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ABSTRACT
We investigate the computation of equilibria in extensive-form

games when ex ante correlation is possible, focusing on correlated

equilibria requiring the least amount of communication between

the players and the mediator. Motivated by hardness results on

normal-form correlated equilibria, we investigate whether it is pos-
sible to compute normal-form coarse correlated equilibria efficiently.

We show that an optimal (e.g., social welfare maximizing) normal-
form coarse correlated equilibrium can be computed in polynomial

time in two-player games without chance moves, and that in gen-

eral multi-player games (including two-player games with chance)

the problem is NP-hard. For the two-player case, we provide both
a polynomial-time algorithm based on the ellipsoid method and a

column generation algorithm based on the simplex method which

can be efficiently applied in practice. We also show that the pric-

ing oracle employed in the column generation procedure can be

extended to games with two players and chance.
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1 INTRODUCTION
The computational study of adversarial interactions aiming at find-

ing players’ optimal strategies and predicting the most likely out-

come of a game is a central problem in Artificial Intelligence. A

vast body of literature focuses on the computation of Nash Equilib-

ria (NEs), mainly in two-player zero-sum games [36]. This setting

is well understood and, recently, some remarkable results have

been achieved by, e.g., Brown and Sandholm [9, 10]. While relevant,

this model is rather restrictive, as many practical scenarios are

not zero-sum and involve more than two players, and it presents

some weaknesses when used as a prescriptive tool, in particular

in general-sum games [12, 20]. Indeed, when multiple NEs coexist,

the model assumes the lack of communication between the players,

preventing them from synchronizing their strategies.

In practical situations where some form of communication is

possible, solution concepts different from that of NE are required.

The main alternative is the Correlated Equilibrium (CE), introduced
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by Aumann [3]. In a CE, a device (i.e., a trusted external mediator)

draws strategy profiles from a known joint probability distribution

and privately communicates them to each player. The probability

distribution induces an equilibrium if each player has no incentive

to choose a different strategy from the recommended one, assuming

the other players would not deviate either. A variant of the CE is the

Coarse Correlated Equilibrium (CCE), introduced in [30], which only

prevents deviations from happening before knowing the device’s

recommendation. In normal-form games, CEs and CCEs enjoy some

appealing properties that make them plausible solution concepts

in many practical scenarios. Specifically, they arises from simple

and natural learning dynamics [13, 23], and they can be computed

via linear programming on any normal-form game in polynomial

time (assuming the number of players is fixed). Moreover, price-of-

anarchy analyses show that coarse correlated equilibria character-

izing outcomes of no-regret learning dynamics have near-optimal

welfare [24, 34]. While a CE can be found in polynomial time in

some classes of succinctly representable multi-player games, find-

ing an optimal CE in these games is, in general, NP-hard [26, 32].

A similar result also holds for the problem of finding an optimal

CCE. Barman and Ligett [4] show that for graphical, polymatrix,

congestion, and anonymous games the problem is NP-hard.
Sequential games allow for richer forms of interaction among

the players than normal-form games, which lead to different forms

of correlation whose general understanding is still limited. Most of

the works in this area focus on specific classes of games, such

as Bayesian games [18, 19] and multi-stage games [17, 31]. In

these specific settings, the main solution concepts studied in the

literature are the Normal-Form Correlated Equilibrium (NFCE), the

Agent-Form Correlated Equilibrium (AFCE), and the Communication-
Equilibrium. The first two equilibria only allow for a unidirectional
communication from the device to the players, while the third equi-

librium allows for bidirectional communication. The only known

results for general extensive-form games are due to von Stengel

and Forges [38], who propose the notion of Extensive-Form Corre-
lated Equilibrium (EFCE). The complex structure of extensive-form

games significantly increases the computational effort required

for correlation, as finding an optimal NFCE is NP-hard even with

two players [38]. An optimal EFCE can be found efficiently in two-

player games without chance moves but, in games with three or

more players (including chance), finding an optimal EFCE (or an

AFCE) is NP-hard [38]. The only positive result for multi-player

games is a polynomial-time algorithm to find an EFCE [25].

Correlated equilibria in which recommendations are drawn be-

fore the game starts are known as ex ante CEs. These equilibria
require only unilateral communication from the device to the play-

ers. NFCE, AFCE, and EFCE belong to this family and differ in the
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time at which the recommendations are communicated to players.

Specifically, the NFCE requires, for each player, a single interaction

with the mediator taking place before the beginning of the game,

whereas AFCE and EFCE require a message for each information

set reached during the game. As a consequence, AFCE and EFCE

are not suited for problems where the agents have limited com-

munication capabilities, a situation which is frequent in practice.

This is the case, for instance, of collusion in bidding, where com-

munication during the auction is illegal, and coordinated swindling

in public (see also the recent work by Farina et al. [16]). Different

forms of correlation have been explored when a team of players

faces an adversary [5, 6, 11, 16]. This setting, also known as ex ante
coordination, is quite different from ours. Our notion of correlation

is more flexible as it allows for players with different objectives.

Therefore, in our correlation setting individual players have to be

incentivized to follow the recommendations of the mediator. In

contrast, in the ex ante coordination setting there is no need for

incentive constraints since team members share their final rewards.

