′

1
{1, 2, 4} ≻′

1

{1, 2} ≻′
1
{1, 3, 4} ≻′

1
{1, 3} ≻′

1
{1, 4} ≻′

1
{1}. Hence, Ext(⪰+0−

1
) =

{⪰1, ⪰′
1
}.

3.4 Stability in FEN-Hedonic Games
Wewill now focus on the stability concepts introduced in Section 2.2

and apply them to FEN-hedonic games. Given a FEN-hedonic game

H and a stability concept α , we consider the verification question

(Does a given coalition structure Γ satisfy α in the FEN-hedonic game
H?) and the existence question (Does there exist a coalition structure
that satisfies α in H?).

To answer these questions, we first need to specify when a coali-

tion structure satisfies a stability concept in a FEN-hedonic game.

The crucial point here is that the preferences over coalitions which

are obtained by the polarized responsive extension might be incom-

plete. This problem was already discussed by Lang et al. [17]. In

order to handle incomplete preferences they decided to leave all

incomparabilities open and consider the set of all possible exten-

sions. Motivated by the notions of possible and necessary winner

in voting [16, 25], they distinguished whether a stability concept is

possibly or necessarily satisfied (i.e., for some or for all extensions).

Definition 3.5 (possible and necessary stability, Lang et al. [17]).
Given a FEN-hedonic gameH = (A,�+0−)withA = {1, . . . ,n} and
�+0− = (�+0−

1
, . . . ,�+0−n ), a stability concept α , and a coalition

structure Γ ∈ C(A,�+0−), we define:

(1) Γ possibly satisfies α if there exists a profile P = (⪰1, . . . , ⪰n )
in

>n
i=1 Ext(⪰+0−i ) such that Γ fulfills α in the hedonic game

(A, P).
(2) Γ necessarily satisfies α if for all profiles P = (⪰1, . . . , ⪰n )

in

>n
i=1 Ext(⪰+0−i ) it holds that Γ fulfills α in the hedonic

game (A, P).

Given these definitions, we can now focus on the corresponding

verification and existence problems as indicated in the questions

above. The two definitions of possible and necessary stability lead

to two problems for each, one related to the verification and the

other to the existence question.

For a stability concept α (such as those presented in Defini-

tion 2.1), the verification problems are defined as follows:

Possible-α -Verification (PαV)

Given: A FEN-hedonic game (A, �+0−) and a coalition structure

Γ ∈ C(A,�+0−).

Question: Does Γ possibly satisfy α?

Necessary-α -Verification (NαV)

Given: A FEN-hedonic game (A, �+0−) and a coalition structure

Γ ∈ C(A,�+0−).

Question: Does Γ necessarily satisfy α?

For a stability concept α , the existence problems are defined as

follows:

Possible-α -Existence (PαE)

Given: A FEN-hedonic game (A, �+0−).
Question: Does there exist a coalition structure Γ ∈ C(A,�+0−) that

possibly satisfies α?

Necessary-α -Existence (NαE)

Given: A FEN-hedonic game (A, �+0−).
Question: Does there exist a coalition structure Γ ∈ C(A,�+0−) that

necessarily satisfies α?

Notice that a yes-instance for NαV (NαE) is always a yes-instance
for PαV (PαE) because necessary stability implies possible stability.

Furthermore, it holds that if (H , Γ) is a yes-instance for NαV (PαV)
then H is a yes-instance for NαE (PαE). Summarized it holds that:

(H , Γ) ∈ NαV ⇒ (H , Γ) ∈ PαV; H ∈ NαE ⇒ H ∈ PαE; (H , Γ) ∈
NαV⇒ H ∈ NαE; and (H , Γ) ∈ PαV⇒ H ∈ PαE.

4 COMPLEXITY RESULTS
In this section, we present our complexity results for some of the

problems NαV, NαE, PαV, and PαE that were left open by Lang et

al. [17].

