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ABSTRACT
We study online matching settings with selfish agents when every-

thing is free. Inconsiderate agents break ties arbitrarily amongst

equal maximal value available choices, even if the maximal value is

equal to zero.

Even for the simplest case of zero/one valuations, where agents

arrive online in an arbitrary order, and agents are restricted to

taking at most one item, the resulting social welfare may be negli-

gible for a deterministic algorithm. This may be surprising when

contrasted with the 1/2 approximation of the greedy algorithm,

analogous to this setting, except that agents are considerate (i.e.,

they don’t take zero-valued items).

We overcome this challenge by introducing a new class of algo-

rithms, which we refer to as prioritization algorithms. We show

that upgrading a random subset of the agents to “business class"

already improves the approximation to a constant. For more general

valuations, we achieve a constant approximation using logn prior-

ity classes, when the valuations are known in advance. We extend

these results to settings where agents have additive valuations and

are restricted to taking up to some q ≥ 1 items. Our results are tight

up to a constant.
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1 INTRODUCTION
Almost universally, market efficiency is achieved by setting prices

on goods. We consider an online market setting where buyers

arrive over time. Mechanisms for social welfare in such markets

have been studied in, e.g., [12, 14, 17]. A measure of the quality of

such mechanisms is “how well do they approximate the maximal

social welfare?" As in these previous studies, we assume that the

order of arrival is adversarial.

The key issue considered in this paper is “What efficiency can
be achieved in online markets where goods are given away for free?".

Proc. of the 18th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2019), N. Agmon, M. E. Taylor, E. Elkind, M. Veloso (eds.), May 13–17, 2019,
Montreal, Canada. © 2019 International Foundation for Autonomous Agents and

Multiagent Systems (www.ifaamas.org). All rights reserved.

Unfortunately, it is easy to see that without prices only a negligible

fraction of the social welfare is achievable. This holds even if we

restrict agents to take at most one item (or some q items). Moreover,

this poor efficiency holds even if the agent valuations are zero/one,

given that the agents are inconsiderate. An inconsiderate agent will

choose to take an item of no value to them if they have no better

option. Also, an inconsiderate agent will break ties amongst equally

valuable items in an arbitrary (and inconsiderate) manner. There is

much research to suggest agents may in fact behave so. E.g., see

[15, 20] and references therein.

The key idea in this paper is to categorize agents into priority

classes, where agents from a higher priority class always precede

those from a lower class, but the order within a class is arbitrary.

We begin by considering the simplest setting with zero/one

valuations and inconsiderate agents about whom we know nothing.

Free distribution to Inconsiderate Strangers

Consider the following scenario: prior to departing on vacation,

we seek to distribute our remaining food to passers-by (agents).

Every agent is unit demand with zero/one valuations, but we know

nothing about their preferences, nor do we know the order in which

they arrive. Every agent, upon arrival, is allowed to choose a single

item from those remaining.

If agents are “well behaved" and only choose an item that they

like then the resulting distribution is a maximal matching (in a

bipartite unweighted graph of agents and items, where an edge

indicates that the agent likes the item), which is know to be a 1/2

approximation to the maximum matching.

However, human nature being what it is [15, 20], agents who

see nothing of value to themselves may be inconsiderate and may

take an item for which they have no perceived value
1

1
An alternate explanation for agents taking “zero value" items (and for breaking ties

arbitrarily) is that the true valuations are a slight perturbation of some underlying

ground truth, see, e.g.,[21].
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Figure 1: An example showing that inconsiderate agents
may result in low social welfare.

It is easy to construct an example where such inconsiderate

agents “steal" items of value from subsequent passers-by, despite

having no value for these items themselves (albeit, such subsequent

agents need know nothing of this). To see this, consider the scenario

depicted in Figure 1. There are n agents, ℓ1, . . . , ℓn , and n items,

r1, . . . , rn , and every agent ℓi has value 1 for item ri , with the

exception of agent ℓ1 that has value 1 also for item r2. Suppose
agents arrive in an increasing order of their indices (ℓ1, . . . , ℓn ),

and agent ℓ1 arbitrarily chooses item r2 over r1, thereafter every
agent ℓi , i < n, takes item ri+1, and ℓn takes r1. The resulting social
welfare is negligible when compared with the maximum social

welfare (1 instead of n).
A natural approach to overcome this problem is to reject (or

delay) such problematic agents that have no item of value remaining.

If we knew the items that agents care about, we could prioritize

agents with an item of value remaining, delaying others and still

get a maximal matching.