Our Contributions. In this paper, we focus on equilibria involv-
ing a low level of communication. A natural question is whether

correlation can be reached efficiently when the agents have limited

communication capabilities, i.e., when they cannot receivemessages

during the execution of the game.
1
Motivated by the hardness result

for the NFCE, we introduce the notion of Normal-Form Coarse Cor-
related Equilibrium (NFCCE) as the extension of CCE to sequential

games. We prove that, unlike the NFCE, the problem of finding an

optimal NFCCE admits a polynomial-time algorithm for two-player

games without chance moves. In particular, we devise a hybrid

formulation for the problem of computing an optimal NFCCE eno-

joying a polynomial number of constraints and an exponential

number of variables. Then, we provide a polynomial-time separa-

tion oracle which, together with the ellipsoid algorithm [28], allows

us to show that an optimal NFCCE can be computed in polynomial

time. This approach cannot be extended to more general settings

since, with more than two players (including chance), the problem

becomes NP-hard. We also describe a practical algorithm to com-

pute an optimal NFCCE based on column generation, employing

different oracles to solve the corresponding pricing problems. In

particular, we provide a polynomial-time oracle suitable for the

two-player setting, and a MILP oracle which can be adapted to the

case of two-player games with nature. The proposed techniques

are experimentally evaluated to assess their scalability on game

instances from different domains.

2 PRELIMINARIES
We briefly introduce several of the basic concepts we use in the rest

of the paper. Further details can be found in [36].

2.1 Game Representations
An extensive-form game Γ has a finite set of players N and a finite

set of actions A. Exogenous stochasticity is represented through

a non-strategic player c (the nature or chance player). V is the set

of non-terminal decision nodes, and Vi ⊆ V is the set of decision

nodes belonging to player i ∈ N ∪ {c}. The set of terminal nodes

(leaves) is denoted by L. The function ι : V → N ∪ {c} associates

1
This rules out the possibility of employing an EFCE.

each decision node with the player acting at it. The function ρ :

V → 2
A
is the action function, assigning with each decision node

a set of available actions. The successor function is denoted by

χ : V ×A→ V ∪ L. Let Ui : L→ R be the utility function of each

i ∈ N . Moreover, let U = {Ui }i ∈N . Finally, for each i ∈ N ∪ {c}
let Hi be an information partition of Vi such that decision nodes

within the same information set h ∈ Hi are not distinguishable

by player i . We let H = {Hi }i ∈N∪{c } . The a function πc is such

that πc (h,a) is the fixed probability that chance select a at h ∈ Hc .

Moreover, ρ(h) denotes the set of actions available at h ∈ Hi . We

remark that, by definition, ρ(x1) = ρ(x2) = ρ(h) for any player

i ∈ N ∪ {c}, information set h ∈ Hi , and x1,x2 ∈ h. In this paper,

we focus on games with perfect recall, i.e., games where, at each

stage, all the players recall all the information acquired at earlier

stages.

An extensive-form game can be equivalently represented in

normal-form. Let Pi = ×h∈Hi ρ(h) be the set of pure normal-form

plans of player i ∈ N . A normal-form plan p ∈ Pi specifies an action
per information set of player i . The normal-form of an extensive-

form game is characterized by the same set of playersN , actions P =
×i ∈N Pi , and the set of utility functions U ′ = {U ′i }i ∈N . Function

U ′i : P → R denotes the expected payoff obtained by marginalizing

with respect to πc . The reduced normal form is obtained by deleting

duplicated strategies from the normal form.

2.2 Strategy Representation
A normal-form strategy σi for i ∈ N is defined as the function

σi : Pi → ∆ |Pi | . We denote by Σi the normal-form strategy space of

player i . A correlated (joint) normal-form strategy σ ∈ Σ is defined

as σ : P → ∆ |P | . The size of a normal-form strategy is exponential

in the size of the extensive-form tree. This shortcoming can be

overcome by exploiting the sequence form [37], whose size is linear

in the size of the game tree.

The sequence form decomposes strategies into sequences of

actions and their realization probabilities. A sequence for player i ,
associated with a node x of the game, is the subset of A specifying

player i’s actions on the path from the root to x . We denote the set

of sequences of player i byQi . A sequence is said terminal if it leads
to a terminal node for at least a set of sequences of the other players.

The set of terminal sequences of player i is denoted byQi . Moreover,

we denote by q∅ the fictitious sequence leading to the root node

and, for each action a ∈ A and sequence q ∈ Qi , we denote by

qa ∈ Qi the extended sequence obtained by appending action a to q.
Let Q =

>
i ∈N Qi . When considering a tuple q = (q1, . . . ,qn ) ∈ Q ,

we denote by qi the i-th component of q.
A sequence-form strategy, said realization plan, is a function

ri : Qi → R associating each sequence q ∈ Qi with its probability

of being played. A well-defined sequence-form strategy is such that

ri (q∅) = 1 for each i ∈ N and, for each h and sequence q leading to

h, −ri (q) +
∑
a∈ρ(h) ri (qa) = 0 and ri (q) ≥ 0. These constraints are

linear in the number of sequences and can be compactly written as

Fi ri = fi , where Fi is an |Hi | × |Qi | matrix and f Ti = (1, 0, . . . , 0)
is a vector of dimension |Hi |. The utility function of player i is
represented by a sparse n-dimensional matrix defined only for

profiles of terminal sequences leading to a leaf node. With a slight

abuse of notation, we denote it by Ui ∈ R
|Q1 |×···× |Qn |

.
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Given a tuple r−i = (r1, . . . , ri−1, ri+1, . . . , rn ), BR(r−i ) denotes
the best response of player i against a strategy profile r−i . We say

that r̂i ∈ BR(r−i ) if the following holds:∑
q∈Q

r̂i (qi )
∏

j ∈N \{i }

r j (qj )Ui (q) = max

ri

∑
q∈Q

ri (qi )
∏

j ∈N \{i }

r j (qj )Ui (q),

where ri is constrained to be a valid realization plan.