4.1 Overview of Results
Table 1 gives an overview of results regarding the complexity of

the problems NαV, NαE, PαV, and PαE for the stability concepts α
presented in Definition 2.1. Known results are due to Lang et al. [17]

and our new results are indicated by the theorem or proposition

they are stated in.

4.2 Some Useful Observations
We now make some useful observations that are easy to verify; the

first one is Proposition 6 in the paper by Lang et al. [17].
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Table 1: Overview of complexity results

α
Verification Existence

Possible Necessary Possible Necessary

perfectness in P [17] in P [17] in P [17] in P [17]

individual rationality in P [17] in P [17] in P [17] in P [17]

individual stability in P (Thm 4.5) in P [17] in NP [17] NP-complete (Thm 4.9)

contractually individual stability in P (Thm 4.6) in P [17] in P (Thm 4.7) in NP [17]

Nash stability in P (Thm 4.4) in P [17] NP-complete [17] NP-complete [17]

Observation 4.1. Given a weak ranking with double threshold
�+0−i for an agent i ∈ A and two coalitions C,D ⊆ Ai , the relation
C ⪰+0−i D can be checked in polynomial time.

Observation 4.2. For a FEN-hedonic game (A,�+0−), where
�+0− = (�+0−

1
, . . . ,�+0−n ), a coalition C ⊆ A, two players i, j ∈ A

with j ∈ C, i < C , and any extension ⪰j∈ Ext(⪰+0−j ), it holds that
C ≻j C ∪ {i} ⇔ i ∈ A−j .

Observation 4.3. For a FEN-hedonic game (A,�+0−), where
�+0− = (�+0−

1
, . . . ,�+0−n ), a coalition C ⊆ A, two players i,k ∈ C ,

and any extension ⪰k∈ Ext(⪰+0−k ), we haveC ≻k C \ {i} ⇔ i ∈ A+k .

4.3 Possible Verification Is Easy
We show that possible verification is easy for Nash stability, indi-

vidual stability, and contractually individual stability.

Theorem 4.4. Possible-Nash-Stability-Verification is in P.

Proof. Given a FEN-hedonic game (A,�+0−)with a set of agents
A = {1, . . . ,n} and a profile �+0− = (�+0−

1
, . . . ,�+0−n ) and a coali-

tion structure Γ = {C1, . . . ,Ck },k ≥ 1, it is possible to determine

whether Γ is possibly Nash stable in polynomial time. This can be

done by Algorithm 1.

Algorithm 1: PNSV

Data: A FEN-hedonic game (A, (�+0−
1
, . . . ,�+0−n )) and a

coalition structure Γ.
Result: “YES” if Γ is possibly Nash stable; “NO” otherwise.

1 for i ∈ A do
2 for C ∈ Γ ∪ {∅} do
3 if Γ(i) ≺+0−i C ∪ {i} then
4 output “NO”;

5 output “YES”;

A coalition structure Γ is possibly Nash stable if there is a profile

⪰ = (⪰1, . . . , ⪰n ) ∈
>n

i=1 Ext(⪰+0−i ) such that (∀i ∈ A)(∀C ∈
Γ ∪ {∅})

[
Γ(i) ⪰i C ∪ {i}

]
. Therefore, we just need to check if

we can extend ⪰+0− in such a way that Γ(i) ⪰i C ∪ {i} holds
for every i ∈ A and C ∈ Γ ∪ ∅. Hence, we iterate all i ∈ A and

