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ABSTRACT
The problem of finding pure strategy Nash equilibria in multiagent

concurrent games with finite-horizon temporal goals has received

some recent attention. Earlier work solved this problem through

the use of Rabin automata. In this work, we take advantage of the

finite-horizon nature of the agents’ goals and show that checking

for and finding pure strategy Nash equilibria can be done using a

combination of safety games and lasso testing in Büchi automata.

To separate strategic reasoning from temporal reasoning, we model

agents’ goals by deterministic finite-word automata (DFAs), since

finite-horizon logics such as LTL
f
and LDL

f
are reasoned about

through conversion to equivalent DFAs. This allow us characterize

the complexity of the problem as PSPACE complete.
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1 INTRODUCTION
Game theory provides a powerful framework for modeling prob-

lems in system design and verification [9, 14, 29]. In particular,

two-player games have been used in synthesis problems for tempo-

ral logics [24]. In these games, one player takes on the role of the

system that tries to realize a property and the other takes on the

role of the environment that tries to falsify the property. Within

the scope of multiplayer games, two-player zero-sum games are

the easiest to analyze, since they are purely adversarial – there is

no reason for either player to do anything but maximize their own

utility at the expense of the other.

When there are multiple agents with multiple goals, pure antag-

onism is not a reasonable assumption [31]. Concurrent games are
a fundamental model of such multiagent systems [1, 20]. Iterated
Boolean Games (iBG) [10] are a restriction of concurrent games

introduced in part to generalize temporal synthesis problems to

the multiagent setting. In an iBG, each agent has a temporal goal,

usually expressed in Linear Time Temporal Logic (LTL) [23], and is

given control over a unique set of boolean variables. At each time

step, the agents collectively decide a setting to all boolean variables

by individually and concurrently assigning values to their own
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variables. This creates an infinite sequence of boolean assignments

(a trace) that is used to determined which goals are satisfied and

which are not [10]. In this paper, we generalize the iBG formalism

slightly to admit arbitrary finite alphabets rather than just truth

assignments to boolean variables, as discussed below.

The concept of theNash Equilibrium [22] is widely accepted as an

important notion of a solution in multiagent games and represents a

situation where agents cannot improve their outcomes unilaterally.

In this paper we consider deterministic agents, and therefore the

notion of a Nash equilibrium in this paper that of pure strategy Nash

equilibrium [26]. This definition has a natural analogue when iBGs

are considered, so finding Nash Equilibria in iBGs is an effective

way to reason about temporal interactions between multiple agents

[10]. This problem has received attention in the literature when the

goals are derived from infinite-horizon logics such as LTL [5, 11].

There are, however, interactions that are better modeled by finite-

horizon goals, especially when notions such as “completion” are

considered [7]. In such settings, it is more effective to reason about

goals that can be completed in some finite but perhaps unbounded

number of steps. Thus, while the agents still create an infinite trace

with their decisions, satisfaction occurs at a finite time index. With

this modification in mind, the analogous problem for finite-horizon

temporal logics has recently began to receive attention [12]. The

main result of [12] is that automated equilibrium analysis of finite-

horizon goals in iterated Boolean games can be done via reasoning

about automata on infinite words, specifically, Rabin automata.
Here we address a more abstract version of the multi-agent finite-

horizon temporal-equilibrium problem by analyzing concurrent

iterated games in which each agent is given their own Deterministic
Finite Word Automata (DFA) goal. The reason for this is twofold.

First, essentially all finite-horizon temporal logics are reasoned

about through conversion to equivalent DFA, including the pop-

ular logics LTL
f
and LDL

f
[6, 7]. Thus, using DFA goals offers us

a general way of dealing with a variety of temporal formalisms.

Furthermore, using DFA goals enables us to separate the complexity

of temporal reasoning from the complexity of strategic reasoning.

Our focus on DFAs also ties in to a growing interest in DFAs as

graphical models that can be reasoned about directly in a number

of related fields; see [13, 19, 32] for a few examples in the context

of machine learning.

Our modelling of this problem is done from the viewpoint of a

system planner. Specifically, when given a system in which multiple

agents have DFA goals, we query a subset𝑊 of “good” agents to see

if there is Nash equilibrium in which only the agents in𝑊 are able

to satisfy their goals. By the definition of the Nash equilibrium, this

means that agents not within𝑊 , which we consider as “bad” agents,

are unable to unilaterally change their strategy and satisfy their

own “bad” goal. In doing so we can naturally incorporate malicious

agents with goals contrary to the planner’s by specifying a set𝑊
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that not contain such agents. This study of teams of cooperating

agents has clear parallels to earlier work in rational synthesis [5, 16].

Our main result is that automated temporal-equilibrium analysis

is PSPACE complete. We prove that the problem of identifying sets

of players that admit Nash equilibria in concurrent multi-agent

games with DFA goals can be solved using rather simple construc-

tions. Specifically, our algorithm works by first solving a safety

game for each agent in the game and then considers nonemptiness

in a Büchi word automata constructed with respect to the set𝑊

of agents, which can be done in PSPACE. This is in contrast to

the 2EXPTIME upper bound of [12], which analyzed the combined

complexity of temporal and strategic reasoning and also considered

existence overall instead of with respect to a specific set of agents

𝑊 . In this case driving force behind the complexity result was the

doubly exponential blow-up from LDL
f
to DFAs [6, 17]. Finally, we

prove our algorithm optimal by providing a matching lower bound.

2 BACKGROUND
2.1 Automata Theory
We assume familiarity with basic automata theory, as in [27]. Below

is a quick refresher on 𝜔-automata and infinite tree automata.

Definition 2.1 (𝜔 automata). [9] A deterministic 𝜔 automaton is

a 5-tuple ⟨𝑄,𝑞0, Σ, 𝛿, 𝐴𝑐𝑐⟩, where 𝑄 is a finite set of states, 𝑞0 ∈ 𝑄
is the initial state, Σ is a finite alphabet, 𝛿 : 𝑄 × Σ → 𝑄 is the

transition function, and 𝐴𝑐𝑐 is an acceptance criterion. An infinite

word𝑤 = 𝑎0, 𝑎1, . . . ∈ Σ𝜔 is accepted by the automaton, if the run

𝑞0, 𝑞1, . . . ∈ 𝑄𝜔
is accepting, which requires that 𝑞0 is the initial

state and 𝑞𝑖+1 = 𝛿 (𝑞𝑖 , 𝑎𝑖 ) for all 𝑖 ≥ 0, The run 𝑞0, 𝑞1 . . . satisfies

the acceptance condition 𝐴𝑐𝑐 .