2.3 Correlation in Normal-Form Games
Let p−i = (p1, . . . ,pi−1, pi+i , . . . ,pn ) ∈ ×j ∈N \{i }Pj . The classical
notion of CE [3] for normal-form games is:

Definition 2.1. σ ∗ ∈ Σ is a correlated equilibrium of the nor-

mal form game (N , P ,U ′) if, for every i ∈ N and pi ,p
′
i ∈ Pi , the

following holds:∑
p−i ∈P−i

σ ∗(pi ,p−i )
(
U ′i (pi ,p−i ) −U

′
i (p
′
i ,p−i )

)
≥ 0.

ACE can be interpreted in terms of a mediator who, ex ante the play,
draws (p1, . . . ,pn ) according to the publicly knownσ

∗
and privately

communicates each recommendation pi to the corresponding player.
Another possibility is enforcing protection against deviations of

players which are independent from the sampled outcome. This can

be done though the notion of coarse correlated equilibrium [30]:

Definition 2.2. σ ∗ ∈ Σ is a coarse correlated equilibrium of a

normal-form game (N , P ,U ′) if, for every i ∈ N and p′i ∈ Pi , the
following holds:∑

pi ∈Pi

∑
p−i ∈P−i

σ ∗(pi ,p−i )
(
U ′i (pi ,p−i ) −U

′
i (p
′
i ,p−i )

)
≥ 0.

CCEs differ from CEs in that a CCE only requires that following

the suggested action be a best response in expectation before the

recommended action is actually revealed. Moreover, we recall that

every CE is also a CCE while the converse is, in general, not true.

2.4 Correlation in Extensive-Form Games
We review the main notions of correlation for general extensive-

form games. In this general setting, it is customary to consider ex
ante CEs, i.e., correlated equilibria in which an action profile is

sampled before the game is played. In this paper, we focus on the

following solution concepts:

Definition 2.3. A normal-form correlated equilibrium (respec-

tively, normal-form coarse correlated equilibrium) of an extensive-

form game Γ is a correlated equilibrium (respectively, coarse cor-

related equilibrium) of the reduced normal-form game equivalent

to Γ.

In these two solution concepts, the entire vector of recommen-

dations specifying one action per information set is revealed to the

players before the game starts. Thus, once the recommendation is

received each player commits to playing a pure strategy.

Informally, an AFCE [18] is a CE of the agent-form game equiv-

alent to the given extensive-form game. In the agent form of the

game, moves are chosen by a different agent per information set

of the player. In an EFCE [38], each recommendation is assumed

to be in a sealed envelope and is revealed only when the player

reaches the relevant information set (i.e., the information set where

she can make that move). The main difference between EFCE and

NFCE/NFCCE is that the former requires recommendations to be

delivered during the game execution, thus being more demanding

in terms of communication requirements. It is crucial to notice that

the size of the signal that has to be sampled is the same, and it is

polynomial (one action per information set).

Letting S◦ be the set of equilibria of type ◦ of a given game, we

have: SN FCE ⊆ SEFCE ⊆ SN FCCE ⊆ SAFCE . See von Stengel and

Forges [38] for further details.

3 COMPARISON BETWEEN NFCE AND
NFCCE

In the next sections, we study the problems of computing an NFCCE

maximizing the social welfare (i.e., the cumulative utility of the

players). We refer to it as NFCCE-SW. Moreover, we denote by

NFCE-SW the problem of computing a social welfare maximizing

NFCE. The generalization of our results to the case in which one

searches for an equilibrium maximizing a linear combination of the

players’ utility, omitted here for reasons of space, is straightforward.

We believe that the motivation for studying the computation of

NFCCEs is twofold. First, it is known that finding a socially optimal

NFCE is NP-hard even for two-player extensive-form games with-

out chance moves [38]. Second, as already mentioned, an NFCCE

may not be an NFCE. In particular, an optimal NFCCE may lead to

a social welfare arbitrarily larger than the social welfare provided

by an NFCE which is optimal for the same game. This is shown via

the following example:

Example 3.1. Consider the extensive-form game in Figure 1 as an

example. The game is parametric in k > 1, and it is played between

two players. Each player has a unique information set (I1 for Player
1, and I2 for Player 2).

I1

(k, 0)

a1

2

(−k2, 0)

a2

2

(−k2, 1)

a3

2

a1

1

(−k2, 0)

a1

2

(1, 0)

a2

2

(−k2,−1)

a3

2

a2

1

I2

Figure 1: Example illustrating the difference between CE
and CCE.

The joint strategy profile assigning probability 1/2 to (a1

1
,a1

2
) and

(a2

1
,a2

2
) is the NFCCE maximizing the social welfare of the players,

which is (k + 1)/2. The unique optimal NFCE is the probability

distribution assigning probability 1 to (a2

1
,a2

2
), providing a social

welfare of 1 independently of k . Therefore, for increasing values

of k an optimal NFCCE allows the players to reach a social welfare

which is arbitrarily larger than the social welfare reached through

the optimal NFCE.
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4 COMPLEXITY OF COMPUTING AN
OPTIMAL NFCCE

We show that there exists a polynomial-time algorithm for solving

the NFCCE-SW problem with two players. First, we provide a com-

pact formulation for the problem. Then, we describe a polynomial-

time algorithm for solving it.

4.1 Problem Formulation
Given an extensive-form game Γ, a direct application of Defini-

tion 2.3 yields a Linear Programming problem (LP) with an exponen-

tial number of variables and an exponential number of constraints.

We provide the following result:

Lemma 4.1. The NFCCE-SW problem for an extensive-form game
Γ can be formulated as an LP with an exponential number of variables
but only a polynomial number of constraints.

To prove the lemma, we provide a hybrid representation which ex-

ploits the tree structure of the problem combining both the normal

form and the sequence form.