C ∈ Γ ∪ {∅}. There are four cases possible: (1) Γ(i) ≻+0−i C ∪ {i},
(2) Γ(i) ∼+0−i C ∪ {i}, (3) Γ(i) ≺+0−i C ∪ {i}, or (4) the relation

between Γ(i) and C ∪ {i} is undecided. In cases (1) and (2), Nash

stability is not violated, so the algorithm just continues with the

next iteration. If Γ(i) ≺+0−i C ∪ {i}, this is clearly violating Nash

stability and “NO” is output. If the relation between Γ(i) andC ∪{i}
is undecided, then it is possible to set Γ(i) ≻i C∪{i} in the extension
⪰i of ⪰+0−i such that Nash stability is not violated. Accordingly,

the algorithm does nothing in this case and continues with the

next iteration: We set Γ(i) ≻i C ∪ {i} for all C ∈ Γ ∪ {∅} where
the relation between Γ(i) and C ∪ {i} is undecided. If “NO” is not
output at any moment then Γ(i) ≺+0−i C ∪ {i} is never the case
and “YES” is output because Γ is possibly Nash stable. The outer

for-loop (line 1) runs |A| = n times and the inner for-loop (line 2)

|Γ∪{∅}| = k+1 ≤ n+1 times. The relation between Γ(i) andC∪{i}
(line 3) can be checked in polynomial time by Observation 4.1, so

the whole algorithm works in polynomial time. □

Theorem 4.5. Possible-Individual-Stability-Verification is
in P.

Proof. Algotithm 2 solves the problem in polynomial time.

Algorithm 2: PISV

Data: A FEN-hedonic game (A, (�+0−
1
, . . . ,�+0−n )) and a

coalition structure Γ.
Result: “YES” if Γ is possibly individually stable; “NO”

otherwise.

1 for i ∈ A do
2 for C ∈ Γ ∪ {∅} do
3 if Γ(i) ≺+0−i C ∪ {i} then
4 found ←− false;

5 for j ∈ C do
6 if i ∈ A−j then
7 found ←− true;

8 if ¬found then
9 output “NO”;

10 output “YES”;

A coalition structure Γ is possibly individually stable if there is

a profile ⪰ = (⪰1, . . . , ⪰n ) ∈
>n

i=1 Ext(⪰+0−i ) such that

(∀i ∈ A)(∀C ∈ Γ ∪ {∅})[
Γ(i) ⪰i C ∪ {i} ∨ (∃j ∈ C)[C ≻j C ∪ {i}]

]
.

By Observation 4.2, this is equivalent to

(∀i ∈ A)(∀C ∈ Γ ∪ {∅})[Γ(i) ⪰i C ∪ {i} ∨ (∃j ∈ C)[i ∈ A−j ]] .
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Therefore, we just need to check if we can extend ⪰+0− in such

a way that the latter condition holds. Hence, we iterate all i ∈ A
and C ∈ Γ ∪ {∅}. First, we check if Γ(i) ⪰i C ∪ {i} is not possibly
true. This is the case if Γ(i) ≺+0−i C ∪ {i}. If this does hold then

(∃j ∈ C)[i ∈ A−j ] has to be true in order for the whole equation to

be true. And this is checked in lines 5 to 9 of the algorithm. If “NO”

was not output during any iteration then the condition displayed

above has to be true for at least one extended profile. Thus Γ is

possibly individually stable and “YES” is output. Again, it is easy

to see that the algorithm runs in polynomial time. □

Theorem 4.6. Possible-Contractually-Individual-Stability-

Verification is in P.

Proof. Algorithm 3 solves the problem in polynomial time.

Algorithm 3: PCISV

Data: A FEN-hedonic game (A, (�+0−
1
, . . . ,�+0−n )) and a

coalition structure Γ.
Result: “YES” if Γ is possibly contractually individually stable;

“NO” otherwise.