Definition 2.2 (𝜔 automata Büchi Acceptance Condition). [9] The
Büchi condition is specified by a finite set 𝐹 ⊆ 𝑄 . For a given infinite
run 𝑟 , let 𝑖𝑛𝑓 (𝑟 ) denote the set of states that occur infinitely often in
𝑟 . We have that the Büchi condition is satisfied by 𝑟 if 𝑖𝑛𝑓 (𝑟 )∩𝐹 ≠ ∅

We now extend this definition to deterministic Büchi tree au-

tomata. These automata will recognize a set of labeled directed

trees. A Σ-labeled, Δ-directed tree, for finite alphabets Σ (label al-
phabet, or labels, for short) and Δ (direction alphabet, or directions
for short) is a mapping 𝜏 : Δ∗ → Σ. Intuitively, 𝜏 labels the nodes
𝑢 ∈ Δ∗ with labels from Σ. A path 𝑝 of a Δ-directed tree is an infinite
sequence 𝑝 = 𝑢0, 𝑢1, . . . ∈ (Δ∗)𝜔 , such that 𝑢𝑖+1 = 𝑢𝑖𝑏𝑖 for some

𝑏𝑖 ∈ Δ. We use the notation 𝜏 (𝑝) to denote the infinite sequence

𝜏 (𝑢0), 𝜏 (𝑢1), . . . ∈ Σ𝜔 .
Definition 2.3 (Deterministic Büchi Tree Automata). [9] A deter-

ministic Büchi tree automaton is a tuple ⟨Σ,Θ, 𝑄, 𝑞0,Δ, 𝐹 ⟩, where
Σ is a finite label alphabet, Δ is a finite direction alphabet, 𝑄 is a

finite state set, 𝑞0 ∈ 𝑄 is the initial state, 𝜌 : (𝑄 × Σ × Δ) → 𝑄 is a

deterministic transition function, and 𝐹 ⊂ 𝑄 is the accepting set.

The automaton is considered to be top-down if runs of the au-

tomata start from the root of a tree. All automata in this paper will

be top-down, and our notion of a run is conditioned on this.

A run of this automaton on a Σ-labeled, Δ-directed tree 𝜏 : Δ∗ →
Σ is a 𝑄-labeled, Δ-directed tree 𝑟 : Δ∗ → 𝑄 such that 𝑟 (𝜀) = 𝑞0,
and if 𝑢 ∈ Δ∗, 𝜏 (𝑢) = 𝑎, for 𝑎 ∈ Σ, 𝑟 (𝑢) = 𝑞, and 𝑣 = 𝑢𝑏 for 𝑏 ∈ Δ,
then 𝑟 (𝑣) = 𝜌 (𝑞, 𝑎, 𝑏). The run 𝑟 is accepting if 𝑟 (𝑝) satisfies the
Büchi condition 𝐹 for every path 𝑝 of 𝑟 .

2.2 Games
In this section we provide some definitions related to simple two

player games to provide a standard notation throughout this paper.

The two players will be denoted by player 0 and player 1.

Definition 2.4 (Arena). An arena is a four tuple 𝐴 = (𝑉 ,𝑉0,𝑉1, 𝐸)
where 𝑉 is a finite set of vertices, 𝑉0 and 𝑉1 are disjoint subsets of

𝑉 with𝑉0 ∪𝑉1 = 𝑉 that represent the vertices that belong to player

0 and player 1 respectively, and 𝐸 ⊆ 𝑉 ×𝑉 is a set of directed edges,

i.e. (𝑣, 𝑣 ′) | ∈ 𝐸 if there is an edge from 𝑣 to 𝑣 ′.
Intuitively, the player that owns a node decides which outgoing

edge to follow. Since 𝑉 = 𝑉0 ∪ 𝑉1, we can notate the same arena

while omitting 𝑉 , a convention we follow in this paper.

Definition 2.5 (Play). A play in an arena𝐴 is an infinite sequence

𝜌0𝜌1𝜌2 . . . ∈ 𝑉𝜔
such that (𝜌𝑛, 𝜌𝑛+1) ∈ 𝐸 holds for all 𝑛 ∈ N. We

say that 𝜌 starts at 𝜌0

We now introduce a very broad definition for two-player games.

Definition 2.6 (Game). A game𝐺 = (𝐴,𝑊 𝑖𝑛) consists of an arena

𝐴 with vertex set 𝑉 and a set of winning plays𝑊𝑖𝑛 ⊆ 𝑉𝜔
. A play

𝜌 is winning for player 0 if 𝜌 ∈ 𝑊𝑖𝑛, otherwise it is winning for

player 1.

Note that in this formulation of a game, reaching a state 𝑣 ∈ 𝑉
with no outgoing transitions is always losing for player 0, as player

0 is the one that must ensure that 𝜌 is infinite ( a member of 𝑉𝜔
).

A game is thus defined by its set of winning plays, often called

the winning condition. One such widely used winning condition

the safety condition.

Definition 2.7 (Safety Condition/ Safety Game). Let𝐴 = (𝑉 ,𝑉0,𝑉1, 𝐸)
be an arena and 𝑆 ⊆ 𝑉 be a subset of 𝐴’s vertices. Then, the safety
condition 𝑆𝑎𝑓 𝑒𝑡𝑦 (𝑆) is defined as 𝑆𝑎𝑓 𝑒𝑡𝑦 (𝑆) = {𝜌 ∈ 𝑉𝜔 | 𝑂𝑐𝑐 (𝜌) ⊆
𝑆} where 𝑂𝑐𝑐 (𝜌) denotes the subset of vertices that occur at least
once in 𝜌 .

A game with the safety winning condition for a subset 𝑆 is a

safety gamewith the set 𝑆 of safe vertices. Information about solving

safety games, including notions of winning strategies and winning
sets can be found here [18].

2.3 Concurrent Games and iBGs
A concurrent game structure (CGS) is an 8-tuple

(𝑃𝑟𝑜𝑝,Ω, (𝐴𝑖 )𝑖∈Ω, 𝑆, 𝜆, 𝜏, 𝑠0 ∈ 𝑆, (𝐴𝑖 )𝑖∈Ω)
where 𝑃𝑟𝑜𝑝 is a finite set of propositions, Ω = {0, . . . 𝑘 − 1} is
a finite set of agents, 𝐴𝑖 is a set of actions, where each 𝐴𝑖 is as-

sociated with an agent 𝑖 (we also construct the set of decisions
𝐷 = 𝐴0 ×𝐴1 . . . 𝐴𝑘−1, 𝑆 is a set of states, 𝜆 : 𝑆 → 2

𝑃𝑟𝑜𝑝
is a labeling

function that associates each state with a set of propositions that

are interpreted as true in that state, 𝜏 : 𝑆 ×𝐷 → 𝑆 is a deterministic

transition function that takes a state and a decision as input and

returns another state, 𝑠0 is a state in 𝑆 that serves as the initial state,
and𝐴𝑖 is a DFA associated with agent 𝑖 . A DFA𝐴𝑖 is denoted as the

goal of agent 𝑖 . Intuitively, agent 𝑖 prefers plays in the game that

satisfy 𝐴𝑖 , that is a play such that some finite prefix of the play is

accepted by 𝐴𝑖 . It is for this reason we refer to 𝐴𝑖 as a "goal".