First, we say that a realization plan is realization equivalent to a

normal-form plan if, for any strategy profile of the other players,

they enforce the same probability distribution over the terminal

nodes of the game tree. Let rpi ∈ {0, 1}
|Qi |

be a |Qi |-dimensional

column vector representing the pure realization plan for player i ∈
N that is realization equivalent to pi ∈ Pi . We recall that every

plan of the reduced normal form is realization equivalent to exactly

one pure realization plan, see von Stengel [37]. We say that the

normal-form plan pi ∈ Pi is a best response against profile r−i if
rpi ∈ BR(r−i ). In the following, and when not differently specified,

Ui denotes the sequence-form utility matrix of player i .
According to Definition 2.2, the constraints describing an NFCCE

for Player 1 can be written as follows (for Player 2, the constraints

are analogous):∑
p1∈P1

∑
p2∈P2

σ (p1,p2)U
′
1
(p1,p2)−∑

p1∈P1

∑
p2∈P2

σ (p1,p2)U
′
1
(p′

1
,p2) ≥ 0 ∀p′

1
∈ P1.

The first term is the expected utility of Player 1 at the equilibrium.

Let v1 be the |H1 |-dimensional vector of variables of the dual of

the best-response problem in sequence form. The second term is

the expected utility obtained by Player 1 when she deviates to

p′
1
∈ P1, assuming Player 2 follows the recommendation. Therefore,

it is enough to enforce the constraint corresponding to plan p′
1

constituting the best-response of Player 1 against the fixed behavior

of Player 2. To compactly represent such constraint, we decompose

the best-response problem locally at each information set.

By definition of sequence form, f T
1
v1 is equal to the first com-

ponent of v1, whose value corresponds to the utility of Player 1 at

the equilibrium. Then:
∑

p1∈P1

∑
p2∈P2

σ (p1,p2)U
′
1
(p1,p2) = f T

1
v1

f T
1
v1 −

∑
p1∈P1

∑
p2∈P2

σ (p1,p2)U
′
1
(p′

1
,p2) ≥ 0 ∀p′

1
∈ P1.

The double summation in the two inequalities above can be written

as: ∑
p2∈P2

©«
∑
p1∈P1

σ (p1,p2)
ª®¬ U ′1 (p′1,p2).

Letting σ̄2(p2) =
∑
p1∈P1

σ (p1,p2), σ̄2 ∈ ∆
|P2 |

can be interpreted as

the prior probability that plan p2 be played by Player 2. The mixed

strategy σ̄2 can be written as the following realization-equivalent

sequence-form strategy: r̄2 =
∑
p2∈P2

σ̄ (p2)rp2
, which is a valid

realization plan due to convexity. Now, we only need to show that

f T
1
v1 is not strictly smaller than the value of the best response

of Player 1 given the strategy r̄2 of Player 2. Formally, given r ′
1
∈

BR(r̄2), the constraint reads f
⊤
1
v1 ≥ r ′

1
Ui r̄2. By exploiting the dual

of the best-response problem in sequence form, this is equivalent

to showing FT
1
v1 − U1 r̄2 ≥ 0. Thus, expanding r̄2 and deriving

the equilibrium constraints for Player 2 we obtain the following

mathematical program:

max

σ ,v1,v2

∑
(p1,p2)∈P1×P2

σ (p1,p2) r
T
p1

(U1 +U2) rp2
(1)∑

(p1,p2)∈P1×P2

σ (p1,p2) r
T
p1

Ui rp2
= f Ti vi ∀i ∈ N (2)

FT
1
v1 −U1

( ∑
p2∈P2

( ∑
p1∈P1

σ (p1,p2)

)
rp2

)
≥ 0 (3)

FT
2
v2 −U

T
2

( ∑
p1∈P1

( ∑
p2∈P2

σ (p1,p2)

)
rp1

)
≥ 0 (4)∑

(p1,p2)∈P1×P2

σ (p1,p2) = 1 (5)

σ (p1,p2) ≥ 0 ∀(p1,p2) ∈ P1 × P2. (6)

We make the following observations on the above LP:

• Variables σ ∈ ∆ |P1 |× |P2 |
constitute the correlated strategy

for Players 1 and 2.

• This formulation constitutes a proof of Lemma 4.1 as it em-

ploys a polynomial number of constraints (namely, |Q1 | +

|Q2 | + 3) and an exponential number of variables (i.e., one

for each pair of plans in P1 × P2).

4.2 Efficient Algorithm
The following lemma will be employed to prove our central result.

It shows that a player can reason in a best-response fashion to min-

imize the utility of the other player weighted by some arbitrary

coefficients, while also guaranteeing the reachability of a given

terminal node.

Lemma 4.2. Given a generic two-player extensive-form game Γ,
an outcome ℓ ∈ L, and a vector ζ ∈ R |Q1 | , the problem of finding
p2 ∈ P2 under the constraints that
• there exists some p1 ∈ P1 s.t. (p1,p2) leads to outcome ℓ and

• ζ TU1 rp2
is minimized

can be solved in polynomial time. The same holds when the two players
are interchanged.
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Proof. Let us focus on the case in which we look for p2 ∈ P2.

First, define Ū1 such that

Ū1(q1,q2) := ζ (q1)U1(q1,q2) ∀(q1,q2) ∈ Q1 ×Q2.

Then, let Γ̄ be the extensive-form game obtained from Γ by sub-

stituting Player 1’s utility function with Ū1. Given Γ̄, denote by

(qℓ
1
,qℓ

2
) the pair of sequences identifying ℓ, and by H ℓ

i the set of in-

formation sets of player i encountered in sequence qℓi . Algorithm 1

returns the set of actions (A′i ) forming a plan of the normal-form

game (not reduced) equivalent to Γ̄.

