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ABSTRACT
We provide tableau-based PSPACE satisfiability checking proce-

dures for a family of multi-agent epistemic logics with a semantics

defined in terms of belief bases. Such logics distinguish an agent’s

explicit beliefs, i.e., all facts included in the agent’s belief base, from

the agent’s implicit beliefs, i.e., all facts deducible from the agent’s

belief base. We provide a simple dynamic extension for one of these

logics by propositional assignments performed by agents. A propo-

sitional assignment captures a simple form of action that changes

not only the environment but also the agents’ beliefs depending

on how they jointly perceive its execution. After having provided

a PSPACE satisfiability checking procedure for this dynamic ex-

tension, we show how it can be used in human-robot interaction

in which both the human and the robot have higher-order beliefs

about the other’s beliefs and can modify the environment by acting.
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1 INTRODUCTION
In [28], a new epistemic logic called LDA (Logic of Doxastic Atti-

tudes) has been introduced. LDA supports reasoning about explicit

beliefs and implicit beliefs of multiple agents. The distinction be-

tween explicit belief and implicit belief has been widely discussed in
the literature on knowledge representation and reasoning. Accord-

ing to [26], “...a sentence is explicitly believed when it is actively

held to be true by an agent and implicitly believed when it fol-

lows from what is believed” (p.198). In other words, explicit beliefs

correspond to an agent’s actual beliefs, whereas implicit beliefs cor-

respond to her potential ones. This distinction is also acknowledged

by Fagin & Halpern (F&H)’s logic of general awareness (LGA) [13]:
it defines explicit belief as a formula implicitly believed by an agent

and of which the agent is aware.
1

The logic LDA accounts for the connection between the concept

of explicit belief and the concept of belief base: an agent’s belief

base, which is not necessarily closed under deduction, includes

all facts that are explicitly believed by the agent. Differently from

existing Kripke-style semantics for epistemic logic — exploited,

among other logics, by F&H’s logic of general awareness — in

1
For the connection between LDA and LGA, see [29], in which a polynomial embedding

of the former into the latter is provided.

Proc. of the 18th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2019), N. Agmon, M. E. Taylor, E. Elkind, M. Veloso (eds.), May 13–17, 2019,
Montreal, Canada. © 2019 International Foundation for Autonomous Agents and

Multiagent Systems (www.ifaamas.org). All rights reserved.

which the notion of doxastic alternative is primitive, in the LDA
semantics the notion of doxastic alternative is defined from, and

more generally grounded on, the concept of belief base.
2

The main motivation behind the logic LDA is to bridge two tra-

ditions that have rarely talked to each other up to now. On the one

hand, we have epistemic logic: it started in the 60ies with the sem-

inal work of Hintikka [22] on the logics of knowledge and belief,

it was extended to the multi-agent setting at the end of 80ies [12]

and then furtherly developed during the last 20 years, the period of

the “dynamic turn”, with growing research on dynamic epistemic

logic [42]. On the other hand, we have syntactic approaches to

knowledge representation and reasoning mainly proposed in the

area of artificial intelligence (AI). The latter includes for instance

work on belief base and knowledge base revision [6, 17, 18], belief

base merging [23], input-output logic [31], as well as more recent

work on the so-called “database perspective” to the theory of inten-

tion by [37] and resource-bounded knowledge and reasoning about

strategies [1]. All these approaches defend the idea that right level

of abstraction for understanding and modelling cognitive processes

and phenomena is the “belief base” level or, more generally, the

“cognitive attitude base” level. The latter consists in identifying a

cognitive agent with the sets of facts that she believes (belief base),

desires (desire base) and intends (intention base) and in studying

the interactions between the different bases.
3

There is also a practical motivation behind the logic LDA in

relation to modeling Theory of Mind (ToM) in human-machine in-

teraction (HMI) applications including social robots [36, 44, 45] and

intelligent virtual agents (IVAs) [9, 20, 33, 35]. An essential aspect of

ToM is the general capacity of an agent to form higher-order beliefs

about beliefs of other agents. Although existing robotic models

of ToM take this aspect into consideration (see, e.g., [10, 25, 32]),

they have some limitations. First of all, they only allow to repre-

sent higher-order beliefs of depth at most 2, where the depth of a

higher-order belief is defined inductively as follows: (i) an agent’s

belief has depth 1 if and only if its content is an objective formula

that does not mention beliefs of others (e.g., an agent i’s belief that
it is a sunny day); (ii) an agent’s belief has depth n if and only it is

a belief about a belief of depth n − 1 of another agent (e.g., an agent

i’s belief of depth 2 that another agent j believes that it is a sunny
day). Secondly, models of ToM used for robotic implementations

do not have a high level of generality that makes them applicable

2
Grounded semantics for epistemic logics have proposed in the AI literature. For

instance, [27] provide a semantics based on the concept of interpreted system, while

the approach by [11, 41] builds on propositional observability.

3
This approach has also been used in linguistic work on modal expressions. For

instance, according to [24], conversational common ground can be seen as set of

formulas shared by the interlocutors and the set of worlds that are considered possible

by the interlocutors are those worlds that satisfy all formulas in the common ground.
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to different scenarios and situations. As shown by [7], the standard

epistemic logic approach [12] allows us to overcome these limi-

tations by allowing to represent higher-order belief of any depth

and by offering a general framework for formalizing a large vari-

ety of interactive situations between artificial robots and human

agents. Unfortunately, it does not distinguish between explicit and

implicit beliefs. It only allows to represent what a robot believes

a human could potentially believe — if she had enough computa-

tional resources and time to infer it —, without representing what

the robot believes a human actually believes. Another limitation

of the standard epistemic logic approach arises when trying to

model complex forms of information dynamics in a multi-agent

setting. An example of this is the situation in which a certain action

or event takes place, some agents in the system perceive it while

others do not, some agents perceive that some agents perceive it,

some agents perceive that some agents perceive that some agents

perceive it, and so on so forth. Such scenarios are typically modeled

in the context of dynamic epistemic logic (DEL) [42] — the dynamic

extension of epistemic logic — with the help of so-called action

models [4]. However, modeling complex information dynamics in

DEL comes with a price. In DEL, whenever an agent privately re-

ceives a piece of information, the original epistemic model has to

be duplicated by creating one copy of the model for the perceiver in

which her beliefs have changed and one copy for the non-perceivers

in which their beliefs have not changed [15]. Thus, the original

epistemic model grows exponentially in the length of the sequence

of private announcements. Furthermore, although extending multi-

agent epistemic logic by simple notions of state eliminating public

announcement or arrow eliminating private announcement does

not increase its PSPACE complexity (see, e.g., [8, 30]), complexity

increases if we move into the realm of full DEL, whose satisfiability
problem is known to be NEXPTIME-complete [2].