We now define iterated boolean games (iBG), a restriction on

the CGS formalism. Our formulation is slight generalization of the
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iBG framework introduced in [10], as we take the set of actions

to be a finite alphabet rather than a set of truth assignments since

we are interested in separating temporal reasoning from strategic

reasoning. An iBG is defined by applying the following restrictions

to the CGS formalism. Each agent 𝑖 is associated with its own

alphabet Σ𝑖 . These Σ𝑖 are disjoint and each Σ𝑖 serves as the set

of actions for agent 𝑖; an action for agent 𝑖 consists of choosing

a letter in Σ𝑖 . The set of decisions is then Σ =
>𝑘−1

𝑖=0 Σ𝑖 . The set
of states corresponds to the set of decisions Σ; there is a bijection
between the set of states and the set of decisions. The labeling

function mirrors the element of Σ associated with each state. As in

[10], we still have 𝜆(𝑠) = 𝑠 , but with 𝑠 ∈ Σ now. As a slight abuse

of notation, we consider the “proposition” 𝜎 ∈ Σ𝑖 for some 𝑖 to be

true at state 𝑠 if 𝜎 appears in 𝑠 , allowing us to generalize towards

arbitrary alphabets. Finally, the transition function 𝜏 is simply right

projection 𝜏 (𝑠, 𝑑) = 𝑑 .
We now introduce the notion of a strategy for agent 𝑖 in the

general CGS formalism.

Definition 2.8 (Strategy for agent 𝑖). A strategy for agent 𝑖 is a

function 𝜋𝑖 : 𝑆
∗ → 𝐴𝑖 . Intuitively, this is a function that, given the

observed history of the game (represented by an element of 𝑆∗),
returns an action 𝑎𝑖 ∈ 𝐴𝑖 .

Recalling that Ω = {0, 1 . . . 𝑘 − 1} represents the set of agents,
we now introduce the notion of a strategy profile.

Definition 2.9 (Strategy Profile). Let Π𝑖 represent the set of strate-

gies for agent 𝑖 . Then, we define the set of strategy profiles Π =>
𝑖∈Ω Π𝑖

Note that since both the notion of strategies for individual agents

and the transition function in a CGS are deterministic, a given

strategy profile for an CGS defines a unique element of 𝑆𝜔 (a trace).

Definition 2.10 (Primary Trace resulting from a Strategy Profile).
Given a strategy profile 𝜋 , the primary trace of 𝜋 is the unique trace

𝑡 that satisfies

(1) 𝑡 [0] = 𝜋 (𝜖)
(2) 𝑡 [𝑖] = 𝜋 (𝑡 [0], . . . 𝑡 [𝑖 − 1])

We denote this trace as 𝑡𝜋 .

Given a trace 𝑡 ∈ 𝑆𝜔 , define the winning set𝑊𝑡 = {𝑖 ∈ Ω : 𝑡 |=
𝐴𝑖 } to be the set of agents whose DFA goals are satisfied by a finite

prefix of the trace 𝑡 . The losing set is then defined as Ω/𝑊𝑡 .

A common solution concept in game theory is the Nash equi-
librium, which we will now modify to fit our iBG framework. In

our framework, a Nash equilibrium is a strategy profile 𝜋 such that

for each agent 𝑖 , if 𝐴𝑖 is not satisfied on 𝑡𝜋 , then any unilateral

strategy deviation for agent 𝑖 will not result in a trace that satisfies

𝐴𝑖 . Formally:

Definition 2.11 (Nash Equilibrium). [10] Let𝐺 be an iBG and 𝜋 =

⟨𝜋0, 𝜋1 . . . 𝜋𝑘−1⟩ be a strategy profile. We denote𝑊𝜋 = 𝑊𝑡𝜋 . The

profile 𝜋 is a Nash equilibrium if for every 𝑖 ∈ Ω/𝑊𝑡 we have that

given all strategy profiles of the form 𝜋 ′ = ⟨𝜋0, 𝜋1 . . . 𝜋 ′𝑖 . . . 𝜋𝑘−1⟩,
for every 𝜋

′
𝑖
∈ Π𝑖 , it is the case that 𝑖 ∈ Ω/𝑊𝜋 ′ .

This definition provides an analogy for the Nash equilibrium

defined in [22] by capturing the same property - no agent can

unilaterally deviate to improve its own payoff (moving from having

a not satisfied goal to a satisfied goal). Agents already in the set

𝑊𝜋 cannot have their payoff improved further, so we do not check

their deviations.

Our paper is based around one central question: Given an iBG,
which subsets of agents admit at least one Nash equilibrium?

3 TREE AUTOMATA FRAMEWORK
In order to address our central question, we first describe a tree-

automata framework to characterize the set of Nash equilibrium

strategies in an iBG 𝐺 . In this section we fix a winning set𝑊 ⊆
Ω and then describe a deterministic Büchi tree automaton that

recognizes the set of strategy profiles for𝑊 . In the next section we

develop an algorithm based on this tree-automata framework.

Given 𝑘 DFA goals corresponding to 𝑘 agents, we retain the

notation that the set of actions for agent 𝑖 is given by Σ𝑖 . The goal
DFA for agent 𝑖 will then denoted as 𝐴𝑖 = ⟨𝑄𝑖 , 𝑞𝑖

0
, Σ, 𝛿𝑖 , 𝐹 𝑖 ⟩. Note

that the alphabet of the DFA is Σ, since it transitions according

to decisions by all agents in the overlying iBG structure. Since

Σ = Σ0 × . . . Σ𝑘−1, compact notation is often used to describe the

transition function 𝛿𝑖 . For example, the Mona tool uses binary

decision diagrams to represent automata with large alphabets [4].

3.1 Strategy Trees and Tree Automata
As defined previously, strategy profiles are functions 𝜋 : Σ∗ → Σ.
Therefore, strategy profiles correspond exactly towards labeled Σ-
labeled trees, which are defined in the exact same way. We use the

common notions of tree paths and label-direction pairs as widely

defined in the literature (see [9] for reference).

A𝑊 -NE-strategy, for𝑊 ⊆ Ω, is a mapping 𝜋 : Σ∗ → Σ such

that the following conditions are satisfied:

(1) Primary-Trace Condition: The primary infinite trace 𝑡𝜋 de-

fined by 𝜋 satisfies the goals 𝐴 𝑗
precisely for 𝑗 ∈ 𝑊 . The

trace 𝑡𝜋 = 𝑥0, 𝑥1, . . . for 𝜋 is once again defined as follows

(a) 𝑥0 = 𝜀

(b) 𝑥𝑖+1 = 𝑥0, . . . , 𝑥𝑖 , 𝜋 (𝑥0, . . . , 𝑥𝑖 )
(2) 𝑗-Deviant-Trace Condition: Each 𝑗-deviant trace 𝑡 = 𝑦0, 𝑦1, . . .,

for 𝑗 ∉𝑊 , does not satisfy the goal 𝐴 𝑗
.

For 𝛼 ∈ Σ, we introduce the notation 𝛼 [− 𝑗] to refer to 𝛼 |Σ\Σ 𝑗

(that is, 𝛼 with Σ 𝑗 projected out). A trace 𝑡 = 𝑦0, 𝑦1, . . . is

𝑗-deviant if

(a) 𝑦0 = 𝜀

(b) 𝑦𝑖+1 = 𝑦0, . . . , 𝑦𝑖 , 𝛼 , where 𝛼 ∈ Σ and 𝛼 [− 𝑗] = 𝜋 (𝑦𝑖 ) [− 𝑗]
(c) 𝑡 is not the primary trace

In order to simplify the presentation, we introduce the assump-

tion that for all agents 𝑗 we have |Σ 𝑗 | ≥ 2. This is because there

are no 𝑗-Deviant-Traces for an agent with only one strategy. There-

fore𝑊 -NE analysis only amounts to checking the Primary-Trace

Condition for these agents.

Note that there are traces that do not fall into either category.