Note that the problem presented above assumes no prior knowl-

edge about the agents, and, moreover, as no prices are used, strategic

agents may claim to like everything when in fact they like nothing

from the leftover items . Thus, it seems on first glance that blindly

prioritizing some agents over others is useless.

We argue that this intuition is both true and false: We show that

prioritizing some agents deterministically gives negligible social

welfare (See Section 3). In contrast, if there is a perfect matching,

then by selecting a random set of prioritized agents, we obtain a 1/4

approximation to the optimum. Moreover, if there is an assignment

of items to agents where αn agents get an item (for some α ≤

1) — then, by selecting a random set of prioritized agents — we

obtain an α/4 approximation to the optimum (see Theorem 3.1).

Unfortunately, this is also tight (up to a constant). For large α this is

fine but is not great if α is small. Moreover, this problem is inherent

for more general valuations.

We remark that this trivial prioritization algorithm (prioritize

a random subset of agents) is oblivious in the sense that it knows

nothing about the agents (i.e., the graph is unknown), the order of

arrival, agent identities, how agents break ties, and what items are

leftover. We also note that this prioritization algorithm can be run

on the fly, where all agents arrive in some adversarial order and

are classified into priority classes on the fly.

To give good approximations in the case of small α and for more

general valuations we turn to a model of “Inconsiderate Friends".

The distinction between strangers and friends is that for strangers

we know nothing about their valuation for itemswhereas for friends

we know how much they like each item (but not how they break

ties). This allows us to get much better approximations than in the

case of strangers.

In particular, knowing agent valuations gives a constant factor

approximation for zero/one valuations and for arbitrary α (see

Theorem 4.1). The more interesting case is that of general unit

demand valuations (the agent valuation for every item is arbitrary).

Free distribution to Inconsiderate FriendswithUnitDemand
Valuations

The rules of the game are that we can prioritize our friends (with

the goal of maximizing social welfare). For example, we can invite

some set of friends in the morning and another in the evening.

The morning friends arrive in some arbitrary unknown order and

arbitrarily break ties, the same holds for friends that arrive in the

evening (and choose only amongst the morning leftovers). The key

issue is the number of such priority classes. Obviously, having more

classes yields better approximation ratios.

Here, agents are unit demand and valuations are described as an

edge weighted bipartite graph. Our main result is that, for arbitrary

such valuations, and assuming worst case order and worst case tie

breaking, one can achieve a c · r/logn approximation if allowed

r priority classes, for some constant c , and that this is tight. See

Theorem 4.5.

We remark that rather than insisting on unit demand valuations,

our results also hold where agent valuations are completely arbi-

trary (even complementarities are allowed). In this case we still

insist that an agent can take no more than one item. Critically, in

this general valuation setting, the benchmark is not the maximal

social welfare for the original valuations but rather the maximum

social welfare achievable given that agents are restricted to taking

one item. E.g., the value for a single shoe which could be much less

than the value of a pair of shoes.

Furthermore, we consider additional extensions such as additive

valuations in which agents have additive valuations, and they are

restricted to take up to q ≥ 1 items rather than only one item. (In-

considerate agents will always take the full allotment). See Section

5.

1.1 Related Work
1.1.1 Online bipartite matching. The unweighted online match-

ing problem can be represented by a bipartite graph, where nodes

on the left represent agents, nodes on the right represent items,

and the existence of an edge between an agent and an item means

that the agent has value 1 for the item. In such problems, agents

arrive over time, choosing an arbitrary adjacent remaining item. It

is well known that irrespective of how agents make their choices,

this process results in a maximal matching, thus yields at least half

of the maximum matching. This is the best deterministic algorithm

for unweighted graphs [13].

In their seminal paper, Karp, Vazirani and Vazirani [13] show that

a randomized algorithm performs better. In particular, by imposing

a random preference order on the items, the greedy algorithm gives

at least 1 − 1/e of the optimal matching.
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If agents have arbitrary valuations for items and can choose only

one item (represented as an edge weighted bipartite matching), in

general no guarantees on the efficiency can be obtained. Special

cases have been considered in the literature [1, 8]. More generally,

online bipartite matching has been an active area of theoretical

computer science research for almost 30 years. The survey byMehta

[16] provides a excellent overview as to the various variants of

online bipartite matching with applications to online advertising.

1.1.2 Posted pricing for known valuations. In the context of

posted pricing, one should distinguish between considerate and

inconsiderate tie breaking. If ties are broken appropriately, then

Walrasian pricing exists for all gross substitute valuations [11].

This means that all items are assigned prices, and agents arrive

sequentially, each offered a specific most desired bundle. Given

such considerate tie breaking, such a process results in maximum

welfare.