The logic LDA provides a generalization of the standard epis-

temic approach in which the distinction between explicit and im-

plicit belief can be captured: it allows us to represent both what a

robot believes a human is explicitly believing in a given situation —

which is the essential aspect of ToM — and what a robot believes a

human can infer from what she explicitly believes. Moreover, differ-

ently from standard DEL, LDA can be easily extended to represent

rich belief dynamics in a multi-agent setting, with no increase in

complexity with respect to the static logic. The interesting aspect

of LDA is that it allows us to model belief dynamics as operations

modifying the belief bases of some agents. This leads to a ‘parsi-

monious’ account of private informative actions that — differently

from traditional DEL — does not require to duplicate epistemic

models and to make them exponentially larger.

The aim of the present paper is to explore the practical aspect

of the logic LDA: we provide a decision procedure for LDA and

for a dynamic extension of it, we discuss its potential applicability

in human-robot interaction. The paper is organized as follows. In

Section 2, we recall the syntax and the semantics of the logics in the

LDA family. Then, in Section 3, we present tableau-based PSPACE

satiability checking procedures for these logics. In Section 4, we

introduce a dynamic extension of LDA, called DLDA, in which a

simple form of action based on propositional assignment can be

represented. In DLDA, an assignment is performed by an agent and

its execution is privately perceived by some agents. In other words,

an assignment changes both the environment and the agents’ be-

liefs depending on perceptive situation, that is to say, on whether

they perceive its execution, on whether they perceive other agents

perceiving its execution, and so on. We show that the satisfiability

problem for DLDA remains in PSPACE and we provide a PSPACE

decision procedure for DLDA exploiting a polynomial reduction

of DLDA satisfiability to LDA satisfiability. Moreover, we instan-

tiate DLDA in a concrete example of human-robot interaction in

a dynamic domain in which the human and the robot not only

have higher-order beliefs about the beliefs of the other but also can

modify the environment by acting. In Section 5, we conclude.

2 A LOGIC OF EXPLICIT AND IMPLICIT
BELIEF

LDA is a logic for reasoning about explicit beliefs and implicit

beliefs of multiple agents. Assume a countably infinite set of atomic

propositions Atm = {p,q, . . .} and a finite set of agents Agt =
{1, . . . ,n}.

We define the language of the logic LDA in two steps. We first

define the language L0(Atm,Agt) by the following grammar in

Backus-Naur Form (BNF):

α ::= ⊥ | p | ¬α | α1 ∧ α2 | △iα
wherep ranges overAtm and i ranges overAgt.L0(Atm,Agt) is the
language for representing explicit beliefs of multiple agents. The

formula △iα can be read as “agent i explicitly believes that α is true”

or “α is in agent i’s belief base”. In this language, we can represent

higher-order explicit beliefs, for example △i△jα express the fact

that agent i explicitly believes that agent j explicitly believes that

α is true.

Language LLDA(Atm,Agt), extends language L0(Atm,Agt) by
modal operators of implicit belief and is defined by the following

grammar:

φ ::= α | ¬φ | φ1 ∧ φ2 | □iφ
with α ranging over L0(Atm,Agt). For simplicity, we write L0 in-

stead of L0(Atm,Agt) and LLDA instead of LLDA(Atm,Agt), when
the context is unambiguous.

The other Boolean constructions ⊤, ⊥, ∨, → and ↔ are defined

from α , ¬ and ∧ in the standard way.

The formula □iφ has to be read “agent i implicitly (or potentially)

believes that φ is true”. We define the dual operator ^i as follows:

^iφ
def
= ¬□i¬φ.

^iφ has to be read “φ is compatible (or consistent) with agent i’s
explicit beliefs”.

2.1 Formal semantics
In this section, we present a semantics for the logic LDA in which

the notion of doxastic alternative is not primitive but it is defined

from the primitive concept of multi-agent belief base.

Definition 2.1 (Multi-agent belief base). A multi-agent belief base

(MBB) is a tuple B = (B1, . . . ,Bn , S) where (i) for every i ∈ Agt,
Bi ⊆ L0 is agent i’s belief base, and (ii) S ⊆ Atm is the actual state.

The class of MBBs is denoted by B.

Formulas of the language L0 are interpreted relative to multi-

agent belief bases as follows.
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Definition 2.2 (Satisfaction relation). Let B = (B1, . . . ,Bn , S) be a
multi-agent belief base. Then, the satisfaction relation |= between

states and formulas in L0 is defined as follows:

B ̸ |= ⊥
B |= p ⇐⇒ p ∈ S

B |= ¬α ⇐⇒ B ̸ |= α
B |= α1 ∧ α2 ⇐⇒ B |= α1 and B |= α2

B |= △iα ⇐⇒ α ∈ Bi

The following definition introduces the concept of doxastic al-

ternative.

Definition 2.3 (Doxastic alternatives). Let B = (B1, . . . ,Bn , S) and
B′ = (B′

1
, . . . ,B′

n , S
′) be two multi-agent belief bases. Then, BRiB

′

if and only if, for every α ∈ Bi , B
′ |= α , where the satisfaction

relation |= follows Definition 2.2.