1 for i ∈ A do
2 skiprest ←− false;

3 for k ∈ Γ(i) \ {i} do
4 if i ∈ A+k then
5 skiprest ←− true;

6 if ¬skiprest then
7 for C ∈ Γ ∪ {∅} do
8 if Γ(i) ≺+0−i C ∪ {i} then
9 found ←− false;

10 for j ∈ C do
11 if i ∈ A−j then
12 found ←− true;

13 if ¬found then
14 output “NO”;

15 output “YES”;

A coalition structure Γ is possibly contractually individually

stable if there is a profile ⪰ = (⪰1, . . . , ⪰n ) ∈
>n

i=1 Ext(⪰+0−i )
such that

(∀i ∈ A)(∀C ∈ Γ ∪ {∅})[Γ(i) ⪰i C ∪ {i} ∨
(∃j ∈ C)[C ≻j C ∪ {i}] ∨ (∃k ∈ Γ(i))[Γ(i) ≻k Γ(i) \ {i}]

]
.

By Observations 4.2 and 4.3, this is equivalent to

(∀i ∈ A)(∀C ∈ Γ ∪ {∅})[Γ(i) ⪰i C ∪ {i}∨
(∃j ∈ C)[i ∈ A−j ] ∨ (∃k ∈ Γ(i))[i ∈ A+k ]

]
,

which in turn is equivalent to

(∀i ∈ A)
[
(∃k ∈ Γ(i))[i ∈ A+k ]∨

(∀C ∈ Γ ∪ {∅})[Γ(i) ⪰i C ∪ {i} ∨ (∃j ∈ C)[i ∈ A−j ]] ] .

Hence, Algorithm 3 checks if this condition possibly holds and

answers accordingly. Again, it is easy to see that the algorithm

runs in polynomial time. □

4.4 The Existence Problems
We will now turn to the existence problems for individual stability

and contractually individual stability. We first show that possible

existence is easy for contractually individual stability. Afterwards,

we will show that necessary existence is NP-complete for individual

stability.

Theorem 4.7. Possible-Contractually-Individual-Stability-

Existence (for short, PCISE) is in P.

Proof. There always exists a coalition structure that is possibly

contractually individually stable. This can be shown by a simple

proof.

Consider any FEN-hedonic game (A,�+0−) and assume, for the

sake of contradiction, that all coalition structures Γ ∈ C(A,�+0−)
are not possibly contractually individually stable. Then, starting

with an arbitrary coalition structure Γ1, there always has to be

a coalition structure Γi+1 which is preferred to Γi by at least one

player, namely the player who wants to deviate to another coalition,

and is weakly preferred by all other players. Since all these coalition

structures have to be pairwise distinct, there have to be infinitely

many coalition structures. This is a contradiction because C(A,�+0−)
is always finite. Hence, the answer for the decision problem PCISE

is always yes, so it trivially is in P. □

We will now show that deciding whether, given a FEN-hedonic

game, there exists a necessarily individually stable coalition struc-

ture is NP-complete. To this end, Construction 4.8 is needed, and we

briefly explain the ideas behind this construction. We will provide

a polynomial-time many-one reduction from Necessary-Nash-

Stability-Existence (for short, NNSE), which is NP-complete

by a result of Lang et al. [17]. We take a FEN-hedonic game H
that is an instance of NNSE and construct another FEN-hedonic

gameH ′, which is an instance of Necessary-Individual-Stability-
Existence, such that there exists a necessarily individually stable

coalition structure for H ′ if and only if there exists a necessarily

Nash stable coalition structure for H .

In the upcoming construction, we define so-called clone players
which have the same preferences as the original players (from H )

but unlike the original players are not the enemy of any other player.

By this trick we eliminate the possibility that other players can

prevent the deviation of a clone player. Furthermore, we include so-

called structure players to ensure that every necessarily individually
stable coalition structure has to satisfy a certain form. Finally, so-

called friend and enemy players help the structure players to fulfill

their purpose.