Algorithm 1 Constrained-plan-search

1: function C-PLAN-SEARCH(x , Γ̄, i , qℓi , H
ℓ
i , A

′
i ) ▷ i is the

player for which we want to find a plan, A′i is the temporary

set (initially empty) of actions of i selected
2: ν ← K ▷ K is a sufficiently large constant

3: a′ ←null

4: if x is terminal then
5: return (Ū−i (x),A′i )
6: else
7: if x ∈ V−i then
8: for y ∈ x .child do
9: ν+ = C-PLAN-SEARCH(y, Γ̄, i,qℓi ,H

ℓ
i ,A
′
p ).val

10: return (ν ,A′i )
11: else
12: if ∃h ∈ H ℓ

i : x ∈ h then
13: a′ ← action specified by qℓi
14: ya′ ← child of x reached through a′

15: ν = C-PLAN-SEARCH(ya′ , Γ
′, i,qℓi ,H

ℓ
i ,A
′
i ).val

16: else
17: for y ∈ x .child do
18: temp ← C-PLAN-SEARCH(y, Γ̄, i,qℓi ,H

ℓ
i ,A
′
i )

19: if temp.val < ν then
20: ν ← temp.val
21: a′ ← a ∈ ρ(x) : χ (x ,a) = y

22: return(ν ,A′i ∪ {a
′})

To retrieve A′i , Algorithm 1 performs a depth-first traversal of

the tree while keeping track of the value to be minimized at each

decision node (ν ) and selecting actions while moving backwards.

Then, p2 can be computed by traversing the tree from the root, and

selecting actions according to those specified in A′
2
. □

Let us focus on the dual D of LP (1)–(6):

Lemma 4.3. D admits a polynomial-time separation oracle.

Proof. Let αi ∈ R, for all i ∈ N , be the dual variables of

constraints (2), β1 ∈ R
|Q1 |

the dual variables of constraints (3),

β2 ∈ R
|Q2 |

the dual variables of constraints (4), and γ ∈ R the dual

variable of constraint (5). With n = 2, D is an LP with a number

of variables (|Q1 | + |Q2 | + 3) polynomial in the size of the tree and

an exponential (|P1 × P2 | + |H1 | + |H2 |) number of constraints. We

show that, given a vector z̄ = (ᾱ1, ᾱ2, ¯β1, ¯β2, γ̄ ), the problem of

either finding a hyperplane separating z̄ from the set of feasible

solutions to D or proving that no such hyperplane exists can be

solved in polynomial time. Since the number of dual constraints

corresponding to the primal variables vi is linear, these constraints
can be checked efficiently for violation.We are left with the problem

of determining whether any of the following constraints, defined

for all (p1,p2) ∈ P1 × P2, is violated:

rTp1

U1 rp2
ᾱ1 + r

T
p1

U2 rp2
ᾱ2 + ¯βT

1
U1 rp2

+ rTp1

U2
¯β2 + γ̄ ≥

rTp1

(U1 +U2) rp2
.

Let us consider the separation problem of finding an inequality of

D which is maximally violated at z̄. The problem reads:

min

(p1,p2)∈P1×P2

{
rTp1

((ᾱ1 − 1)U1 + (ᾱ2 − 1)U2) rp2
+ ¯βT

1
U1 rp2

+rTp1

U2
¯β2

}
.

A pair p1,p2 yielding a violated inequality exists if and only if the

separation problem admits an optimal solution of value < −γ̄ .
One such pair (if any) can be found in polynomial time by enu-

merating over the (polynomially many) possible outcomes ℓ ∈ L of

the game. For each of them, we look for a pair (pℓ
1
,pℓ

2
) minimizing

the objective function of the separation problem, halting as soon as

a pair (p′
1
,p′

2
) yielding a violated constraint is found. If the proce-

dure terminates without finding any suitable pair, we deduce that

no violated inequalities exist and D has been solved. First, notice

that rTp1

((ᾱ1−1)U1+(ᾱ2−1)U2)rp2
is constant for the family of pairs

identifying ℓ ∈ L. Therefore, we can consider an individual sub-

problem for each player (i.e., we can find pℓ
1
and pℓ

2
independently).

Hence, for each outcome ℓ and for each player i the corresponding

pℓi can be found in polynomial time due to Lemma 4.2. □

The following theorem shows that, in certain cases, the NFCCE-
SW problem can be solved efficiently:

Theorem 4.4. Given an extensive-form game Γ with n = 2 players
and without chance moves, an NFCCE maximizing the social welfare
can be computed in time polynomial in the size of the game tree.

Proof. Lemma 4.3 shows that there exists a polynomial-time

separation oracle forD. Then,D can be solved in polynomial time

via the ellipsoid method due to the equivalence between optimiza-

tion and separation [21, 28]. As the method solves, in polynomial

time, a primal-dual system encompassing not just D but also its

primal problem NFCCE-SW, it also produces, simultaneously, an

optimal solution to the latter. □

4.3 Negative Result
The approach that we presented here cannot be extended to games

with two players and the chance player as, upon introducing the

latter, the problem transitions from polynomially solvabile to NP-
hard. Interestingly, other problems in which this transition takes

place are, for example, the problem of computing a socially optimal

EFCE [38] and the problem of deciding if a two-player zero-sum

extensive-form game with perfect recall admits a pure strategy

equilibrium [8, 22]. In our setting, the following holds.

Theorem 4.5. Computing an NFCCE maximizing the social wel-
fare isNP-hard even in extensive-form games with two players, chance
moves, and binary outcomes.
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Proof. The construction introduced in [38, Theorem 1.3] can

be employed. We sketch its basic structure and apply it to the prob-

lem of solving the NFCCE-SW problem. The reduction is from

SAT, whose generic instance is a Boolean formula ϕ in conjunctive

normal form with η clauses and ν variables. Given ϕ, we build an

auxiliary game Γϕ with size proportional to that of the boolean

formula. The root of Γϕ is a chance node, with one action for each

clause of ϕ. Then, on the second level of the tree, there are η decision
nodes of Player 1, each one belonging to a singleton information set

and identifying a single clause of ϕ. At each of this decision nodes,

Player 1 has an action for each literal (negated or non-negated

variable) appearing in the clause identified by the decision node.