BRiB
′
means that B′

is a doxastic alternative for agent i at B. The
idea of the previous definition is that B′

is a doxastic alternative for

agent i at B if and only if, B′
satisfies all facts that agent i explicitly

believes at B.
A multi-agent belief model (MAB) is defined to be a multi-agent

belief base supplemented with a set of multi-agent belief bases,

called context. The latter includes all multi-agent belief bases that

are compatible with the agents’ common ground [38], i.e., the body

of information that the agents commonly believe to be the case.

Definition 2.4 (Multi-agent belief model). A multi-agent belief

model (MBM) is a pair (B,Cxt), where B ∈ B and Cxt ⊆ B. The
class of MBMs is denoted by M.

The following definition generalizes the definition of the satis-

faction relation |= given in Definition 2.1 to the full language LLDA.

Its formulas are interpreted with respect to MBMs. (Boolean cases

are omitted, as they are defined in the usual way.)

Definition 2.5 (Satisfaction relation (cont.)). Let (B,Cxt) ∈ M.

Then:

(B,Cxt) |= α ⇐⇒ B |= α
(B,Cxt) |= □iφ ⇐⇒ ∀B′ ∈ Cxt : if BRiB

′
then

(B′,Cxt) |= φ

Figure 1 illustrates the general idea behind the logic LDA, espe-
cially for what concerns the relationship between the agents’ belief

bases and the agents’ common ground (or context) and the rela-

tionship between the latter and the agents’ implicit beliefs. While

an agent’s belief base captures the agent’s private information, the

common ground captures the agents’ public information. An agent’s

implicit belief corresponds to a fact that the agent can deduce from

the public information and her private information.

Note that the previous semantics does not guarantee that an

agent’s belief base is globally consistent with the agents’ common

ground, as it might be the case that there is no B′ ∈ Cxt such that,

for all α ∈ Bi , B
′ |= α . In the latter case, we have that (B,Cxt) |=

□i⊥ which means that agent i’s belief base at (B,Cxt) is globally
inconsistent with the agent’s common ground.

The global consistency property for multi-agent belief models is

defined as follows.

Agent	1’s	
belief	base	

Agent	2’s	
belief	base	

Common	
ground	

Agent	1’s	
implicit	beliefs	

Agent	2’s	
implicit	beliefs	

Deduc9on	Deduc9on	

Figure 1: Conceptual framework

Definition 2.6 (Global consistency). Let (B,Cxt) ∈ M. We say that

(B,Cxt) satisfies global consistency (GC) if and only if, for every

B′ ∈ {B} ∪ Cxt, there exists B′′ ∈ Cxt such that B′RiB
′′
.

In some situations, it may be useful to assume that agents’ be-

liefs are correct, i.e., what an agent believes is true. When talking

about correct (or true) explicit and implicit beliefs, it is usual to

call them explicit and implicit knowledge. Indeed, the terms “true

belief”, “correct belief” and “knowledge” are usually assumed to be

synonyms. The following definition introduces belief correctness

for multi-agent belief models.

Definition 2.7 (Belief correctness). Let (B,Cxt) ∈ M. We say that

(B,Cxt) satisfies belief correctness (BC) if and only if B ∈ Cxt and,
for every B′ ∈ Cxt, B′RiB

′
.

Clearly, belief correctness implies global consistency.

As the following proposition highlights, belief correctness for

multi-agent belief models is completely characterized by the fact

that the actual world is included in the agents’ common ground

and that the agents’ explicit beliefs cannot be wrong.

Proposition 2.8. Let (B,Cxt) ∈ M. Then, (B,Cxt) satisfies BC if
and only if B ∈ Cxt and, for all i ∈ Agt, B′ ∈ Cxt and α ∈ Bi , we
have B′ |= α .

For every X ⊆ {GC,BC}, we letMX denote the class of models

satisfying all properties in X . Clearly, M∅ = M. Let φ ∈ L, we

say that φ is valid for the classMX , denoted by |=X φ, if and only

if, for every (B,Cxt) ∈ MX , we have (B,Cxt) |= φ. For notational
convenience, we write |= φ instead of |=∅ φ. We say that φ is

satisfiable for the class MX if and only if ¬φ is not valid for the

class MX .

3 TABLEAUX
In this section, we present a tableau method that can be used for

satisfiability of formulas of the logic LDA. As we will deal with

sets for the rest of this section, if we use a single formula on a set

operation, we mean the singleton containing such formula and we

alternatively use “;” as the union operator.

Definition 3.1 (Tableau Rule). A tableau rule consists of a set Γ
above a line called the numerator, and a list of distinct sets Γ1, .., Γn
separated by |, called the denominators:
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Γ
Γ1 | . . . | Γn

The following definition specifies the conditions under which a

rule is applicable.

Definition 3.2 (Applicable rule and saturated set). A tableau rule

is applicable to a set Γ if Γ is an instance of its numerator and Γ is

not an instance of one of its denominators. We say that a set Γ is

saturated if there is no rule applicable to it.

The condition requiring that for a tableau rule to be applicable

to a set Γ, Γ does not have to be an instance of one of its denomina-

tors, guarantees that when constructing a tableau we do not loop

indefinitely by applying the same rule infinitely many times.

In the following definition, we introduce the static rules for our

tableau method.

Definition 3.3 (Static rules). Let X be a finite set of formulas from

LLDA, then:

ψ ;¬ψ ;X
⊥-rule: ⊥

ψ ∧ φ;X
∧-rule:

ψ ;φ;ψ ∧ φ;X
¬¬ψ ;X

¬-rule:
ψ ;¬¬ψ ;X

△iα ;X△i -rule: □iα ;△iα ;X
¬(ψ ∧ φ);X

∨-rule: ¬ψ ;¬(ψ ∧ φ);X | ¬φ;¬(ψ ∧ φ);X
The following extra rules are used for the KD and KT variants

of the logic LDA.

Definition 3.4 (T-rule and D-rule). LetX be a finite set of formulas

from LLDA, then:

□iψ ;X
T-rule:

ψ ;□iψ ;X

□iψ ;X
D-rule:

^iψ ;□iψ ;X

The D-rule corresponds to the property of global consistency

(GC) on multi-agent belief models, while the T-rule corresponds

to the property of belief correctness (BC). This correspondence is

captured by the function cf such that:

cf (D-rule) = GC

cf (T-rule) = BC

The transitional rule allows to generate a new successor for a

certain agent i .