In [9] this approach has been generalized for arbitrary valua-

tions, yielding half of the optimal welfare. However, prices are now

attached to bundles of items, rather than to individual items.

To deal with inconsiderate tie breaking, Cohen-Addad et al. [6]
give a dynamic variant of Walrasian pricing for unit-demand val-

uations, that achieves optimal welfare. With static posted prices,

one can achieve half of the optimal welfare, but no more than 2/3.

1.1.3 Posted pricing for Bayesian settings. Feldman et al. [10]
show that if the valuations are drawn (independently) from known

probability distributions over submodular valuations, then half of

the optimal welfare can be obtained in expectation using posted

pricing. This work was later extended to more general stochastic

settings, using the framework of prophet inequalities [7].

1.1.4 Mechanisms without Money. The question of maximizing

social welfare without recourse to prices has previously been stud-

ied in numerous settings such as facility location [19], common

goods [3], cake cutting [18], social choice functions [5], and kidney

exchange [2].

1.1.5 Relation to Priority Model. The priority model [4] was

introduced to model greedy or more generally myopic algorithms.

In the fixed order priority model, every input is given a distinct

priority. Our prioritization model allows for a finer grained approach
distinguishing intermediate problems between the standard online

model and the priority model. The parameter of interest is the

number of priority classes.

2 MODEL AND PRELIMINARIES
We model agent valuations using an edge weighted bipartite graph

G = (L,R;E), where R = {r1, . . . , rm } represents the set of items,

and L = {ℓ1, . . . , ℓn } the set of agents. The weightw(e) of an edge

e = (ℓi , r j ) from ℓi ∈ L to r j ∈ R is the value agent ℓi has for item r j .
We sometime abuse notation and writew(i, j) to denote the weight

of the edge (ℓi , r j ).
In this paper, items never have prices, everything is free. How-

ever, agents are restricted in how many items they can take. We

first consider allowing agents to choose up to one item, and and

extend this to allowing q ≥ 1 in section 5.

We consider prioritization algorithms where agents can be as-

signed to some priority class. Agents with higher priority make

their selection before agents of lower priority. The highest priority

class isC1. For multiple priority classes, agents belonging to priority

class Ci choose items before agents belonging to priority classes

Cj , j > i . Items that have been selected by some agent disappear

and are unavailable for an agent to arrive subsequently.

Agents assigned to no priority class (the plebeians) are last to
choose. Within any priority class, (and within the plebeian class)

the order of arrival and how ties are broken are determined adver-

sarially.

For randomized algorithms, we consider an oblivious adversary.
In our setting, this means that the adversary determines both a

global order of arrival, and how agents break ties (should they

arise). The adversary determines these issues, in advance, without

knowing the random bits used by the algorithm. The global order

induces the ordering of the agents within each priority class. The

relative order of two agents that belong to the same priority class

is implied by their relative position in the global order. (Likewise

for plebeians).

Positive results (a lower bound on the social welfare), using at

least one priority class, can ignore the plebeians in the analysis.

Thus, for all positive results we simply ignore the plebeians. For

negative results the contribution of the plebeians can be viewed as

having one additional priority class.

We consider two different scenarios:

(1) Strangers. In this setting nothing is known about the agents,

the prioritization algorithm assigns [indistinguishable] agents

to one of r priority classes, C1, . . . ,Cr , or to none (the ple-

beians). I.e., the agent/item graph is unknown, the order

within a priority class is unknown, and how ties are broken

is unknown. We say that such an algorithm is oblivious since

it makes its decisions blindly, all agents are indistinguishable.

(2) Friends. In this setting agent valuations to items are known

before assigning agents to priority classes. I.e., the agent/item
graph is known, but not the order within a priority class

nor how ties are broken. Prioritization algorithms assigns

agents to one of r priority classes,C1, . . . ,Cr , or to none (the
plebeians).

3 RESULTS FOR INCONSIDERATE
STRANGERS

We consider a setting where we select some subset of agents to have

priority, who can choose whatever item they want. Subsequently,

the remaining (non-prioritized) agents can be allowed to choose

items too
2
. Amongst the prioritized agents, the order in which they

choose items is arbitrary.

As all strangers are indistinguishable, the only question is if

to prioritize an agent (and allow the stranger to choose an item

immediately) or not. As agents are asked no questions (and agents

cannot be trusted anyway), and as agents are free to choose what-

ever maximizes their utility — it follows that strategic agents have

no impact on the procedure and this process is inherently truthful.