Construction 4.8. Let H = (A,�+0−) be a FEN-hedonic game,
where A = {1, ...,n}, �+0− = (�+0−

1
, ...,�+0−n ), and for each i ∈ A,

�+0−i = (�+i |A
0

i |�
−
i ) with �+i being the weak order over the set of

i’s friends A+i and �−i the weak order over the set of i’s enemies A−i .
We now construct a FEN-hedonic game H ′ in polynomial time. Let
H ′ = (A′,�+0−′) be a FEN-hedonic game with

A′ = A ∪ Clone ∪ Structure ∪ FriendA ∪ FriendB ∪ Enemy,
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Clone = {c1, ..., cn }, Structure = {s1, ..., sn }, FriendA = {a1, ...,an },
FriendB = {b1, ...,bn }, and Enemy = {e1, ..., en }. For 1 ≤ i ≤ n, let

�+0−′i =
( �� A′ \ {i} �� ),

�+0−′ci =
(
�+i

�� A′ \ (A+i ∪A−i ∪ {ci }) �� �−i ),
�+0−′si =

(
i ∼si ci �si ai ∼si bi

�� A′ \ {i, ci , si ,ai ,bi , ei } �� ei ),
�+0−′ai =

(
bi

�� A′ \ {ai ,bi } �� ),
�+0−′bi

=
(
ei

�� A′ \ {bi , ei } �� ),
�+0−′ei =

( �� A′ \ (A ∪ {ei }) �� 1 ∼ei · · · ∼ei n) .
This construction can obviously be done in polynomial time.

Theorem 4.9. Necessary-Individual-Stability-Existence (for
short, NISE) is NP-complete.

Proof. To see that NISE is in NP, let the FEN-hedonic game

H = (A,�+0−) be a given instance. We nondeterministically guess

a coalition structure Γ ∈ C(A,�+0−) that might be a solution for

this instance. Then we check whether Γ indeed is a solution, i.e.,

whether Γ necessarily satisfies individual stability. This is possible

in polynomial time by a result of Lang et al. [17].

We show NP-hardness of NISE by providing a polynomial-time

many-one reduction from NNSE. To do so, we consider the FEN-

hedonic gamesH andH ′ as defined in Construction 4.8, where H is

considered to be an instance of NNSE and H ′ an instance of NISE.

Obviously, the construction of H ′ can be done in polynomial time.

We will now show that

H ∈ NNSE⇐⇒ H ′ ∈ NISE.
From left to right, assume that H ∈ NNSE. This means that

there exists a coalition structure Γ ∈ C(A,�+0−) such that for every

extended profile P = (⪰1, ..., ⪰n ) ∈
>n

i=1 Ext(⪰+0−i ), it holds that
(∀i ∈ A)(∀C ∈ Γ ∪ {∅})[Γ(i) ⪰i C ∪ {i}] . Since this relation holds

for every extended profile, we have

(∀i ∈ A)(∀C ∈ Γ ∪ {∅})[Γ(i) ⪰+0−i C ∪ {i}
]
. (1)

We will now show that H ′ ∈ NISE, i.e., that there is a coalition
structure Γ′ ∈ C(A′,�+0−′) such that

(∀i ∈ A′)(∀C ′ ∈ Γ′ ∪ {∅})[Γ′(i) ⪰+0−′i C ′ ∪ {i}
∨(∃j ∈ C ′)[i ∈ A−′j ]

]
. (2)

We consider the coalition structure Γ′ = {DC ,EC | C ∈ Γ} with
DC = {j, c j , sj | j ∈ C} and EC = {aj ,bj , ej | j ∈ C}. It then holds

for all i ∈ A that Γ′(i) = Γ′(ci ) = Γ′(si ) = {j, c j , sj | j ∈ Γ(i)} and
Γ′(ai ) = Γ′(bi ) = Γ′(ei ) = {aj ,bj , ej | j ∈ Γ(i)}.