Definition 3.5 (Transitional rule). Let X be a finite set of formulas

from LLDA, then:

^iψ ;X
^i :

ψ ; {φ | □iφ ∈ X }
The following definition introduces the concept of tableau.

Definition 3.6 (Tableau). Let X ⊆ {T-rule,D-rule}. A LDAX -
tableau for Γ is a tree such that each vertex v carries a pair (Γ′, ρ),
where Γ′ is a set of formulas and ρ is one of the following: (i) an

instance of a static rule applicable to Γ′, (ii) an instance of a rule

from X applicable to Γ′, (iii) a transitional rule applicable to Γ′ or
iv) the empty rule nihil. The root of the tableau carries a pair (Γ, ρ)
for some tableau rule ρ. Moreover, for every vertex v , if v carries

the pair (Γ′, ρ), then the following conditions hold:

• if Γ′ is not saturated then ρ , nihil, and

• if ρ has k denominators Γ1, . . . , Γk then v has exactly k chil-

dren v1, . . . ,vk such that, for every 1 ≤ h ≤ k , vh carries

(Γh , ρ ′) for some tableau rule ρ ′.

The following definition introduces the concept of closed tableau.

Definition 3.7 (Closed tableau). A branch in a tableau is a path

from the root of the tableau to an end vertex, where an end vertex

is a vertex carrying a pair (Γ′, nihil). A branch in a tableau is closed

if its end node is of the form ({⊥}, nihil). A tableau is closed if all

its branches are closed, otherwise it is open.

The following theorem highlights that our tableau method is

sound.

Theorem 3.8. Let φ ∈ LLDA and let X ⊆ {T-rule,D-rule}. Then,
if φ is satisfiable for the class M{cf (x ):x ∈X } then all LDAX -tableaux
for {φ} are open.

Proof. By means of the truth conditions given in Definitions 2.2

and 2.5, it is straightforward to show that every static rule, every

transitional rule and every rule in X applied to a M{cf (x ):x ∈X }-
satisfiable set of formulas Γ generates someM{cf (x ):x ∈X }-satisfiable
set of formulas, where a set of formulas Γ isM{cf (x ):x ∈X }-satisfiable
iff there exists (B,Cxt) ∈ M{cf (x ):x ∈X } such that (B,Cxt) |= φ for

all φ ∈ Γ. More precisely, if Γ isM{cf (x ):x ∈X }-satisfiable and rule ρ

is applicable to Γ, then there exists a possible result Γ′ of applying
ρ to Γ such that Γ′ isM{cf (x ):x ∈X }-satisfiable.

4

Thanks to the previous property, by induction on the height of

the tableau, it is easy to show that if Γ isM{cf (x ):x ∈X }-satisfiable
and Θ is any LDAX -tableau for Γ with finite height then Θ is open.

(Base case). Suppose Θ is a LDAX -tableau for Γ with height 0.

Then, (Γ, nihil). Since Γ isM{cf (x ):x ∈X }-satisfiable, Γ , {⊤}. Hence,
Θ is open.

(Induction case). Suppose Θ is a LDAX -tableau for Γ with height

k + 1. By the previous property and the fact that Γ isM{cf (x ):x ∈X }-
satisfiable, there exists a vertex v such that v is a child of Θ’s root,
v is the root of a sub-tableau Θ′

of Θ with height equal or less than

k and v carries a pair (Γ′, ρ), where Γ′ isM{cf (x ):x ∈X }-satisfiable.
By induction hypothesis, the sub-tableau Θ′

is open. Consequently,

the tableau Θ is open too.

Since every LDAX -tableau for {φ} has finite height, it follows
that if φ is M{cf (x ):x ∈X }-satisfiable then all tableaux for {φ} are
open. □

In the rest of this section, we are going to prove that our tableau-

based method is complete. Our proof exploits the proof theory of

LDA provided in [28]. In particular, in [28], it is shown that the

logic LDA{D□i } , i.e., the KD variant of the logic LDA, defined by all

tautologies of propositional calculus together with the following

axioms and rules of inference is sound and complete relative to the

4Γ′ is a possible result of applying some tableau rule to Γ iff there exists a tableau rule

ρ such that Γ is its numerator and Γ′ is one of its denominators.
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class M{GC } :

(□iφ ∧ □i (φ → ψ )) → □iψ (K□i )
¬(□iφ ∧ □i¬φ) (D□i )
△iα → □iα (Int△i ,□i )
φ,φ → ψ

ψ
(MP)

φ

□iφ
(Nec□i )

Let

□iφ → φ (T□i )

Then, it is easy to generalize the completeness proof given in [28]

to show that, for every X ⊆ {D□i ,T□i }, the logic LDAX is sound

and complete for the class M{д(x ):x ∈X } with д(D□i ) = GC and

д(T□i ) = BC, andwhere LDAX is the logic defined by all tautologies

of propositional calculus, the previous principlesK□i , Int△i ,□i ,MP,
Nec□i , and all principles in X . Furthermore, it is easy to show that

alternative sound and complete axiomatizations for these logics

consist in replacing Axiom K□i and the rule of inference Nec□i by
the following rule of inference:

φ → (ψ1 ∨ . . . ∨ψm )
^iφ → (^iψ1 ∨ . . . ∨ ^iψm ) (Trans□i )

Indeed, the rule Trans□i preserves validity. Moreover, Axiom K□i
and the rule Nec□i are derivable from it.

Therefore, for everyX ⊆ {D□i ,T□i }, we have that if |={д(x ):x ∈X }
φ then ⊢LDAX φ, where ⊢LDAX φ, means that there is a proof of φ
in LDAX , that is, there is a sequence of formulas (φ1, . . . ,φn ) such
that:

• φn = φ,
• for every 1 ≤ k ≤ n, either φk is an instance of one of the

axiom schema of LDAX or there are formulas φk1 , . . . ,φkm
such that k1, . . . ,km < k and

φk
1
, ...,φkm
φk

is an instance of

some inference rule of LDAX .