Player 2 plays on the third level of the game and has a decision

node for each literal appearing in ϕ. An action of Player 1 leads

to the decision node of Player 2 corresponding to the same literal.

Decision nodes of Player 2 are grouped in ν information sets, one

for each variable appearing in ϕ. Each of these information sets

has two available actions, corresponding to the truth assignment of

the variable, and leading to a terminal node. Both players have the

same payoffs, which is 0 if the literal (chosen by player 1 from the

clause) is false and 1 if it is true. Γϕ admits a pure strategy guaran-

teeing social welfare 2 if and only if ϕ is satisfiable. Otherwise, the

maximum expected social welfare cannot be more than 2(1 − 1/η).
Notice that a pure strategy maximizing the social welfare is also an

NFCCE, since no ex-ante deviation would result in an increase in

the player’s utility, being it already maximal. Then, finding a solu-

tion to NFCCE-SW in polynomial time would imply the existence

of a polynomial time algorithm for the SAT problem, which leads

to a contradiction unless P=NP. This concludes the proof. □

Notice that, when considering the separation problem of D, work-

ing with chance is hard because the first term of the objective

function of the separation problem is no longer constant when the

outcome is fixed. In the case with n > 2 and no chance moves, one

would have to determine the joint best response of two players

at a time (to maximize the terms of the objective function of the

separation problem following the first one), which is NP-hard [38].

5 A PRACTICAL ALGORITHM
Due to being based on the ellipsoid method (which, while being a

powerful theoretical tool, is well-known to be inefficient in prac-

tice), the algorithm that we used in the proof of Theorem 4.4 is not

appealing from a practical perspective. We propose, here, a com-

putationally more efficient method based on the simplex method

(we refer the unfamiliar reader to Bertsimas and Tsitsiklis [7] for

a comprehensive introduction) to compute optimal NFCCEs via a

column generation technique. The focus on two-player games is

motivated by the negative result in the previous section.

Let x be a vector containing the variables of LP (1)–(6):

xT = (σ (p′
1
,p′

2
), . . . ,σ (p′′

1
,p′

2
), . . .︸                              ︷︷                              ︸

|P1×P2 |

,vT
1
,vT

2
, sT

1
, sT

2
),

where, for each i = 1, 2, vi is defined as in the proof of Lemma 4.1

and si is a |Qi |-dimensional column vector of slack variables. The

cost vector c associated with the variables is:

cT = ([U ′
1
(p′

1
,p′

2
) +U ′

2
(p′

1
,p′

2
)]︸                         ︷︷                         ︸

σ (p′
1
,p′

2
)

, . . . , 0, . . . , 0︸  ︷︷  ︸
|H1 |+ |H2 |+ |Q1 |+ |Q2 |

),

where U ′i is the utility matrix of the reduced normal-form game.

We compactly rewrite the constraints of LP (1)–(6) in standard

form asM x = b, where bT = (1, 0, . . . , 0) is a vector of dimension

(|Q1 | + |Q2 | + 3). We denote the j-th column ofM byM(·, j).
The algorithm works in two phases, determining, first, a basic

feasible solution and, then, iteratively improving it until an optimal

one is found. The crucial component of the algorithm is an oracle for

solving, given a basic feasible solution to LP (1)–(6), the problem (we

refer to it as LRC) of finding a variablewith the largest reduced cost—
the so-called (primal) pricing problem. Notice that the tractability

of such problem is already implied by Theorem 4.4 as the problem

is equivalent to that of finding a maximally violated constraint in

the dual D. Hence:

Corollary 5.1. LRC can be solved in polynomial-time.

Letting c j be the cost associated with the j-th component of x
and letting cB be the vector of costs of the basic variables, the j-th
reduced cost is:

c j = c j − c
T
B B−1 M(·, j), (7)

where B = [M(·, j′),M(·, j′′), . . .] and j ′, j ′′, . . . are the indices of the
basic variables. We rely on the following polynomial-time oracle,

P-LRC, described in Algorithm 2 (another oracle is presented in the

next section).

First, notice that, given a basic feasible solution, cTBB
−1

is equal

to a vector (call it ζ ) of dimension (|Q1 | + |Q2 | + 3), computable in

polynomial time (Line 4). By employing the same notation as the

one adopted for the dual variables in the proof of Lemma 4.3, let

ζ T = ( ¯β1, ¯β2, ᾱ1, ᾱ2, γ̄ ), where ¯βi is the vector of dual variables of
constraints (3) and (4), ᾱi are the dual variables of constraints (2),
and γ̄ is that of constraint (5).

Algorithm 2 P-LRC

1: function P-LRC(Γ,M , c , B)
2: J ← ∅
3: ∀j, c̄ j ←∞
4: ζ ← cTBB

−1

5: for j ∈ {|P1 × P2 | + 1, . . . , |c |} do
6: c̄ j ← c j − ζM(·, j)
7: J ← J ∪ {j}

8: for ℓ ∈ L do
9: p̂i ← C-PLAN-SEARCH(ℓ, ¯βi ), ∀i ∈ N
10: ĵ ← index of σ (p̂1, p̂2) in c
11: c̄ ĵ ← c ĵ − ζM(·, ĵ)
12: J ← J ∪ {ĵ}

13: j∗ = arg maxj ∈J c̄ j
14: return j∗

The reduced costs of the variables vi and si can be computed

directly by definition since their number is polynomial in the size

of the tree (Lines 5 to 7). We are left with the problem of evaluating
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the reduced costs of the σ (·, ·) variables. P-LRC enumerates the out-

comes of the game (Line 8). Since all the pairs of plans identifying

ℓ have the same c j , the problem of minimizing ζ TM(·, j) amounts to

finding a pair (p1,p2) minimizing ( ¯β1U1rp2
+ ¯β2U

T
2
rp1
). The prob-

lem can be split into a subproblem per player, and solved through

Algorithm 1, which we presented in the proof of Lemma 4.2 (Line 9,

where we simplified the signature of C-PLAN-SEARCH for ease of

notation). By applying this procedure for each of the outcomes and

selecting, among the resulting pairs, one with the largest reduced

cost (Line 13), we are able to determine the new variable entering

the basis in polynomial time.