For example, we could have a trace that contains a label direction

pair (𝛼, 𝛽) such that 𝛼 [− 𝑗] ≠ 𝛽 [− 𝑗] for all 𝑗 ∈ Ω \𝑊 . Or, we

could have a trace that contains two label direction pairs (𝛼1, 𝛽1)
and (𝛼2, 𝛽2) such that 𝛼1 ≠ 𝛽1, 𝛼1 [− 𝑗1] = 𝛽 [− 𝑗1], 𝛼2 ≠ 𝛽2, and

𝛼2 [− 𝑗2] = 𝛽 [− 𝑗2] for 𝑗1 ≠ 𝑗2. Traces like these and others that
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do not fit into either the Primary-Trace category or the 𝑗-Deviant-

Trace category are irrelevant to the Nash equilibrium condition - it

does not matter what properties do or do not hold on these traces.

As a reminder, a trace 𝑧0, 𝑧1, . . . ∈ Σ𝜔 satisfies a DFA 𝐴 if 𝐴 accepts

𝑧0, . . . , 𝑧𝑘 for some 𝑘 ≥ 0.

To check if there exists a𝑊 -NE strategy, we construct an infinite-

tree automaton 𝑇 that accepts all𝑊 -NE strategies. The problem

of determining whether a𝑊 -NE exists then reduces to querying

𝐿(𝑇 ) ≠ ∅. Recall that we notate the goal DFA of agent 𝑖 as 𝐴𝑖 =

⟨𝑄𝑖 , 𝑞𝑖
0
, Σ, 𝛿𝑖 , 𝐹 𝑖 ⟩. We assume that that 𝑞𝑖

0
∉ 𝐹 𝑗 , since we are not

interested in empty traces. We first construct a deterministic Büchi

automaton 𝐴𝑊 = ⟨𝑄,𝑞0, Σ, 𝛿, 𝐹 ⟩ that accepts a word in Σ𝜔 if it

satisfies precisely the goals 𝐴 𝑗
for 𝑗 ∈𝑊 . Intuitively, 𝐴𝑊 simulates

concurrently all the goal DFAs, and checks that 𝐴 𝑗
is satisfied

precisely for 𝑗 ∈𝑊 . We define the following for 𝐴𝑊 .

(1) 𝑄 = (>𝑗 ∈Ω 𝑄
𝑗 ) × 2Ω

(2) 𝑞0 = ⟨𝑞1
0
, . . . , 𝑞𝑛

0
,𝑊 ⟩

(3) 𝐹 = (>𝑗 ∈Ω 𝑄
𝑗 ) × {∅}

(4) 𝛿 (⟨𝑞1, . . . 𝑞𝑛,𝑈 ⟩, 𝛼) = ⟨𝑞′
1
, . . . 𝑞′𝑛,𝑉 ⟩ if

(a) 𝑞′
𝑗
= 𝛿𝑖 (𝑞 𝑗 , 𝛼), where 𝑞′𝑗 ∉ 𝐹

𝑗
for 𝑗 ∉𝑊 , and 𝑉 = 𝑈 − { 𝑗 :

𝑞′
𝑗
∈ 𝐹 𝑗 }.

Note that 𝐴𝑊 concurrently simulates all the goal DFAs while it

also checks that no goal DFA 𝐴 𝑗
for 𝑗 ∉𝑊 is satisfied. (Note that

if 𝑞′
𝑗
∈ 𝐹 𝑗 for 𝑗 ∉𝑊 , then the transition is not defined, and 𝐴𝑊 is

stuck.) The last component of the state holds the indices of the goals

that are yet to be satisfied. For 𝐴𝑊 to accept an infinite trace, all

goals𝐴 𝑗
for 𝑗 ∈𝑊 have to be satisfied, so the last component of the

state has to become empty. Note that if 𝐴𝑊 reaches an accepting

state in 𝐹 , then it stays in the set 𝐹 unless it gets stuck.

Lemma 3.1 (𝐴𝑊 Correctness). For a given𝑊 ⊆ Ω, the automa-
ton 𝐴𝑊 accepts an 𝜔-word 𝑢 ∈ Σ𝜔 iff 𝑢 |= 𝐴𝑖 for precisely the agents
𝑖 ∈𝑊 .

Proof. First, note that no prefix of 𝑤 can satisfy 𝐴 𝑗
for some

𝑗 ∈ Ω \𝑊 . If that is the case, then by the definition of the transition

function 𝛿 we would have no transition defined upon reading this

prefix, meaning that 𝐴𝑊 cannot accept. Next, note that every goal

𝐴 𝑗
for 𝑗 ∈𝑊 must be satisfied by a prefix of𝑤 . Otherwise, the 2

Ω

component of the states in 𝑄 would never reach ∅, as the only way

to remove elements from this component is to satisfy the goals 𝐴 𝑗

for 𝑗 ∈𝑊 . Since the Büchi acceptance condition implies that a final

state in 𝐴𝑊 be reached, we know that when a final state is reached

all goals 𝐴 𝑗
for 𝑗 ∈𝑊 have previously been satisfied. Since both of

these conditions must hold, we conclude the lemma. □

We now construct a deterministic top-down Büchi tree automa-

ton 𝑇0 that accepts an infinite tree 𝜋 : Σ∗ → Σ if the Primary-

Trace Condition with respect to𝑊 holds. Essentially, 𝑇0 runs 𝐴𝑊
on the primary trace defined by the input strategy 𝜋 . Formally,

𝑇0 = (Σ, Σ, 𝑄 ∪ {𝑞𝑎}, 𝑞0, 𝜌0, 𝐹 ∪ {𝑞𝑎}), where:
(1) Σ is both the label alphabet of the tree and its set of directions,

Here we introduce the notation that 𝛼 is an element of Σ cor-

responding to a label and 𝛽 is an element of Σ corresponding

to a direction.

(2) 𝑞𝑎 is a new accepting state

(3) For a state 𝑞, label 𝛼 , and direction 𝛽 , we have 𝜌0 (𝑞, 𝛼, 𝛽) =
𝛿 (𝑞, 𝛼) if 𝛼 = 𝛽 and 𝑞 ≠ 𝑞𝑎 , and 𝜌0 (𝑞, 𝛼, 𝛽) = 𝑞𝑎 otherwise

Note that 𝑇0 simulates 𝐴𝑊 along the branch corresponding to the

primary trace defined by the input tree 𝜋 . Along all other branches,

𝑇0 enters the accepting state 𝑞𝑎 .

Lemma 3.2. Let 𝐺 be an iBG and𝑊 ⊆ Ω be a set of agents. Let
𝜋 : Σ∗ → Σ be a strategy profile. Then 𝜋 is accepted by the tree
automaton 𝑇0 iff 𝜋 satisfies the Primary Trace condition.

We also construct a deterministic top-down Büchi infinite-tree

automaton 𝑇𝑗 that accepts precisely the trees 𝜋 : Σ∗ → Σ that

satisfy the 𝑗-Deviant-Trace Condition. Given a DFA goal 𝐴 𝑗 =

(𝑄 𝑗 , 𝑞
𝑗

0
, Σ, 𝛿 𝑗 , 𝐹 𝑗 ), we define𝑇𝑗 = (Σ, Σ, (𝑄 𝑗×{0, 1})∪{𝑞𝐴}, ⟨𝑞 𝑗

0
, 0⟩, 𝜌 𝑗 ,

(𝑄 𝑗 × {0}) ∪ ((𝑄 𝑗 \ 𝐹 𝑗 ) × {1}) ∪ {𝑞𝐴}), where:
(1) Σ is both the label alphabet of the tree and its set of directions.