In what follows, we are going to prove that if ⊢LDAX φ then there

exists a LDAX -tableau for {¬φ} which is closed. Before entering

into the proof, let us define the collection of all LDAX tableau-

consistent sets of formulas.

Definition 3.9 (Tableau-consistent sets of formulas). LetX ⊆ {D□i ,
T□i }. We define TCLDAX to be the largest collection of sets of formu-

las from the languageLLDA which satisfies the following conditions.

For every Γ ∈ TCLDAX :

• Γ does not contain ⊥,
• if Γ ∈ TCLDAX and φ,¬φ ∈ Γ then Γ ∪ {⊥} ∈ TCLDAX ,

• if Γ ∈ TCLDAX and φ ∧ψ ∈ Γ then Γ ∪ {φ,ψ } ∈ TCLDAX ,

• if Γ ∈ TCLDAX and ¬¬φ ∈ Γ then Γ ∪ {φ} ∈ TCLDAX ,

• if Γ ∈ TCLDAX and φ ∈ Γ then {¬φ} ∪ Γ < TCLDAX ,

• if Γ ∈ TCLDAX and ¬(φ ∧ψ ) ∈ Γ then Γ ∪ {¬φ} ∈ TCLDAX
or Γ ∪ {¬ψ } ∈ TCLDAX ,

• if Γ ∈ TCLDAX and △iα ∈ Γ then Γ ∪ {□iα } ∈ TCLDAX ,

• if Γ ∈ TCLDAX and ^iφ ∈ Γ then {φ} ∪ {ψ : □iψ ∈ Γ} ∈
TCLDAX ,

• if D□i ∈ X , Γ ∈ TCLDAX and □iφ ∈ Γ then Γ ∪ {^iφ} ∈
TCLDAX , and

• if T□i ∈ X , Γ ∈ TCLDAX and □iφ ∈ Γ then Γ ∪ {φ} ∈
TCLDAX .

As the following proposition highlights, tableau consistency is

closed under subset operation.

Proposition 3.10. Let X ⊆ {D□i ,T□i } and let Γ, Γ′ ⊆ LLDA.
Then, if Γ′ ⊆ Γ and Γ ∈ TCLDAX then Γ′ ∈ TCLDAX .

Proof. The right-to-left direction is trivial. The left-to-right

direction is provable by checking that if Γ′ ⊆ Γ and Γ ∈ TCLDAX
then Γ′ satisfies all previous conditions for the elements in TCLDAX .

□

The following lemma is essential for proving our main result.

Lemma 3.11. Let X ⊆ {D□i ,T□i }. Then, if ⊢LDAX φ then {¬φ} <
TCLDAX .

Proof. Suppose ⊢LDAX φ. This means that that there exists a

proof of φ in LDAX . By induction on the length of the proof, we

show that {¬φ} < TCLDAX .

(Base case). Suppose the proof has length 1. This means that

φ is an instance of an axiom of the logic LDAX . Suppose φ is

an instance of Axiom Int△i ,□i of the form ¬△iα ∨ □iα . More-

over, suppose that {△iα ∧ ¬□iα } ∈ TCLDAX . By definition of

TCLDAX , we have {△iα ,¬□iα ,△iα ∧ ¬□iα } ∈ TCLDAX . More-

over, {△iα ,□iα ,¬□iα ,△iα ∧ ¬□iα } ∈ TCLDAX and, consequently,

{⊥,△iα ,□iα ,¬□iα ,△iα∧¬□iα } ∈ TCLDAX . The latter contradicts

the fact that every element of TCLDAX does not contain ⊥. We can

also prove that if φ is an instance of a tautology of propositional

calculus. Moreover, in a similar way, we can prove that if φ an

instance of Axiom T□i (resp. D□i ) and T□i ∈ X (resp. D□i ∈ X )
then {¬φ} < TCLDAX .

(Induction case). Suppose the proof has length k + 1. Thus,

we have φ = φk+1, where φk+1 is the last element of the proof

(φ1, . . . ,φk+1). Moreover, either φk+1 is an instance of one of the

axiom schema of LDAX , or there are formulas φk1 , . . . ,φkm such

that k1, . . . ,km < k + 1 and

φk
1
, ...,φkm
φk+1

is an instance of the

inference rule Trans□i . The first case is treated as in the base

case of the main proof. Let us prove the second case after assum-

ing that {¬φk+1} ∈ TCLDAX . We have that φk+1 is of the form

^iψ → (^iψ1 ∨ . . . ∨ ^iψm ) since φk+1 is the result of the ap-

plication of the inference rule Trans□i on φk+1. Thus, ¬φk+1 is
^iψ ∧ (□i¬ψ1 ∧ . . . ∧ □i¬ψm ). Hence, by definition of TCLDAX ,

{^iψ ∧□i¬ψ1∧ . . .∧□i¬ψm ,^iψ ,□i¬ψ1, . . . ,□i¬ψm } ∈ TCLDAX .

Thus, by the definition of TCLDAX , {ψ ,¬ψ1, . . . ,¬ψm } ∈ TCLDAX
and, consequently, {ψ ,¬ψ1, . . . ,¬ψm ,ψ ∧ ¬ψ1 ∧ . . . ∧ ¬ψm } ∈
TCLDAX . By Proposition 3.10, the latter implies {ψ ∧ ¬ψ1 ∧ . . . ∧
¬ψm } ∈ TCLDAX . Notice that φk = ψ ∧ ¬ψ1 ∧ . . . ∧ ¬ψm . Hence,

by induction hypothesis, {ψ ∧ ¬ψ1 ∧ . . . ∧ ¬ψm } < TCLDAX which

leads to a contradiction. □

It is easy to adapt the proof of [14, Theorem 6.1] to check that, for

everyX ⊆ {D□i ,T□i }, if {¬φ} < TCLDAX then there exists a LDAX
tableau for {¬φ} which is closed. Thus, by Lemma 3.11 and the

completeness of each logic LDAX with respect to its corresponding

class of models M{д(x ):x ∈X } , we can state the following theorem.
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Theorem 3.12. Let φ ∈ LLDA and let X ⊆ {T-rule,D-rule}. Then,
if all LDAX -tableaux for {φ} are open then φ is satisfiable for the
class M{cf (x ):x ∈X } .