2
In the analysis of the positive results (a lower bound on the social welfare) we assume

that they give zero contribution to the social welfare, ergo, choosing not to prioritize

an agent is equivalent to discarding the agent.
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It is trivial to observe that any algorithm that deterministically

chooses what agents are prioritized results in an unbounded ap-

proximation ratio. Consider some deterministic priority algorithm,

two agents a and b, and only item, for which one has value 1 and

the other zero. As nothing is known, the prioritization algorithm

will prioritize one of a and b, both of which are indistinguishable.

Clearly, the agent chosen will have value zero for the item, yet,

annoyingly, will choose it nonetheless.

Next, we consider a randomized prioritization algorithm (with

a single priority class, in addition to the plebeians), and show the

following:

Theorem 3.1. For zero/one valuations and a perfect matching
between agents and items, assigning agents to the higher priority
class with probability 1/2 gives a 1/4 approximation for any arbitrary
ordering of the agents. More generally if there is a matching of size
αn, assigning agents to the higher priority class with probability α/2
gives an α

4
approximation to the size of the that matching.

Proof. Given an unweighted graphG , fix somemaximummatch-

ingM . Index the agents by the adversary global order starting with

agent 1. LetM(k), 1 ≤ k ≤ n, be the item matched to agent k in the

matching M , and M(k) = ⊥ if no item was matched to agent k in

M . Note that we do not know the adversary global order, nor do

we know theM(k)’s.
For the purpose of analysis imagine that all agents arrive in the

adversary global order where the ith event is the arrival of agent

i . Agents are either allowed to make a choice or assigned to the

plebeian class (and thus delayed). This assignment to the plebeian

class is done on the fly.

We say that item j is unavailable after event i , 0 ≤ i ≤ n if it was

taken by a prioritized agent j such that j ∈ {1, . . . , i}.
For 0 ≤ i < k ≤ n define nik as follows:

nik :=

{
1 i f M(k) , ⊥ andM(k) is not available after event i

0 otherwise .

Let Si :=
∑
k>i n

i
k . The following holds:

Si+1 ≤ Si − nii+1 + Ii+1 (1)

where Ii+1 = 1 if agent i + 1 is prioritized and otherwise Ii+1 = 0.

The difference Si+1 − Si consists of several components. Si+1 −
Si clearly decreases by nii+1, and if Ii+1 = 1 this difference may

increase by one — this happens when agent i + 1 takes an item in

{M(i + 2), . . . ,M(n)}.
Taking expectation over (1), using linearity of expectation, and

noting that agent i + 1 takes an item (any item) with probability
α
2
,

we get that:

E[Si+1] ≤ E[Si ] − E[n
i
i+1] +

α

2

,

or equivalently

E[Si+1] − E[Si ] ≤ −E[nii+1] +
α

2

.

Taking the sum of i from 0 to n − 1, we get that

E[Sn ] − E[S0] ≤ −

n−1∑
i=0
E[nii+1] + n ·

α

2

.

Note that E[Sn ] = E[S0] = 0 and hence

n−1∑
i=0
E[nii+1] ≤ n ·

α

2

. (2)

Let Ri be the size of the matching after event i , the sequence Ri
is [weakly] ascending. Define Ji = 1 ifM(i) = ⊥ and zero otherwise.

We now show that

Ri+1 ≥ Ri + Ii+1 ·
(
1 − nii+1 − Ji+1

)
, (3)

by the following case analysis

• If Ii+1 = 0 or nii+1 = 1 or Ji+1 = 1 then (3) follows directly

from monotonicity of Ri .
• The only remaining case is when Ii+1 = 1 and both nii+1 = 0

(M(i +1)was available after event i) and Ji+1 = 0 (M(i +1) ,
⊥), and then the size of the matching increases by one.

Taking the expectation over (3) we get that

E[Ri+1] ≥ E
[
Ri + Ii+1 ·

(
1 − nii+1 − Ji+1

) ]
.

It follows from linearity of expectation and the fact that Ii+1 is

independent of nii+1 that

E[Ri+1] ≥ E[Ri ] + E[Ii+1]
(
1 − E[nii+1] − Ji+1

)
,

or equivalently,

E[Ri+1] − E[Ri ] ≥
α

2

(
1 − E[nii+1] − Ji+1

)
.