We retain the notation that 𝛼 is a label and 𝛽 is a direction.

(2) 𝑞𝐴 is a new accepting state. (By a slight abuse of notation

we consider 𝑞𝐴 to be a pair ⟨𝑞𝐴, 0⟩.)
(3) We maintain two copies of 𝑄 𝑗

, one tagged with 0 and one

tagged with 1. Intuitively, we stay in𝑄 𝑗 ×{0} on the primary

trace until there is a 𝑗-deviation, and then we transition to

𝑄 𝑗 × {1},
(4) 𝜌 𝑗 (⟨𝑞, 𝑖⟩, 𝛼, 𝛽) is defined as follows

(a) 𝛿 𝑗 (𝑞, 𝛼) × {0} if 𝑖 = 0 and 𝛼 = 𝛽

(b) 𝛿 𝑗 (𝑞, 𝛽)×{1} if 𝑖 = 0, 𝛼 ≠ 𝛽 , 𝛼 [− 𝑗] = 𝛽 [− 𝑗], and 𝛿 𝑗 (𝑞, 𝛽) ∉ 𝐹 𝑗
(c) 𝛿 𝑗 (𝑞, 𝛽) × {1} if 𝑖 = 1, 𝛼 [− 𝑗] = 𝛽 [− 𝑗], and 𝛿 𝑗 (𝑞, 𝛽) ∉ 𝐹 𝑗
(d) 𝑞𝐴 if 𝑞 = 𝑞𝐴 or 𝛼 [− 𝑗] ≠ 𝛽 [− 𝑗]

On the primary trace of 𝜋 , we enter states 𝑞 ∈ 𝑄 𝑗 × {0}. All
of these states are accepting, so the primary trace will always be

an accepting branch in 𝑇𝑗 since the primary trace is not relevant

to the 𝑗-Deviant-Trace Condition. Intuitively, we may leave the

primary trace at a node labeled 𝛼 by following a direction 𝛽 such

that 𝛼 [− 𝑗] = 𝛽 [− 𝑗] and 𝛼 ≠ 𝛽 . Here, we transition to the second

copy of 𝑄 𝑗
, 𝑄 𝑗 × {1}, where the 1 denotes that we have left the

primary trace. When we are in these states on a node labeled 𝛼 , we

may transition according to 𝛿 𝑗 on any direction 𝛽 with 𝛽 [− 𝑗] =
𝛼 [− 𝑗]. Nevertheless, due to how the transitions are defined, we

can never enter a state in 𝐹 𝑗 . If such a direction 𝛽 exists such that

𝛽 [− 𝑗] = 𝛼 [− 𝑗] and the resulting transition according to 𝛿 𝑗 would

put𝐴 𝑗
in 𝐹 𝑗 , then the automaton does not have a defined transition

and therefore can not accept on this path. Otherwise, if we see a

direction 𝛽 such that for our current label 𝛼 we have that 𝛼 [− 𝑗] ≠
𝛽 [− 𝑗], then this no longer corresponds to a 𝑗-Deviant-Trace. At this
point we transition to 𝑞𝐴 , a catch-all accepting state that marks all

continuations of the current path irrelevant to the 𝑗-Deviant-Trace

Condition. Therefore if we are in state 𝑞𝐴 we transition back to 𝑞𝐴
on all directions 𝛽 regardless of the label.

Lemma 3.3. Let 𝐺 be an iBG and𝑊 ⊆ Ω be a set of agents. Let
𝜋 : Σ∗ → Σ be a strategy profile. Then 𝜋 is accepted by the tree
automaton 𝑇𝑗 iff 𝜋 satisfies the 𝑗-Deviant Trace Condition.

3.2 W - NE automata
We constructed a tree automaton that recognizes the set of strategies

that satisfy the Primary-Trace condition for a fixed subset𝑊 ⊆ Ω
of agents in an iBG 𝐺 , 𝑇0 = (Σ, Σ, 𝑄 ∪ {𝑞𝑎}, 𝑞0, 𝜌0, 𝐹 ∪ {𝑞𝑎}). We
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also constructed the automaton 𝑇𝑗 that checks the 𝑗-Deviant Trace

condition for a specific agent 𝑗 . A simple way to check both the

Primary Trace condition and the 𝑗-Deviant Trace condition for

some𝑊 ⊆ Ω would be to take the cross product of 𝑇0 with all the

𝑇𝑗 ’s for every 𝑗 ∉ 𝑊 . We now show that this can be done more

efficiently, by taking a modified union of the state sets of 𝑇0 and

the 𝑇𝑗 ’s instead of their cross product. This is motivated by the

observation that each automaton "checks" a disjoint set of paths in

a tree 𝜋 , and marks all others with a repeating accepting state.

We construct a deterministic top-down Büchi infinite-tree au-

tomaton𝑇𝑊 = (Σ, Σ, 𝑄∪⋃𝑗 ∈Ω\𝑊 𝑄 𝑗∪{𝑞𝐴}, 𝑞0, 𝜏, 𝐹∪
⋃

𝑗 ∈Ω\𝑊 {𝑄 𝑗 \
𝐹 𝑗 } ∪ {𝑞𝐴}) to accept all strategies that satisfy both the Primary-

Trace condition and the 𝑗-Deviant-Trace Conditions, where

(1) Σ is both the label alphabet of the tree and its set of directions

with the 𝛼 and 𝛽 notations defined as previously.

(2) 𝑞𝐴 is a repeating accepting state.

(3) 𝜏 is defined as follows for a given state 𝑞, label 𝛼 , and direc-

tion 𝛽

(a) If 𝑞 ∈ 𝑄
(i) If 𝛼 = 𝛽 , then 𝜏 (𝑞, 𝛼, 𝛽) = 𝜌0 (𝑞, 𝛼, 𝛽)
(ii) If 𝛼 ≠ 𝛽 , but for some 𝑗 ∈ Ω \𝑊 we have 𝛼 [− 𝑗] =

𝛽 [− 𝑗], then 𝜏 (𝑞, 𝛼, 𝛽) = 𝛿 𝑗 (𝑞 [ 𝑗], 𝛽), where 𝑞 [ 𝑗] is 𝑗-th
component of 𝑞, provided that 𝛿 𝑗 (𝑞 [ 𝑗], 𝛽) ∉ 𝐹 𝑗 .