The previous Theorems 3.8 and 3.12 allow us to determinewhether

a formula φ is satisfiable for the class M{cf (x ):x ∈X } by checking

whether all LDAX -tableaux for {φ} are open. Now, following [16],

we can easily construct a satisfability checking procedure running

in PSPACE based on this result.

To search for the existence of a closed LDAX -tableau for {φ}, we
use a backtracking procedure that will construct a closed LDAX -
tableau for {φ} if there is any.

The length of a branch of a LDAX -tableau whose root vertex

carryies a pair ({¬φ}, ρ), for some arbitrary rule ρ, is polynomial in

the size of φ. Since the backtracking procedure only needs to keep

in memory a single branch, the procedure runs in PSPACE.

We conclude this section by the following complexity result.

Theorem 3.13. Let X ⊆ {GC,BC}. Then, checking satisfiability
of formulas in LLDA relative to the classMX is a PSPACE-complete
problem.

Proof. PSPACE-membership is guaranteed to hold by the pre-

vious tableau-based satisfiability checking procedure. PSPACE-

hardness follows from known PSPACE-hardness results for modal

logics K, KT and KD [16]. □

4 DYNAMIC EXTENSION
In this section, we provide a dynamic extension of the logic LDA
by a simple form of action of type ‘assignment’ which consists in

setting to true or to false the truth value of a given propositional

variable. We call this extension DLDA, which stands for Dynamic

LDA. The notion of action viewed as a propositional assignment

has been explored by [3, 21, 39, 40]. It is compatible with the idea

of viewing an action as bringing about or effecting (at will) of a

change [43].

In DLDA assignments are performed by agents. An assignment

changes not only the environment but also the agents’ beliefs de-

pending on whether and how they jointly perceive its execution.

We call perceptive context a description of what the agents can see

in a given situation of interaction. We define it formally as a finite

set of formulas from the following language LOBS:

ω ::= si, j | siω
where i and j range over Agt. The expression si, j describes the
fact that “agent i observes agent j” or, more precisely, “agent i sees
what agent j does”. The more complex expressions of the form siω
represents the fact that “agent i sees that ω”. For example, si sz, j
represents the fact that “agent i sees that agent z sees what agent j
does”.

Definition 4.1 (Perception precondition). Let ∆ =
⋃
j ∈Agt {△j }, let

Seq(∆) be the set of all sequences of elements of ∆ and let i, j ∈ Agt.
Elements of Seq(∆) are denoted by σ ,σ ′, . . .We define

Fj,i (σ ) =
⋃
σ ′⊑σ

{ fj,i (σ ′)}

where fj,i : Seq(∆) −→ LOBS such that:

fj,i (⋏) =sj,i

and for all z ∈ Agt:

fj,i (△zσ ) =sj fz,i (σ )
with ⋏ the empty sequence and σ ′ ⊑ σ meaning that σ ′

is a

subsequence of σ .

Fj,i (σ ) identifies the perception precondition for agent j to ac-

quire σ -type information from agent i’s performing an action,

where ⋏-type information is information about the state of the

world and △zσ -type information is information about agent z’s ac-
quiring σ -type information. For example, if σ = △z then Fj,i (σ ) =
{sj,i , sj sz,i }. This means that, for agent j to acquire information

about z’s acquiring information from agent i performing an action,

it has to be the case that j sees what i does and j sees that z sees
what i does.

The language of the logic DLDA, denoted by LDLDA, is defined

by the following grammar:

φ ::= α | ¬φ | φ1 ∧ φ2 | □iφ | [(i,τp,Ω)]φ
where p ranges over Atm, i ranges over Agt, α ranges over the

language L0 defined in Section 2, τ ranges over {+,−} and Ω is a

finite set of formulas from the previous language LOBS.

The action +p consists in setting the value of the atomic variable

p to true, whereas the action −p consists in setting the value of the

atomic variable p to false. The formula [(i,τp,Ω)]φ has to be read

“φ holds after the performance of the action τp by agent i in the

perceptive context Ω”. For example, suppose Ω = {si,i , sj,i , si sj,i }.
Then, [(i, + p,Ω)]φ means that “φ holds after agent i has set the
value of p to true, in the situation in which agent i sees what she
does, j sees what i does and i sees that j sees what i does”.

The following definition extends the satisfaction relation to the

dynamic operator [(i,τp,Ω)].

Definition 4.2 (Satisfaction relation (cont.)). Let B = (B1, . . . ,Bn ,
S) ∈ B and let (B,Cxt) ∈ M. Then:

(B,Cxt) |= [(i,τp,Ω)]φ ⇐⇒ (B(i,τp,Ω),Cxt) |= φ

with B(i,τp,Ω) = (B(i,τp,Ω)
1

, . . . ,B
(i,τp,Ω)
n , S(i,τp,Ω)), where:

S(i,τp,Ω) =S ∪ {p} if τ = +

S(i,τp,Ω) =S \ {p} if τ = −
and for all j ∈ Agt:

B
(i,τp,Ω)
j =

(
Bj ∪ {σp : σ ∈ Seq(∆) and Fj,i (σ ) ⊆ Ω}

)
if τ = +

B
(i,τp,Ω)
j =

(
Bj ∪ {σ¬p : σ ∈ Seq(∆) and Fj,i (σ ) ⊆ Ω}

)
if τ = −

where Fj,i (σ ) is defined as in Definition 4.1.