We will now show that (2) holds for all players in A′ = A ∪
Clone ∪ Structure ∪ FriendA ∪ FriendB ∪ Enemy. First, consider the
players i ∈ A. It holds that Γ′(i) ⪰+0−′i C ′∪ {i} for allC ′ ∈ Γ′∪ {∅}
because i doesn’t have any friends or enemies and therefore is

indifferent between any two coalitions. Hence, (2) is satisfied for

all i ∈ A and all C ′ ∈ Γ′ ∪ {∅}.
Next, consider the clone players ci . For all DC = {j, c j , sj | j ∈

C} ∈ Γ′, it holds that Γ′(ci ) = {j, c j , sj | j ∈ Γ(i)} ⪰+0−′ci {j, c j , sj |
j ∈ C} ∪ {ci } = DC ∪ {ci } if and only if Γ(i) ∪ {ci } ⪰+0−′ci C ∪ {ci }
because ci is neutral to all other clone players and all structure

players. This in turn is equivalent to Γ(i) \ {i}∪ {ci } ⪰+0−′ci C ∪{ci }

because ci is neutral to i . Since ci has the same friends, order over

friends, enemies, and order over enemies as player i has in H , the

last preference relation is equivalent to Γ(i) ⪰+0−i C ∪ {i}, which
holds by assumption, see Equation (1). Hence, (2) is satisfied for all

ci and DC ∈ Γ′.
Now, consider all EC = {aj ,bj , ej | j ∈ C} ∈ Γ′. Again, Γ′(ci ) =

{j, c j , sj | j ∈ Γ(i)} ⪰+0−′ci {aj ,bj , ej | j ∈ C} ∪ {ci } = EC ∪
{ci } is equivalent to Γ(i) \ {i} ∪ {ci } ⪰+0−′ci {ci } by removing all

neutral players. This is equivalent to Γ(i) ⪰+0−i {i}, which holds

by Equation (1). It is easy to see that the same argumentation is

possible for the empty coalition ∅. Hence, (2) is satisfied for all

ci ∈ Clone and all C ′ ∈ Γ′ ∪ {∅}.
We now turn to the structure players si . Γ

′(si ) = {j, c j , sj | j ∈
Γ(i)} contains si ’s two best friends, i and ci , and no enemy. Every

other coalition can only contain at most two other friends of si ,
namely ai and bi , which are ranked lower than i and ci . Hence, si
prefers Γ′(si ) to every other coalition in Γ′∪ {∅} and (2) is satisfied
for all si ∈ Structure.

For all ai ∈ FriendA, it holds that Γ′(ai ) = {aj ,bj , ej | j ∈
Γ(i)} ⪰+0−′ai C ′ ∪ {ai } for every coalition C ′ ∈ Γ′ ∪ {∅} because
Γ′(ai ) contains bi (ai ’s only friend) and no enemies. Therefore,

(2) holds for all ai ∈ FriendA. Analogously, (2) also holds for all

bi ∈ FriendB. Finally, consider the enemy players ei . Since ei has
no friends and Γ′(ei ) = {aj ,bj , ej | j ∈ Γ(i)} doesn’t contain
any enemies of ei , it holds that Γ

′(ei ) ⪰+0−′ei C ′ ∪ {ei } for every
C ′ ∈ Γ′ ∪ {∅}. So, (2) also holds for all ei ∈ Enemy.

Thus (2) is satisfied for all players in A′ and all C ′ ∈ Γ′ ∪ {∅},
which means that Γ′ is necessarily individually stable for H ′ and
H ′ ∈ NISE.

From right to left, assume that H ′ ∈ NISE. Then, there is a

Γ′ ∈ C(A′,�+0−′) such that (2) holds. Consider such a coalition

structure Γ′. We will now show that Γ′ necessarily needs to be

of the following form because (2) couldn’t hold otherwise:

Γ′ = {DC | C ∈ Γ} ∪ {EC | C ∈ ∆} for some partitions Γ and ∆

of A,where DC = {j, c j , sj | j ∈ C} and EC = {aj ,bj , ej | j ∈ C}.