(iii) If for all 𝑗 ∈ Ω \𝑊 we have 𝛼 [− 𝑗] ≠ 𝛽 [− 𝑗], then
𝜏 (𝑞, 𝛼, 𝛽) = 𝑞𝐴

(b) If 𝑞 ∈ 𝑄 𝑗
for 𝑗 ∈ Ω \𝑊 , then

(i) If 𝛼 [− 𝑗] = 𝛽 [− 𝑗], then 𝜏 (𝑞, 𝛼, 𝛽) = 𝛿 𝑗 (𝑞, 𝛽), provided
that 𝛿 𝑗 (𝑞, 𝛽) ∉ 𝐹 𝑗 ,

(ii) If 𝛼 [− 𝑗] ≠ 𝛽 [− 𝑗], then 𝜏 (𝑞, 𝛼, 𝛽) = 𝑞𝐴
(c) If 𝑞 = 𝑞𝐴 , then 𝜏 (𝑞, 𝛼, 𝛽) = 𝑞𝐴

Intuitively, the automaton 𝑇𝑊 simulates the automaton 𝑇0 on

the primary trace defined by 𝜋 . If the automaton is on the primary

trace, it is in a state in𝑄 and it checks all possible 𝑗-deviations from

that state by transitioning accordingly to all states reachable by

possible 𝑗-deviant actions on the corresponding directions. Note

that here we only check if 𝛼 [− 𝑗] = 𝛽 [− 𝑗] for a single 𝑗 , as it can
easy to see that if 𝛼 [− 𝑗1] = 𝛽 [− 𝑗1] and 𝛼 [− 𝑗2] = 𝛽 [− 𝑗2] for two
different 𝑗1, 𝑗2 then 𝛼 = 𝛽 since Σ 𝑗1 and Σ 𝑗2 are disjoint. On a state

that does not represent either a continuation of the primary trace

or one reachable by a deviation from some agent 𝑗 , we move to the

repeating accepting state 𝑞𝐴 .

If the automaton is in some state 𝑞 ∈ 𝑄 𝑗
, it transitions according

to 𝛿 𝑗 on a direction 𝛽 with 𝛽 [− 𝑗] = 𝛼 [− 𝑗], including the one where
𝛼 = 𝛽 . On all other directions, it transitions to the new state 𝑞𝐴 . If

the automaton reaches a final state for 𝐴 𝑗
, it gets stuck and cannot

accept. This simulates the automaton 𝑇𝑗 and verifies the 𝑗-Deviant-

Trace Condition. If the automaton is in the state 𝑞𝐴 , it means we

havemarked the subtree starting from the current node as irrelevant

to the Nash Equilibrium definition. Therefore, we simply stay in

the accepting state 𝑞𝐴 on every direction.

Theorem 3.4. Let 𝐺 be an iBG and𝑊 ⊆ Ω be a set of agents.
Let 𝜋 : Σ∗ → Σ be a strategy profile. Then 𝜋 is accepted by the tree
automaton 𝑇𝑊 iff 𝜋 is a𝑊 -NE strategy.

Proof. (→) Suppose 𝜋 : Σ∗ → Σ is accepted by 𝑇𝑊 . We show

that 𝜋 must satisfy both the Primary-Trace Condition and the 𝑗

-Deviant-Trace Condition for all 𝑗 ∈ Ω \𝑊 .

(1) The primary trace of 𝜋 is the unique path 𝑝 = (𝛼0, 𝛽0) . . .
such that for every (𝛼𝑖 , 𝛽𝑖 ) we have 𝛼𝑖 = 𝛽𝑖 . On this path, the
automaton𝑇𝑊 stays in states in𝑄 and transitions according

to the transition function 𝛿 of 𝐴𝑊 ; thus 𝑇𝑊 simulates 𝐴𝑊
on the primary trace. Since𝑇𝑊 accepts 𝜋 , we know that 𝐴𝑊
accepts on 𝑝 , meaning that exactly the goals𝐴𝑖 for 𝑖 ∈𝑊 are

satisfied. Therefore 𝜋 satisfies the Primary-Trace Condition.

(2) A 𝑗-deviant trace of 𝜋 is a path 𝑝 𝑗 = (𝛼0, 𝛽0) . . . such that

for every (𝛼𝑖 , 𝛽𝑖 ) ∈ 𝑝 we have 𝛼𝑖 [− 𝑗] = 𝛽𝑖 [− 𝑗] and we have
that 𝑝 𝑗 is different from the primary trace. Therefore, for

at least one index 𝑖 , we have that 𝛼𝑖 ≠ 𝛽𝑖 in 𝑝 𝑗 . When 𝑇𝑊
runs on such a trace, it starts in states in 𝑄 and eventually

transition to states in𝑄 𝑗
upon reaching the first index where

𝛼𝑖 ≠ 𝛽𝑖 . When it is in the states in𝑄 ,𝐴 𝑗
cannot reach a final

state, otherwise 𝑇𝑊 would get stuck and not accept due to

the construction of 𝐴𝑊 , contradicting our assumption that

𝑇𝑊 does accept. When it reaches the states in 𝑄 𝑗
, it also can

never get stuck attempting to a transition to final state in 𝐹 𝑗

due to the construction of the transition function 𝜏 , as any

such attempted transition would mean𝑇𝑊 would reject. This

is true no matter which 𝑗-deviant trace we choose since 𝑇𝑊
accepts on all paths of 𝜋 . Therefore 𝜋 satisfies the 𝑗-Deviant-

Trace condition for all 𝑗 ∈ Ω \𝑊 .

(←) Note that𝑇𝑊 is deterministic, so there is a unique run𝑇𝑊 (𝜋).
We have to show that all paths of this run are accepting. There are

three types of paths:

Primary Path: If a path 𝑝 is the primary path, then 𝑇𝑊 emu-

lates 𝐴𝑊 along 𝑝 . Because of the Primary Trace Condition,

we know that𝐴𝑊 eventually enters and stays in the the set 𝐹

of accepting states. Thus, this path 𝑝 of 𝑇𝑊 (𝜋) is accepting.
𝑗-Deviant Paths: If 𝑝 = (𝛼0, 𝛽0), . . . is a 𝑗-deviant path for

some 𝑗 ∈ Ω \𝑊 , then it can be factored as 𝑝𝑃 · 𝑝 𝑗 , with
𝑝𝑃 finite, but possibly empty. For every label-direction pair

(𝛼𝑖 , 𝛽𝑖 ) in 𝑝𝑃 we have that 𝛼𝑖 = 𝛽𝑖 and for every label di-

rection pair (𝛼𝑖 , 𝛽𝑖 ) in 𝑝 𝑗 we have that 𝛼𝑖 [− 𝑗] = 𝛽𝑖 [− 𝑗].
Note that only one choice of 𝑗 is appropriate. Let 𝑖 be the

first index in 𝑝 where 𝛼𝑖 ≠ 𝛽𝑖 . Having 𝛼𝑖 [− 𝑗1] = 𝛽𝑖 [− 𝑗1]
and 𝛼𝑖 [− 𝑗2] = 𝛽𝑖 [− 𝑗2] for two different agents 𝑗1, 𝑗2 would

imply that 𝛼𝑖 = 𝛽𝑖 . 𝑇𝑊 first emulates 𝐴𝑊 along 𝑝𝑃 . Since

𝜋 satisfies the Primary Trace Condition, 𝑇𝑊 will never get

stuck and reject on 𝑝𝑃 . Since 𝑝 is a 𝑗-Deviant-Trace, there is

a smallest 𝑖 such that 𝛼𝑖 ≠ 𝛽𝑖 in 𝑝 . At this point𝑇𝑊 switches

from emulating 𝐴𝑊 to emulating 𝐴 𝑗
. Because 𝜋 satisfies the

𝑗-Deviant-Trace-Condition, the goal 𝐴 𝑗
does not hold along

𝑝 . Thus, 𝑇𝑊 does not get stuck along 𝑝𝑃 or along 𝑝 𝑗 , and it

accepts along 𝑝 .