Taking the sum for i from 0 to n − 1, we get that

E[Rn ] − E[R0] ≥ n ·
α

2

−
α

2

n−1∑
i=0
E[nii+1] −

α

2

· (1 − α)n,

note that E[R0] = 0. Using the bound for E[nii+1] from (2) we have

that

E[Rn ] ≥
nα

2

−
α

2

·
nα

2

−
nα

2

+
nα2

2

=
nα2

4

. (4)

Now, using (4) we give a bound on the approximation ratio of the

algorithm:

Alg

Opt

≥
nα2/4

nα
=

α

4

.

where Opt is the size of the maximum weighted matching and Alg

is the expected size of the matching achieved by the algorithm. �

Remark: Even if α is unknown, one can use standard techniques

to guess the value of α to within some constant factor and lose a

factor of logn on the competitive ratio. Specifically, with probability

1/logn we use α = 2
−i
, i = 1, . . . , logn. This means that we choose

the correct α (up to a factor of 2) with probability 1/logn. Since we
consider the expected benefit we only lose this additional factor of

logn over the known α case.

We now show that the approximation ratio given in Theorem

3.1 is tight up to a constant factor.

Theorem 3.2. For an unweighted graph with a maximum match-
ing of size αn, no prioritization algorithm (with an arbitrary number
of priority classes) can achieve an approximation to the maximum
matching greater than α .
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Proof. Consider an instance with n agents and n items as de-

picted in Figure 2 (see details in the figure’s caption). Suppose agents

break ties (amongst zero valued items) from top to bottom. The

first αn agents to arrive choose items r1, ..., rαn so there is no point

in allowing more than αn agents to take an item. The adversary

chooses a random permutation over the agents. The best way to

choose a priority class, in this case, is choosing a random subset

of αn agents, resulting in an expected social welfare of value α2n.
Hence, the approximation ratio is α . �

Figure 2: For an unweighted graph with a maximummatch-
ing of size αn, the approximation ratio is at least α . In this
example agents break ties in favor of higher items (i.e., items
with low indices).

Remark: For weighted inconsiderate strangers, one cannot achieve
any meaningful approximation. E.g., one agent has a heavy edge,

and all other edges in the graph are negligible. In this setting one

cannot be aware that such an edge exists, so the item may be

allocated to the wrong agent.

We next turn to the problem of assigning agents, whose valua-
tions are known, to [a small number of] priority classes. Clearly, it

cannot be harder to prioritize agents if their valuations are known

than if not. For zero/one valuations, this “friends" model (known

valuations) improves the approximation above to a constant, if the

size of the maximum matching in an unweighted graph is small

(small α ). Furthermore, this allows us to give good approximations

to the value of the maximum matchings in the more general setting

where agents have arbitrary valuations (not restricted to zero/one

values).

4 RESULTS FOR INCONSIDERATE FRIENDS
We now discuss the friends setting, in which agent valuations to

items are known before assigning agents to priority classes.

Theorem 4.1. For unweighted graphs (valuations zero/one), it is
possible to choose a [random] subset of the agents as a higher priority
class, and achieve a 1

4
approximation to the size of the maximum

matching, independent of the size of the matching (i.e., independent
of α ).

Proof. First, we compute a maximum matching and exclude all

unmatched agents, effectively this means that all remaining agents

have a match. Then, from the remaining agents, prioritize each

one with probability
1

2
. As all agents have a match, we can apply

Theorem 3.1 with α = 1 that yields a 1/4 approximation. �

This is almost tight:

Proposition 4.2. For unweighted graphs (valuations zero/one),
no prioritization algorithm with one priority classes can attain ap-
proximation ratio greater than 2

3
.

Proof. Consider an instance with n agents and n items, as de-

picted in Figure 3. Agents are divided into n/3 sets {Li }i of size 3,
Li = {ℓ1i , ℓ

2

i , ℓ
3

i } for i = 1, . . . ,n/3. Items are likewise divided into

n/3 sets {Ri }i of size 3, Ri = {r1i , r
2

i , r
3

i } for i = 1, . . . ,n/3. The set

of edges is E = {(ℓ
j
i , r

k
i )| k ≤ j}.

Figure 3: For an unweighted known graph, no prioritization
algorithmwith one priority class can achieve an approxima-
tion better than 2/3.

In the optimal solution, agent ℓ
j
i takes item r

j
i , hence each Li

gives a value of 3, and in total the value of the maximum matching

is n. We claim that for any algorithm with a single priority class,

there is an adversary global order and tie breaking rule such that

the resulting value of each Li is at most 2, hence in total the social

welfare is 2n/3, which gives an approximation ratio of 2/3.

The following global ordering of the agents and tie breaking rule

implies the claim for every subset of agents: agents are ordered from

high indices to low indices (bottom to top in figure), and always

break ties in favor of items with lower indices (top items in figure).