The two phases of the overall algorithm are the following ones,

and both adopt P-LRC:
Phase 1: finding a feasible point. A basic feasible solution to

NFCCE-SW is determined by solving an auxiliary problem with

artificial variables, where a new variable is introduced for each

equality constraint, and their sum is minimized in the objective

function. If some artificial variable with index j̄ is found in the

optimal basis of the auxiliary problem, we can find, in polynomial-

time, a variable j of the original problem to replace it by either

maximizing or minimizing e j̄B
−1M(·, j), where e j̄ is a vector of zeros

with suitable dimension and equal to 1 in position j (the problem
can be solved with Algorithm 1).

Phase 2: finding an optimal solution. Starting from a basic

feasible solution, the algorithm iteratively improves it until an

optimal solution is found. We remark that, while, if we were to

solve the problem with a standard implementation of the simplex

method, we would have to compute the reduced cost of all the

nonbasic variables to find one to enter the basis (which would

require exponential time in the size of the game), by employing P-
LRC the next variable to enter the basis can be found in polynomial

time. This follows from the same reasoning that led to Corollary 5.1.

We remark that, while the two phases require polynomial time,

the bottleneck of the approach is that, at each iteration, P-LRC has

to traverse the game tree twice for each ℓ ∈ L. This, as we will better
assess further in the paper from a computational perspective, can

be very time consuming in practice. To circumvent this issue, we

present a second oracle based onmixed-integer linear programming

(see the experimental evaluation for a comparison between the two

approaches).

6 GENERAL MIXED-INTEGER ORACLE
In this section, we describe an oracle (MI-LRC) for computing a

solution to LRC by solving a Mixed-Integer Linear Program (MILP).

Differently from P-LRC, MI-LRC does not nee for explicitly enu-

merating the terminal nodes of the game, and, furthermore, it can

be extended to games with chance. We provide, here, a description

of the oracle for the case of a two-player game with and without

chance moves. MI-LRC can also be extended to games with n > 2,

but we omit the description of this setting due to space constraints.

The crucial difference between MI-LRC and P-LRC is in the

way they handle the inspection of the reduced costs associated

with the σ (·, ·) variables. In MI-LRC, lines 8–12 of Algorithm 2 are

substituted with an MILP.

6.1 Two-Player Games
Let us first focus on the case of a two-player game without chance

moves. Let Ri be a |Qi | × |L| matrix such that:

Ri (qi , ℓ) =

{
1 if qi is on the path from the root to ℓ

0 otherwise.

Let also z be an |L|-dimensional vector of binary variables.MI-
LRC solves the following problem:

max

z∈{0,1} |L |
ri ∈Rn+

(
(1 − ᾱ1)r

T
1
− ¯βT

1

)
U1r2 + r

T
1
U2

(
(1 − ᾱ2)r2 − ¯β2

)
(8)

Firi = fi ∀i ∈ N (9)

ri ≥ Riz ∀i ∈ N (10)∑
ℓ∈L

z(ℓ) = 1. (11)

The objective function (8) follows from the definition of the reduced

costs (we are looking for a variable whose dual constraint is maxi-

mally violated). Constraints (10) force the realization plans to select

with probability 1 the sequences on the path to the selected out-

come ℓ. Notice that, while the objective function contains quadratic

terms, they only involve binary variables. Therefore, it can be re-

stated as a linear function after introducing a new variable and four

linear constraints per bilinear term according to the formulation

proposed in [29].

Notice that an optimal realization plan r∗i solving MI-LRC to

optimality may not be pure (i.e., there may exist some q ∈ Qi s.t.

r∗i (q) ∈ (0, 1)). Nevertheless, there always exists a pair of pure

realization plans leading to the same terminal node and granting

the same value
¯βT
1
U1r
∗
2
+ r∗T

1
U2

¯β2. Once a pair of pure realization

plans has been determined, the reduced cost associated with it has

to be computed according to equation (7) and compared to the

reduced costs of the remaining variables (Line 13 of Algorithm 2).
2

6.2 Two-Player Games with Nature
We denote by (qℓ

1
,qℓ

2
,qℓc ) the unique tuple of the sequences leading

to ℓ, where qℓc is a sequence of the chance player. The crucial point

is that, given ℓ ∈ L, there may exist some ℓ′ ∈ L \ {ℓ}, reachable

through (qℓ
1
,qℓ

2
,qℓ

′

c ), satisfying q
ℓ′
c , q

ℓ
c .MI-LRC can be adapted to

this scenario as follows. First, for each i ∈ N we compute the utility

matrices Ui,πc (with dimension |Q1 | × |Q2 |) obtained by marginal-

izing each Ui with respect to πc . Denoting by rc the realization

plan defined over the sequences of the chance player which are

realization-equivalent to πc , for each (q1,q2) ∈ Q1 ×Q2 we have:

Ui,πc (q1,q2) =
∑

qc ∈Qc

rc (qc )Ui (q1,q2,qc ).