Other Paths: If 𝑝 is not the primary path nor a 𝑗-deviant

path, then there are two possibilities.

(1) The first case is when 𝑝 can be factored as 𝑝𝑃 · 𝑝 ′, with
𝑝𝑃 finite but possibly empty. For every point (𝛼𝑖 , 𝛽𝑖 ) of
𝑝𝑃 we have that 𝛼𝑖 = 𝛽𝑖 , and at the first point (𝛼𝑘 , 𝛽𝑘 ) of
𝑝 ′ we have that 𝛼𝑘 [− 𝑗] ≠ 𝛽𝑘 [− 𝑗] for all 𝑗 ∈ Ω \𝑊 . Then

𝑇𝑊 will emulate 𝐴𝑊 along 𝑝𝑃 and transition to 𝑞𝐴 upon
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reading (𝛼𝑘 , 𝛽𝑘 ). By previous arguments, we know that

𝑇𝑊 will not get stuck and reject along 𝑝𝑃 . Once𝑇𝑊 enters

𝑞𝐴 it stays in 𝑞𝐴 , an accepting state. Therefore𝑇𝑊 accepts

the path 𝑝 = 𝑝𝑃 · 𝑝 ′
(2) The second case is when 𝑝 can be factored as 𝑝𝑃 · 𝑝 𝑗 ·

𝑝 ′, with 𝑝𝑃 finite but possibly empty and 𝑝 𝑗 finite and

nonempty. For every label-direction pair (𝛼𝑖 , 𝛽𝑖 ) in 𝑝𝑃 we

have that 𝛼𝑖 = 𝛽𝑖 . For some 𝑗 ∈ Ω \𝑊 we have that

𝛼𝑖 [− 𝑗] = 𝛽𝑖 [− 𝑗] for every label-direction pair (𝛼𝑖 , 𝛽𝑖 ) in
𝑝 𝑗 , again noting that only one choice of 𝑗 is appropri-

ate. Finally, at the first point (𝛼𝑘 , 𝛽𝑘 ) of 𝑝 ′ we have that
𝛼𝑘 [− 𝑗] ≠ 𝛽𝑘 [− 𝑗]. By previous arguments, we know that

𝑇𝑊 will not get stuck and reject along 𝑝𝑃 or 𝑝 𝑗 . And since

𝑇𝑊 transitions to 𝑞𝐴 at the beginning of 𝑝 ′, we know that

it cannot get stuck and reject along 𝑝 ′. Therefore 𝑇𝑊 will

accept on 𝑝 = 𝑝𝑃 · 𝑝 𝑗 · 𝑝 ′.
□

Corollary 3.5. Let 𝐺 be an iBG and𝑊 ⊆ Ω be a set of agents.
Then, a𝑊 -NE strategy exists in 𝐺 iff the automaton 𝑇𝑊 constructed
with respect to 𝐺 is nonempty.

4 ALGORITHMIC FRAMEWORK
In the previous section, we constructed an automaton 𝑇𝑊 that rec-

ognizes the set of Nash equilibrium strategy profiles with winning

set𝑊 in an iBG 𝐺 , which we denoted as𝑊 -NE strategies. The

problem of determining whether a𝑊 -NE strategy exists is equiva-

lent to testing 𝑇𝑊 for nonemptiness. The standard algorithm for

testing nonemptiness of Büchi tree automata involves Büchi games

[9]. In this section, we prove that testing 𝑇𝑊 for nonemptiness is

equivalent to solving safety games and then testing a Büchi word

automata for nonemptiness. This gives us a simpler path towards

constructing an algorithm to decide our central question.

4.1 Safety Game for Deviating Agents
Note that the Büchi condition on the j-Deviant traces simply con-

sists of avoiding the set of final states in 𝐴 𝑗
, making it simpler than

a general Büchi acceptance condition. In order to characterize this

condition precisely, we now construct a 2-player safety game that

partitions the states of𝑄 𝑗
(for ab agent 𝑗 ∉𝑊 ) in𝑇𝑊 for 𝑗 ∈ Ω \𝑊

into two sets - states in which 𝑇𝑊 started in state 𝑞 ∈ 𝑄 𝑗
is empty

and states in which 𝑇𝑗 started in state 𝑞 ∈ 𝑄 𝑗
is nonempty. We

construct the safety game𝐺 𝑗 = (𝑄 𝑗 , 𝑄 𝑗 × Σ, 𝐸 𝑗 ). The safety set can

intuitively be thought of as all the vertices not in 𝐹 𝑗 , but for our

purposes it is more convenient to not define outgoing transitions

from these states - thus making them losing for player 0 by violating

the infinite play condition. Player 0 owns 𝑄 𝑗
and player 1 owns

𝑄 𝑗 × Σ. Here we retain our 𝛼 and 𝛽 notation in so far as they are

both elements of Σ. The edge relation 𝐸 𝑗 is defined as follows:

(1) (𝑞, ⟨𝑞, 𝛼⟩)) ∈ 𝐸 𝑗 for 𝑞 ∈ 𝑄 𝑗 \ 𝐹 𝑗 and 𝛼 ∈ Σ.
(2) (⟨𝑞, 𝛼⟩, 𝑞′) ∈ 𝐸 𝑗 for 𝑞 ∈ 𝑄 𝑗

and 𝑞′ ∈ 𝑄 𝑗
, where 𝑞′ = 𝛿 𝑗 (𝑞, 𝛽)

for some 𝛽 ∈ Σ such that 𝛼 [− 𝑗] = 𝛽 [− 𝑗].
Note as defined above, if 𝑞 ∈ 𝐹 𝑗 , then 𝑞 has no successor node, and

player 0 is stuck and loses the game. Since𝐺 𝑗 is a safety game, player

0’s goal is to avoid states in 𝐹 𝑗 and not get stuck. Let𝑊𝑖𝑛0 (𝐺 𝑗 ) be
the set of winning states for Player 0 in the safety game 𝐺 𝑗 .

Theorem 4.1. A state 𝑞 ∈ 𝑄 𝑗 \ 𝐹 𝑗 belongs to𝑊𝑖𝑛0 (𝐺 𝑗 ) iff 𝑇𝑊 is
nonempty when started in state 𝑞.

Proof. (→) Suppose 𝑞 ∈ 𝑄 𝑗 \ 𝐹 𝑗 and 𝑞 ∈ 𝑊𝑖𝑛0 (𝐺 𝑗 ). We con-

struct a tree 𝜋𝑞 : Σ∗ → Σ that is accepted by 𝑇𝑊 starting in

state 𝑞. To show that 𝜋𝑞 is accepted, we also construct an accept-

ing run 𝑟𝑞 : Σ∗ → (𝑄 𝑗 \ 𝐹 𝑗 ) ∪ {𝑞𝐴}. By construction, we have

𝑟𝑞 (𝑥) ∈𝑊𝑖𝑛0 (𝐺 𝑗 ) for all 𝑥 ∈ Σ∗. We proceed by induction on the

length of the run.

For the basis of the induction, we start by defining 𝜋𝑞 (𝜀) and
𝑟𝑞 (𝜀). First, we let 𝑟𝑞 (𝜀) = 𝑞. By the assumption that 𝑞 ∉ 𝐹 𝑗 , the

run cannot get stuck and reject here.