Let C be the priority class. For any set Li , there are two options:

• if Li∩C , {ℓ1i }, then agent ℓ
1

i takes a zero valued item. Hence

the value contributed by the agents in Li is not greater than
2.

• if Li ∩C = {ℓ1i }, then ℓ
2

i cannot take r2i because by the time

she arrives r2i is already taken (by either ℓ3i or other agent)

and again the value contributed by the agents in Li is not
greater than 2.

�
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We now show that for arbitrary valuations, appropriately up-

grading some agents to business class gets an Ω(1/logn) fraction
of the social welfare.

Theorem 4.3. For arbitrary valuations (described as a weighted
graph), there exists a prioritization algorithm with only one priority
class (in addition to the plebeians) that gives approximation ratio of
Ω(1/logn).

Proof. Fix a maximum weighted matchingM , and letW denote

the weight ofM . Index the agents by adversary global order starting

with agent 1. LetM(k), 1 ≤ k ≤ n, be the item matched to agent k
in the matchingM , andM(k) = ⊥ if no item was matched to agent

k inM . For any agent k such thatM(k) , ⊥, we denote the value

agent k has for itemM(k) byw(M(k)) = w(k,M(k)).
Discard all agents with w(M(k)) <W /(2n). Since these agents

contribute in total at most W /2 to the value of the maximum

matching, discarding these agents can decrease the value of the

maximum matching by a factor of 2 at most. Assign agent k for

which M(k) , ⊥ and w(M(k)) > W /(2n) to classes as follows:

agent k belongs to class Ci , 0 ≤ i ≤ logn + 1, if and only if

W /2i+1 ≤ w(M(k)) <W /2i (where class C0 includes also agent k
s.t.M(k) =W , if exists). LetCmax denote the class with the highest

contribution to the social welfare. Agents in Cmax contribute at

least
1

2 logn fraction of the value of the maximum matching.

Now, we prioritize only agents from Cmax: every such agent

is prioritized with probability
1

2
. Let Cmax = Cj for some 0 ≤

j ≤ logn + 1. Now, consider a thought experiment where edges

(ℓk , rm ), ℓk ∈ Cmax have weight zero if w(ℓk , rm ) < W /2j+1 and

weightW /2j+1 ifw(ℓk , rm ) ≥W /2j+1. The value of a matching on

a subset of these “thought experiment" agents is no greater than the

value of a matching on the same subset with the original values.

We can treat the input as if it was zero/one values (whereW /2j+1

plays the role of one), and prioritize agents as if they had zero/one

values; this loses at most a factor 2 due to rounding. Applying

Theorem 4.1, we lose another factor of 4 of the total contribution

of Cmax. Thus, this gives a social welfare of at least
W

16 logn . �

This result is asymptotically tight:

Theorem 4.4. For arbitrary valuations, adding a business class
(in addition to the default class) does not give an approximation ratio
greater than O( 1

logn ). Moreover, no algorithm that uses r priority
classes can achieve an approximation ratio greater than O( r

logn ).

Proof. Consider the bipartite graph depicted in Figure 4, with

n agents, ℓ1, . . . , ℓn , and n items, r1, . . . , rn . The set of edges is

E = {(ℓi , r j )| 1 ≤ j ≤ i ≤ n}, and every edge of the form (ℓi , r j ) has

weight
1

i . Clearly, in the maximum matching agent ℓi is matched

to item ri , resulting in a total weight of Hn =
n∑
i=1

1

i ≈ lnn.

Figure 4: Agents on the left and items on the right. The num-
ber that appears to the left of an agent represents the corre-
sponding weight of all the edges adjacent to this agent.

Fix an arbitrary subset of agents.We describe an adversary global

order and tie breaking rule, and claim that that with these order

and tie breaking rule the contribution of any subset to the social

welfare is at most 1. This implies the theorem, since for a single

priority class (i.e., partitioning the agents to two subsets) we get at

most 2/lnn of the optimal welfare, and with r priority classes we

get at most (r + 1)/lnn of the optimal welfare.

The global ordering of the agents and tie breaking rule are as

follows: agents are ordered from high indices to low indices (bottom

to top in figure), and always break ties in favor of items with lower

indices (top items in figure). Consider a subset of agents that forms

a priority classC = {i1, . . . , ik }, where i j < i j+1 for j = 1, . . . ,k − 1

Clearly, there is some index, ik∗ , such that for all j ≥ k∗ agent i j
takes an item of positive value, and for all j < k∗ agent i j takes a
zero valued item.