Objective function (8) is then modified by substituting eachUi with
Ui,πc . Moreover, upon denoting by Rc the |Q̄c | × |L| matrix defined

analogously to Ri , it suffices to substitute each of constraints (11),

one per q̄ ∈ Q̄c , with the constraint Rc,(qc , ·)z = 1, where Rc,(qc , ·)
denotes row qc of Rc . This way, MI-LRC can be extended to the

2
It is enough to traverse the tree depth-first, and select sequences, among those played

with strictly positive probability in r ∗i , following the same reasoning of Algorithm 1.
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Table 1: Comparison of the performance with the two different oracles.

Game size P-LRC MI-LRC
Game |Q1 | |Q2 | |H1 | |H2 | Phase1 Phase2 Time Solved Phase1 Phase2 Time Solved

(steps) (steps) (sec) (in 12h) (steps) (steps) (sec) (in 12h)

R5-2 20 26 10 14 4.6 6.8 0.3 20 4.7 2.25 0.02 20

R5-3 126 102 43 35 5.5 5.5 8.9 9.2 20 5.5 3.15 0.32 20

R5-4 400 404 100 102 8.2 12.1 439.8 20 7.5 4.8 8.1 20

R10-2 664 680 333 340 5.5 11.6 1121.8 20 5.8 6.2 23.4 20

R12-2 2649 2697 1325 1349 5 7 41421.3 1 6.2 6.3 391.7 20

Table 2: Performance of MI-LRC on large two-player games
and games with Nature.

Game |Q1 | |Q2 | |H1 | |H2 | Phase1 Phase2 Time

R13-2 5364 5316 2682 2659 6.1 8.9 3368.2

G3R 58 58 47 47 7 1 0.1

G3S 334 334 274 274 64 1 100.6

G3D 334 334 274 274 6 1 1.7

more demanding setting of games with two-players and chance

moves.

7 EXPERIMENTAL EVALUATION
We compare the performance of our column generation method

with the two different oracles P-LRC and MI-LRC on random two-

player general-sum games with utilities in (−1, 1). Denoting by Rd-b
games of depth d and branching factor b, we generate 20 instances
for each of the following configurations: R5-2, R5-3, R5-4, R10-2,

R12-2, R13-2. We also experiment on instances of two-player games

with chance.We employGoofspiel game instances [33, 35], a bidding

game where each player has a hand of cards numbered from 1 to K .
A third stack of K cards is shuffled and used as prizes. Each turn a

prize card is revealed, and each player chooses a private card to bid,

with the high card winning the current prize. After K turns, all the

prizes have been dealt out and the payoff of each player is the sum

of the prize cards that they have won. In our experiments, we use

K = 3 (3 card ranks), with two different tie-breaking rules, namely,

the players splitting the value of the card on the table equally (G3S)

or discarding it (G3D). G3R is the variant in which the order of the

prize cards is known.

For the experiments, we employ the state-of-the-art MILP solver

GUROBI (version 8.0). The computations are run on amulti-processor

system equipped with 16 dual 2.6 GHz Intel Sandybridge processors

and 64 GBs of RAM.

We remark that the use of an LP defined directly on the normal

form of a game (Definition 2.2) is impractical for every instance of

our experimental setting due to its exponential size. For instance,

games like G3S and G3D contain more than 5 · 10
13

variables. For

problems of this size, even building their LP formulation in memory

is almost impossible (let alone solving it). The column generation

techniques we propose completely circumvent this issue. Table 1

reports the average results that we obtained on the two-player

instances of class R5-2, R5-3, R5-4, R10-2, and R12-2, with both

P-LRC andMI-LRC. The results obtained on the R13-2 instances,

together with those for two-player games with chance, which are

too large to be handled with P-LRC, are reported in Table 2.

First, we notice that the number of columns generated before

reaching optimality is always quite small. This justifies even more

the adoption of a column generation approach, since the algorithm

requires only a few iterations to reach an optimal solution once

a basic feasible solution is found. Moreover, the results clearly

illustrate that the MI-LRC oracle allows for a dramatic improve-

ment in the performance of the algorithm. Overall, our column

generation method employingMI-LRC is able to compute a socially

optimal NFCCE even on instances with more than 5000 cumulative

sequences and 2500 information sets in less than one hour.

8 DISCUSSION
In this paper, we have studied ex ante correlated equilibria in

extensive-form games with low communication requirements. First,

we have showed that an optimal NFCCE can be computed in poly-

nomial time in two-player games without chance moves. This com-

plexity result cannot be extended to more general settings (i.e.,

games with Nature, or games with three or more players), as the

problem is shown to become NP-hard. Moreover, we have devised

a scalable column generation method based on the simplex algo-

rithm which allows for computing optimal NFCCE efficiently in

practice. We have also devised two pricing oracles for the problem

of finding a column with the largest reduced cost. The first one is

guaranteed to have polynomial running time, while the second is

an MILP with less appealing theoretical properties but a largely

better performance in practice. We have experimentally evaluated

our column generation technique to demonstrate its scalability, and

assessed its performance when employing different pricing oracles.

Our results show that correlation in sequential games is possible in

practice, even when requiring a minimal communication effort.

In the future, it would be interesting to further improve the scal-

ability of our methods to tackle games of even larger size. Among

the possible techniques to achieve this, we mention the adoption

of heuristics for solving the pricing oracle, the use of stabilization

techniques as well as techniques for achieving a speedup in cutting

plane and column generation methods [1, 2, 14], and the intro-

duction of dominance relationships among the columns to reduce

their generation to a subset which is more effective in terms of

bound improvement. Moreover, our techniques for ex ante corre-
lated equilibria could also be employed in the Bayesian persuasion
framework [15, 27]. Investigating whether it is possible to adapt

our approach to compute optimal signaling schemes in this setting

would be an interesting avenue for future research.
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