Now consider any i ∈ A. First, note that none of ci , si , ai , and bi
are the enemy of any other player, which is why the first part of (2)

has to hold for them, i.e., Γ′(p) ⪰+0−′p C ′∪{p} for p ∈ {ci , si ,ai ,bi }
and all C ′ ∈ Γ′ ∪ {∅}. Furthermore, for player ei and coalition

C ′ = ∅, we have Γ′(ei ) ⪰+0−′ei {ei } because there is no player in ∅
who could see ei as an enemy.

Since ai doesn’t want to deviate from Γ′(ai ), ai has to be to-

gether with bi because bi is ai ’s only friend and ai has no enemies.

Otherwise, ai would always prefer the coalition containing bi . For
an analogous reason, bi has to be together with ei . Furthermore, i
can’t be in the same coalition as ei because i is an enemy of ei and
ei would rather be alone otherwise. Hence, we already know that

{ai ,bi , ei } ⊆ E and {i} ⊆ D for some D,E ∈ Γ′ with D , E.
There remain ten cases for the allocation of si and ci . By exclud-

ing nine of these cases, it will follow that si , ci ∈ D. Recall that
Γ′(si ) ⪰+0−′si C ′ ∪ {si } holds for all C ′ ∈ Γ′ ∪ {∅}. All of the nine
cases presented in the following imply that this is not true for at

least one coalition C ′ ∈ Γ′ ∪ {∅}. Hence, they can’t hold. For an

overview of the cases, see Table 2.
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Table 2: Ten cases for the allocation of si and ci and why nine of them cannot hold.

si ∈ E si ∈ D si ∈ F
ci ∈ E E, D ∪ {si } incomparable D, E ∪ {si } incomparable F , E ∪ {si } incomparable

ci ∈ D E ≺+0−′si D ∪ {si } holds F , E ∪ {si } incomparable

ci ∈ F E, D ∪ {si } incomparable D, E ∪ {si } incomparable F , E ∪ {si } incomparable

ci ∈ G — — F , E ∪ {si } incomparable

• If si , ci ∈ E (i.e., {ci , si ,ai ,bi , ei } ⊆ E and {i} ⊆ D), then
Γ′(si ) = E ̸⪰+0−′si D ∪ {si }. E and D ∪ {si } are incomparable

with respect to ⪰+0−′si because E contains more friends but

also more enemies than D ∪ {si }.
• If si ∈ E and ci ∈ D (i.e., {si ,ai ,bi , ei } ⊆ E and {i, ci } ⊆ D),
then Γ′(si ) = E ≺+0−′si D ∪ {si } because D ∪ {si } contains
the same number of friends as E, but better friends than E,
and no enemies.

• If si ∈ E and ci ∈ F for an F ∈ Γ′ with D , F , E (i.e.,

{si ,ai ,bi , ei } ⊆ E, {i} ⊆ D, and {ci } ⊆ F ), then Γ′(si ) = E
and D ∪ {si } are incomparable again because E contains

more friends but also more enemies than D ∪ {si }. Hence,
Γ′(si ) ̸⪰+0−′si D ∪ {si }.
• If si ∈ F for an F ∈ Γ′ with D , F , E (i.e., {ai ,bi , ei } ⊆ E,
{i} ⊆ D, and {si } ⊆ F ), then there remain four cases for

ci : ci ∈ E, ci ∈ D, ci ∈ F , or ci ∈ G for a G ∈ Γ′ with
G < {D,E, F }. No matter where ci is, Γ

′(si ) = F and E ∪ {si }
are incomparable with respect to ⪰+0−′si because E ∪ {si }
contains more friends but also more enemies than F .
• If si ∈ D and ci ∈ E (i.e., {ci ,ai ,bi , ei } ⊆ E and {i, si } ⊆ D),
then si is undecided concerning Γ′(si ) = D and E ∪ {si }
because E∪{si } contains more friends but also more enemies

than D.
• If si ∈ D and ci ∈ F for an F ∈ Γ′ with D , F , E (i.e.,

{ai ,bi , ei } ⊆ E, {i, si } ⊆ D, and {ci } ⊆ F ), then si again is

undecided concerning Γ′(si ) = D and E ∪ {si }.
The only remaining case is si , ci ∈ D (i.e., {ai ,bi , ei } ⊆ E and