Assume without loss of generality that ik∗ , . . . , ik are consec-

utive agents (i.e., for all k∗ ≤ j ≤ k − 1, i j + 1 = i j+1). This is
without loss since agents with lower indices contribute higher val-

ues. Therefore, ik − ik∗ = k − k∗.
It must hold that k − k∗ ≤ ik∗ − 1 since the left hand side is

the number of agents that took an item with strictly positive value

before ik∗ arrived, and this number is at most ik∗ − 1, or else ik∗

would not be able to take an item with strictly positive value. We

conclude that ik −ik∗ ≤ ik∗ −1 or equivalently ik ≤ 2ik∗ −1. Hence,

the total value that agents ik , . . . , ik∗ contribute is no more than

Hik − Hik∗−1 ≤ H2ik∗−1 − Hik∗−1 =

2ik∗−1∑
j=ik∗

1

j
≤ ik∗ ·

1

ik∗

= 1.

�

We now describe a prioritization algorithm using r priority

classes that has a matching bound. This result extends Theorem 4.3

(which addresses the case of r = 1).

Theorem 4.5. For arbitrary valuations, there exists an algorithm
using r ≥ 1 priority classes that achieves an approximation ratio of
Ω( r

logn ).

Proof. Given a weighted graphG , fix some maximummatching

M and discard any agents not in the matching. For any remaining

agent ℓ ∈ L, letM(ℓ) be the itemmatched to agent ℓ in the matching

M . Let wℓ be w(ℓ,M(ℓ)). We define sets Bi where ℓ belongs to Bi
if 2

i ≤ wℓ < 2
i+1

. Let Z = {Bi1 ,Bi2 , . . . ,Bir } be the collection of
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the r Bi ’s with the highest contribution toM , where i j > i j+1 for
j = 1, . . . , r − 1.

The jth priority class, Cj is a random subset of Bi j where every
agent is taken with probability p. As the adversary is oblivious,

it can be considered as though it predetermines a global order of

agent arrivals and in particular the relative order of arrival for each

of the sets Bi j . In fact, only agents fromCj will arrive and the agents

in Bi j \Cj are plebeians and arrive last.

Re-index agents in ∪jBi j such that the agents in Bi1 , ordered
by the adversary determined order of arrival, have indices 1, ...,n1.
More generally, agents in Bi j , ordered by the adversary determined

order of arrival, have indices nj−1 + 1, ...,nj . For convenience, we
define n0 = 0, and define the maximum value of an empty set to be

zero.

As done in Theorem 3.1, we say that item j is unavailable after
event i , 0 ≤ i ≤ nr , if the item was chosen by one of the agents

1, ..., i from ∪jCj , before the arrival of agent i + 1. For all 0 ≤ i <

k ≤ nr define n
i
k as follows:

nik :=

{
1 i f M(k) is not available after event i

0 else

Let Swi :=
nr∑

k=i+1
nik ·wk . For 0 ≤ i ≤ nr − 1 the following holds

Swi+1 ≤ Swi − nii+1 ·wi+1 + Ii+1 ·max{w j |i + 2 ≤ j ≤ nr }, (5)

where Ii+1 = 1 if agent i + 1 is chosen to a priority class and

otherwise Ii+1 = 0.

The difference Swi+1 − Swi consists of several components. Swi+1 −

Swi decreases by nii+1 · wi+1, and if Ii+1 = 1 the difference may

increase bymax{w j |i + 2 ≤ j ≤ nr } (this happens when agent i + 1
takes some item in {M(i + 1), . . . ,M(nr )}).

By taking expectation over (5), using linearity of expectation,

and noting that an agent takes an item (any item) with probability

p, we get that

E[Swi+1] ≤ E[S
w
i ] − E[nii+1 ·wi+1] + p ·max{w j |i + 2 ≤ j ≤ nr },

or equivalently

E[Swi+1] − E[S
w
i ] ≤ −E[nii+1 ·wi+1] + p ·max{w j |i + 2 ≤ j ≤ nr }.

By taking the sum of i over 0 to nr − 1 and noting that E[Swnr ] =
E[Sw

0
] = 0 we get that

nr−1∑
i=0
E[nii+1] ·wi+1 ≤ p ·

nr−1∑
i=0

max{w j |i + 2 ≤ j ≤ nr }

= p ·

nr∑
i=1

max{w j |i + 1 ≤ j ≤ nr }.

It now follows that

nr−1∑
i=0
E[nii+1] ·wi+1 ≤ p

r∑
l=1

nl∑
i=nl−1+1

max{w j |i + 1 ≤ j ≤ nr }

≤ p
r∑
l=1

nl∑
i=nl−1+1

2wi = 2

nr∑
i=1

wi .