According to the previous definition, the effects of the action

+p (resp. −p) performed by i in the perceptive context Ω consist in

setting the truth value of p to true (resp. false) and in modifying

the belief bases of the agents who perceived the action occurrence,

according to the perceptive context Ω. The idea is that the perfor-
mance of action τp by agent i as well as its effects are perceived
by agent j if and only if i does τp and j sees what i does (i.e.,

{sj,i } ⊆ Ω). Agent j believes that the performance of the action τp
by i as well as its effects are perceived by agent z1 if and only if i
does τp, j sees what i does, and j sees that z1 sees what i does (i.e.,
{sj,i , sj sz1,i } ⊆ Ω). Agent j believes that agent z1 believes that the
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performance of the action τp by i as well as its effects are perceived
by agent z2 if and only if i does τp, j sees what i does, j sees that
z1 sees what i does, and j sees that z1 sees that z2 sees what i does
(i.e., {sj,i , sj sz1,i , sj sz1sz2,i } ⊆ Ω), and so on so forth. Note that

the execution of an action by an agent does not change the agents’

common ground. Dynamics of the agents’ common ground under

public announcements in the sense of [34] are not investigated in

this paper.

The following validities capture some interesting properties of

action observation. For all i, j, z ∈ Agt and p ∈ Atm, we have:

|= ¬sj,i → (△jα ↔ [(i,τp,Ω)]△jα) (1)

|= [(i, + p,Ω)]△jp if {sj,i } ⊆ Ω (2)

|= [(i, − p,Ω)]△j¬p if {sj,i } ⊆ Ω (3)

|= [(i, + p,Ω)](△jp ∧ △j△zp) if {sj,i , sj sz,i } ⊆ Ω (4)

|= [(i, − p,Ω)](△j¬p ∧ △j△z¬p) if {sj,i , sj sz,i } ⊆ Ω (5)

|= [(i, + p,Ω)]△jσp if Fj,i (σ ) ⊆ Ω (6)

|= [(i, − p,Ω)]△jσ¬p if Fj,i (σ ) ⊆ Ω (7)

According to the first validity, if agent j does not observe agent i ,
then her explicit beliefs are not affected by what i does. According
to the second and third validities, if j observes i and i performs

action +p (resp. −p), then agent j will explicitly believe that p (resp.

¬p) afterwards. According to the fourth and fifth validities, if j
observes i and j explicitly believes that z observes i , then after i has
performed action +p (resp. −p), j will explicitly believe that p (resp.

¬p). Moreover, j will explicitly believe that z explicitly believes that
p (resp. ¬p). The sixth and seventh validities generalize the other

validities to explicit beliefs of any depth.

4.1 Reduction axioms and complexity
The following proposition provides reduction principles for the

dynamic operators [(i,τp,Ω)]φ.

Proposition 4.3. The following formulas are valid for the class
M:

[(i,τp,Ω)]q ↔ ⊤ if p = q and τ = +

[(i,τp,Ω)]q ↔ ⊥ if p = q and τ = −
[(i,τp,Ω)]q ↔ q if p , q

[(i,τp,Ω)]△jα ↔ △jα if α < {σp : σ ∈ Seq(∆)}
[(i,τp,Ω)]△jσp ↔ ⊤ if Fj,i (σ ) ⊆ Ω

[(i,τp,Ω)]△jσp ↔ △jσp if Fj,i (σ ) ⊈ Ω

[(i,τp,Ω)]¬φ ↔ ¬[(i,τp,Ω)]φ
[(i,τp,Ω)](φ ∧ψ ) ↔ ([(i,τp,Ω)]φ ∧ [(i,τp,Ω)]ψ )

[(i,τp,Ω)]□jφ ↔ □j (
∧

σp :Fj,i (σ )⊆Ω
σp → φ)

The equivalences of Proposition 4.3 allow to find for every for-

mula of the language LDLDA an equivalent formula of the language

LLDA. Call red the mapping which iteratively applies the equiva-

lences of Proposition 4.3 from the left to the right, starting from

one of the innermost modal operators. red pushes the dynamic

operators [(i,τp,Ω)] inside the formula, and finally eliminates them

when facing an atomic formula. Specifically, the mapping red is

inductively defined by:

1.red(p) = p
2.red(△jα) = △j red(α)
3.red(¬φ) = ¬red(φ)
4.red(φ ∧ψ ) = red(φ) ∧ red(ψ )
5.red(□jφ) = □j red(φ)
6.red([(i,τp,Ω)]q) = red(q) if p = q and τ = +

7.red([(i,τp,Ω)]q) = red(¬q) if p = q and τ = −
8.red([(i,τp,Ω)]q) = red(q) if p , q
9.red([(i,τp,Ω)]△jα) = red(△jα) if α < {σp : σ ∈ Seq(∆)}
10.red([(i,τp,Ω)]△jσp) = ⊤ if Fj,i (σ ) ⊆ Ω

11.red([(i,τp,Ω)]△jσp) = red(△jσp) if Fj,i (σ ) ⊈ Ω

12.red([(i,τp,Ω)]¬φ) = red(¬[(i,τp,Ω)]φ)
13.red

(
[(i,τp,Ω)](φ ∧ψ )

)
= red([(i,τp,Ω)]φ ∧ [(i,τp,Ω)]ψ )

14.red([(i,τp,Ω)]□jφ) = red
(
□j (

∧
σp :Fj,i (σ )⊆Ω

σp → φ)
)

We can state the following proposition.

Proposition 4.4. Let φ ∈ LDLDA. Then, φ ↔ red(φ) is valid
relative to the class M.

The fact that complexity of DLDA satisfiability checking is in

PSPACE follows straightforwardly from the upper bound of com-

plexity for LDA satisfiability checking. Indeed, red provides an

effective procedure for reducing a formula φ in LDLDA into an

equivalent formula red(φ) in LLDA whose size is polynomial in the

size of φ. Therefore, in order to verify whether φ is satisfiable for

the class M, one just needs to check whether red(φ) is satisfiable
for the class M by using the PSPACE tableau-based satisfiability

checking procedure for LDA given in Section 3.

As a consequence, we can state the following complexity result.

Theorem 4.5. Checking satisfiability of formulas in LDLDA rela-
tive to the class M is a PSPACE-complete problem.