{i, ci , si } ⊆ D). Note that this case indeed fulfills Γ′(si ) ⪰+0−′si
C ′ ∪ {si } for all C ′ ∈ Γ′ ∪ {∅}. Hence, for every i ∈ A, we have
{ai ,bi , ei } ⊆ Ei and {i, ci , si } ⊆ Di for some Di ,Ei ∈ Γ′ with Di ,
Ei . It furthermore holds for any i, j ∈ A that Ei , D j . Otherwise,

we had Ei = D j ⊇ {ai ,bi , ei , j, c j , sj }. Since j is an enemy of ei , ei
would like to deviate to the empty coalition which is a contradiction

to the assumption, see Equation (2). It follows that Γ′ has the form
presented above.

Finally, consider the clone players ci ∈ Clone. Equation (2) also

holds for ci , i.e., we have

(∀C ′ ∈ Γ′ ∪ {∅})[Γ′(ci ) ⪰+0−′ci C ′ ∪ {ci } ∨ (∃x ∈ C ′)[ci ∈ A−′x ]
]
.

Since ci is not the enemy of any other player, i.e., ci < A
−′
x for

all x ∈ A′, it follows that

(∀C ′ ∈ Γ′ ∪ {∅})[Γ′(ci ) ⪰+0−′ci C ′ ∪ {ci }
]
. (3)

Recall that Γ′ = {DC | C ∈ Γ} ∪ {EC | C ∈ ∆} for some

partitions Γ and ∆ of A with DC = {j, c j , sj | j ∈ C} and EC =
{aj ,bj , ej | j ∈ C}. Furthermore, note that Γ′(ci ) = DΓ(i) and let

D∅ = ∅.

Equation (3) in particular holds for all C ′ = DC ∈ Γ′ ∪ {∅} with
C ∈ Γ ∪ {∅}. Hence, we have

(∀C ∈ Γ ∪ {∅})[DΓ(i) ⪰+0−′ci DC ∪ {ci }
]
. (4)

Because ci is neutral to all players x ∈ A′ with x < A,x , ci , we
can remove all these players from (4). With DC ∩ A = C , we get
(∀C ∈ Γ ∪ {∅})[Γ(i) ∪ {ci } ⪰+0−′ci C ∪ {ci }

]
. ci is also neutral to i .

Hence, we can remove i on the left-hand side and get

(∀C ∈ Γ ∪ {∅})[Γ(i) \ {i} ∪ {ci } ⪰+0−′ci C ∪ {ci }
]
. (5)

Finally, ci has the same friends, order over friends, enemies, and

order over enemies as player i has in H . Therefore, (5) is equivalent

to (∀C ∈ Γ ∪ {∅})[Γ(i) ⪰+0−i C ∪ {i}
]
. Thus the coalition structure

Γ is necessarily Nash stable for H and H ∈ NNSE. □

5 CONCLUSIONS AND FUTUREWORK
We have studied the computational complexity of various stability

problems based on single-player deviations in FEN-hedonic games,

thus solving some related questions left open by Lang et al. [17].

An overview of our complexity results is given in Table 1.

For future work we propose to study the remaining two cases

of the concepts concerning player deviation. Furthermore, we are

interested in the computational complexity of stability problems

that are based on groups of players deviating from their coalitions

in FEN-hedonic games or on the comparison of the given coalition

structure Γ with another possible coalition structure ∆. Among the

former are core stability and strict core stability, while among the

latter are Pareto optimality, popularity, and strict popularity. Lang
et al. [17] established some initial results on the complexity of the

related problems but, again, they also left a number of cases open.
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