Thus, we get that

nr−1∑
i=0
E[nii+1] ·wi+1 ≤ 2p

nr∑
i=1

wi . (6)

Let Ri be the weight of the matching after event i . The sequence
Ri is [weakly] ascending. We now show that

Ri+1 ≥ Ri + Ii+1 ·wi+1 ·
(
1 − nii+1

)
, (7)

by the following case analysis:

• If nii+1 = 1 or Ii+1 = 0 then (7) follows directly from mono-

tonicity of Ri .
• Else, Ii+1 = 1 and nii+1 = 0, i.e., M(i + 1) was available

after event i and agent i + 1 was admitted, hence the size

of the matching increases by at leastwi+1, and indeed (7) is

equivalent to Ri+1 ≥ Ri +wi+1.

Now, taking the expectation over (7) we derive that

E[Ri+1] ≥ E
[
Ri + Ii+1 ·wi+1 ·

(
1 − nii+1

) ]
.

It now follows from linearity of expectation and the fact that Ii+1
is independent of nii+1 that

E[Ri+1] ≥ E[Ri ] + E[Ii+1]wi+1

(
1 − E[nii+1]

)
,

or equivalently

E[Ri+1] − E[Ri ] ≥ pwi+1

(
1 − E[nii+1]

)
.

Taking the sum of i over i = 0 to i = nr − 1 we get that

E[Rnr ] − E[R0] ≥

nr−1∑
i=0

pwi+1 − p

nr−1∑
i=0
E[nii+1]wi+1.

Note that E[R0] = 0. Using the bound for

nr−1∑
i=0
E[nii+1]wi+1 from

(6) we have that

E[Rnr ] ≥ p

(nr−1∑
i=0

wi+1 − 2p

nr−1∑
i=0

wi+1

)
= (p − 2p2)

nr−1∑
i=0

wi+1.

To maximize the expected matching we take p = 1

4
and we get

E[Rnr ] ≥
1

8

nr−1∑
i=0

wi+1.

Note that the total contribution of the top r classes toM is at least

r
2 logn of the optimal social welfare, hence

E[Rnr ] ≥
r

16 logn
Opt,

where Opt is the weight of the maximum weighted matching. �

5 EXTENSION TO q-CAPPED ALLOCATIONS
Up to now we have restricted agents to take at most one item. We

now turn to agents with additive valuations and increase their quota

to taking no more than q items each. We refer to such allocations

as q-capped allocations. The proofs are deferred to the full version

due to space limitations.

As in previous sections, we consider both inconsiderate strangers

and friends.
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5.1 Inconsiderate Strangers
Theorem 3.1 for unit-demand valuations extends to the case of

additive valuations, with an additional loss of factor q.

Theorem 5.1. For any 0 ≤ α ≤ 1, prioritizing every agent with
probability α

2q gives an α
4q approximation to the size of the optimal

q-capped allocation, for any unweighted graph with a maximum
q-capped allocation of size ≥ αn.

We also have a matching impossibility result.

Theorem 5.2. For an unweighted graph with a maximum q-
capped allocation of value αn, no prioritization algorithm can achieve
an approximation to the maximum q-capped allocation greater than
O(αq ).

5.2 Inconsiderate Friends
Theorem 4.5 for unit-demand valuations extends to the case of

additive valuations, with an additional loss of factor q.

Theorem 5.3. For arbitrary additive valuations, there exists an
algorithm using r ≥ 1 priority classes that achieves an approximation
ratio of Ω( r

q logn ) to the maximum q-capped allocation.

We also have an impossibility result.

Theorem 5.4. For arbitrary additive valuations, adding a business
class (in addition to the default class) does not give an approximation
ratio greater than max{O( 1

q logn ),
1√
n
}. Moreover, no algorithm that

uses r priority classes can achieve an approximation ratio greater
than max{O( r

q logn ),
1√
n
}.

6 DISCUSSION
In this paper we study allocation of goods to inconsiderate agents

that arrive over time. Previous work on online resource allocation

concentrate on either non-strategic agents or on money as a tool for

creating appropriate incentives for driving the agents into desired

outcomes. We consider settings in which agents are strategic and in-

considerate, yet money cannot be used to alleviate the problem. We

propose a new class of algorithms, called prioritization algorithms,

where agents are assigned to a small set of priority classes, and

higher classes always precede lower ones (order within a given class

is arbitrary). We show that simple prioritization algorithms can

lead to approximately optimal welfare in various allocation settings,

even when the entire inventory is free and agents behave selfishly

and inconsiderately. We hope that prioritization algorithms can

serve as a useful tool in additional online problems.
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