4.2 Example
In this section, we use the logic DLDA to formalize a simple sce-

nario of human-robot interaction in a dynamic domain inspired

the famous Sally-Anne false belief’s task from the psychological

literature on Theory of Mind [5].

We assume that Agt = {h, r } where h denotes the human and r
denotes the robot. The scenario is depicted in Figure 2. The human

and the robot are standing in front of each other on the opposite

sides of a table. The robot has two boxes and two balls in front of

him: box 1, box 2, a black ball and a grey ball. In the initial situation

the black ball is inside box 1 and the grey ball is inside box 2. The

human can perfectly observe her actions as well as the robot’s

actions. Similarly, the robot can perfectly observe its actions as well

as the human’s actions. Moreover, the robot can see that the human

can see its actions and the human can see that the robot can see

her actions. Therefore, the perceptive context is described by the
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following set of formula from the language LOBS:

Ω1 = {sr,r , sh,h , sr,h , sh,r , sr sh,r , shsr,h }.
Let the atomic proposition blackIn1 denote the fact that the black

ball is inside box 1 and let blackIn2 denote the fact that the black
ball is inside box 2. Similarly, let greyIn1 and greyIn2 denote, respec-
tively, the fact that the grey ball is inside box 1 and the fact that the

grey ball is inside box 2.

Box	1	
	
	

Box	2	
	
	 1	 1	

Figure 2: Balls in the boxes scenario

We assume that in the initial situation the human does not ex-

plicitly believe that the black ball is inside box 1 and the human

does not explicitly believe that the black ball is inside box 2, as

she cannot see the box’s content. Similarly, the human does not

explicitly believe that the grey ball is inside box 1 and the human

does not explicitly believe that the grey ball is inside box 2. We also

assume that the robot does not explicitly believe that the human

explicitly believes that the black ball is inside box 1 (resp. box 2) and

that the robot does not explicitly believe that the human explicitly

believes that the grey ball is inside box 1 (resp. box 2):

Hyp
1

def
= ¬△hblackIn1 ∧ ¬△hblackIn2 ∧ ¬△hgreyIn1∧

¬△hgreyIn2 ∧ ¬△r△hblackIn1 ∧ ¬△r△hblackIn2∧
¬△r△hgreyIn1 ∧ ¬△r△hgreyIn2

Moreover, we assume that the robot explicitly believes that if the

human explicitly believes that one ball is inside one box then she

explicitly believes that the ball cannot be inside the other box:

Hyp
2

def
= △r

(
(△hblackIn1 → △h¬blackIn2)∧

(△hblackIn2 → △h¬blackIn1)∧
(△hgreyIn1 → △h¬greyIn2)∧
(△hgreyIn2 → △h¬greyIn1)

)
We can use the logicDLDA to infer that, in the perceptive context

Ω1, if the robot moves the black ball from box 1 to box 2 then, after

the occurrence of the action, both the human and the robot will

explicitly believe that the black ball is inside box 2, the robot will

explicitly believe that the human explicitly believes that the black

ball is inside box 2, and the robot will implicitly believe that the

human explicitly believes that the black ball is outside box 1:

(Hyp1 ∧ Hyp2) → [(r , + blackIn2,Ω1)](△r blackIn2∧
△hblackIn2∧
△r△hblackIn2∧
□r△h¬blackIn1)

Now, suppose the human moves away so that she cannot see any-

more what the robot does and the robot knows this. In other words,

let us suppose that situation has changed into the following per-

ceptive context Ω2 in which the robot and the human can see their

own actions but cannot see the actions of the other:

Ω2 = {sr,r , sh,h }.
In the new perceptive context Ω2, if the robot moves the grey

ball from box 2 to box 1 then, after the occurrence of the robot’s

action, the human will continue to believe that the black ball is

inside box 2, without believing that the grey ball is inside box 1.

Moreover, the robot still does not believe that the human believes

that the grey ball is inside box 1:

(Hyp1 ∧ Hyp2) →[(r , + blackIn2,Ω1)]
[(r , + greyIn1,Ω2)](△hblackIn2∧
¬△hgreyIn1 ∧ ¬△r△hgreyIn1)

5 CONCLUSION
We have presented a family of multi-agent epistemic logics whose

semantics exploit the concept of belief base and provided PSPACE

tableau-based satisfiability checking procedures for them. Our log-

ics distinguish the concept of explicit belief from the concept of

implicit belief. We have introduced a dynamic extension based on

propositional assignments whose executions can be more or less

visible by the agents. The proposed extension allows us to model

higher-order forms of perception, e.g., the fact that a first agent j
perceives that a second agent z perceives that a third agent i per-
forms a certain action, thereby coming to believe that z believes

that a certain result has been obtained by i’s action. We have instan-

tiated the logic in a concrete scenario of human-robot interaction

and illustrated its expressive power in capturing subtle aspects of

Theory of Mind, with special emphasis on reasoning about beliefs

of others on the basis of what the others perceive.

As we have shown in Section 4, if agent i executes a propositional
assignment +p (resp. −p) and agent j sees what i does, then agent j
will expand her belief base by adding p (resp. ¬p) to it. This belief

base expansion operation may make agent j’s belief base globally
inconsistent. This explains whywe only considered the satisfiability

problem of formulas in LDLDA relative to the generic class M and

not to the classesMGC orMBC . In future research, we plan to study

a richer variety of dynamic extensions of the logic LDA by different

types of consistency-preserving belief base change operations in

the style of [19]. Another direction we intend to explore is the con-

nection between the logic LDA and machine learning. Specifically,

we plan to combine the logic LDA with machine learning methods,

such as inductive logic programming, in order to acquire informa-

tion to be added to an agent’s belief base through experience. The

interesting and novel aspect of our approach is that an agent’s belief

base may contain not only propositional facts but also a theory

of the other agents’ minds and, in particular, information about

the other agents’ explicit beliefs. Learning a theory of mind is a

fascinating issue that, we believe, can be adequately modeled in the

context of our semantics for epistemic logic exploiting belief bases.
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