For the step case, suppose now that we have constructed 𝑟𝑞 (𝑦) =
𝑝 ∈ 𝑊𝑖𝑛0 (𝐺 𝑗 ) for some 𝑦 ∈ Σ∗. Now, since 𝑝 ∈ 𝑊𝑖𝑛0 (𝐺 𝑗 ) and
cannot get stuck, there must be a node ⟨𝑞, 𝛼𝑦⟩ contained in both

𝑄 𝑗 × Σ and𝑊𝑖𝑛0 (𝐺 𝑗 ), so we let 𝜋𝑞 (𝑦) = 𝛼𝑦 . Recall that the direc-
tions of 𝜋 are Σ. Divide the possible directions 𝛽 ∈ Σ into two types:

either 𝛼𝑦 [− 𝑗] = 𝛽 [− 𝑗] or 𝛼𝑦 [− 𝑗] ≠ 𝛽 [− 𝑗]. If 𝛼𝑦 [− 𝑗] = 𝛽 [− 𝑗],
then this corresponds to a legal move by player 1 in 𝐺 𝑗 . Since

⟨𝑞, 𝛼𝑦⟩ ∈ 𝑊𝑖𝑛0 (𝐺 𝑗 ), moves by player 1 must stay in𝑊𝑖𝑛0 (𝐺 𝑗 ).
It follows that 𝑞′ = 𝛿 𝑗 (𝑞, 𝛽) ∈ 𝑊𝑖𝑛0 (𝐺 𝑗 ), so 𝑞′ ∉ 𝐹 𝑗 . We let

𝑟𝑞 (𝑦 · 𝛽) = 𝑞′. If, on the other hand, 𝛼𝑦 [− 𝑗] ≠ 𝛽 [− 𝑗], we let

𝑟𝑞 (𝑦 ·𝛽) = 𝑞𝐴 . Once we have reached a node 𝑧 ∈ Σ∗ with 𝑟𝑞 (𝑧) = 𝑞𝐴 ,
we define 𝑟𝑞 (𝑧′) = 𝑞𝐴 for all descendants 𝑧′ of 𝑧 and we can define

𝜋𝑞 (𝑧′) arbitrarily. Since we can never get stuck, we never reach a

state in 𝐹 𝑗 , so the run 𝑟𝑞 is accepting.

(←) Suppose now that 𝑇𝑊 started in state 𝑞 accepts a tree 𝜋𝑞 :

Σ∗ → Σ. Since the automaton𝑇𝑊 is deterministic, it accepts with a

unique run of 𝑇𝑊 on 𝜋𝑞 as 𝑟𝑞 : Σ∗ → (𝑄 𝑗 \ 𝐹 𝑗 ) ∪ {𝑞𝐴}. We claim

that 𝜋𝑞 is a winning strategy for player 0 in 𝐺 𝑗 from the state 𝑞.

Consider a play 𝜋 = 𝑝0, 𝛼0, 𝛽0, 𝑝1, 𝛼1, 𝛽1, . . ., where 𝑝𝑖 ∈ 𝑄 𝑗
, 𝑝0 =

𝑞, and 𝛼𝑖 , 𝛽𝑖 ∈ Σ. In round 𝑖 ≥ 0, player 0 moves from 𝑝𝑖 to ⟨𝑝𝑖 , 𝛼𝑖 ⟩,
for 𝛼𝑖 = 𝜋𝑞 (⟨𝛽0, . . . , 𝛽𝑖−1⟩), and then player 1 moves from ⟨𝑝𝑖 , 𝛼𝑖 ⟩
to 𝑝𝑖+1 = 𝛿 𝑗 (𝑝𝑖 , 𝛽𝑖 ), for some 𝛽𝑖 such that 𝛼𝑖 [− 𝑗] = 𝛽𝑖 [− 𝑗]. Let
𝑥𝑖 = ⟨𝛽0, . . . , 𝛽𝑖−1⟩, so we have that 𝛼𝑖 = 𝜋𝑞 (𝑥𝑖 ). By induction on

the length of 𝑥𝑖 it follows that 𝑝𝑖 = 𝑟𝑞 (𝑥𝑖 ). Since 𝑟𝑞 is an accepting

run of 𝑇𝑊 on 𝜋𝑞 , it follows that 𝑝𝑖 = 𝑟𝑞 (𝑥𝑖 ) ∉ 𝐹 𝑗 . Thus, the play
𝜋 is a winning play for player 0. It follows that 𝜋𝑞 is a winning

strategy for player 0 in 𝐺 𝑗 from the state 𝑞. □

4.2 A Büchi Automaton for 𝑇𝑊 Nonemptiness
Recall that the tree automaton 𝑇𝑊 , which recognizes𝑊 -NE strate-

gies, emulates the Büchi automaton 𝐴𝑊 = (𝑄,𝑞0, Σ, 𝛿, 𝐹 ) along the

primary trace and the goal automaton 𝐴 𝑗
along 𝑗-deviant traces.

We have constructed the above games 𝐺 𝑗 to capture nonemptiness

of𝑇𝑊 from states in𝑄 𝑗
, in terms of the winning sets𝑊𝑖𝑛0 (𝐺 𝑗 ). We

now modify𝐴𝑊 to take these safety games into account. Let𝐴′
𝑊

=

(𝑄 ′, 𝑞0, Σ, 𝛿 ′, 𝐹 ∩𝑄 ′) be obtained from 𝐴𝑊 by restricting states to

𝑄 ′ ⊆ 𝑄 , where 𝑄 ′ = >
𝑖∈𝑊 𝑄𝑖 ×>𝑗 ∈Ω\𝑊 {𝑊𝑖𝑛0 (𝐺 𝑗 ) ∩𝑄 𝑗 } × 2Ω .

In other words, the 𝑗𝑡ℎ-component 𝑞𝑖 𝑗 of a state 𝑞 = ⟨𝑞𝑖1 , . . . , 𝑞𝑖𝑛 ⟩ ∈
𝑄 ′ must be in𝑊𝑖𝑛0 (𝐺 𝑗 ) for all 𝑗 ∈ Ω\𝑊 , otherwise the automaton

𝐴′
𝑊

gets stuck.

Theorem 4.2. The Büchi word automaton 𝐴′
𝑊

is nonempty iff the
tree automaton 𝑇𝑊 is nonempty.
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Proof. (→) Assume𝐴′
𝑊

is nonempty. Then, it accepts an infinite

word 𝑤 = 𝑤0𝑤1 . . . ∈ Σ𝜔 with a run 𝑟 = 𝑞0, 𝑞1, . . . ∈ 𝑄 ′𝜔 . We

use 𝑤 and 𝑟 to create a tree 𝜋 : Σ∗ → Σ with an accepting run

𝑟𝜋 : Σ∗ → 𝑄 ∪ {𝑞𝐴} with respect to 𝑇𝑊 .

Let 𝑥0 = 𝜀. We start by setting 𝜋 (𝑥0) = 𝑤0 and 𝑟𝜋 (𝑥0) = 𝑞0.

Suppose now that we have just defined 𝜋 (𝑥𝑖 ) = 𝛼 and 𝑟𝜋 (𝑥𝑖 ) = 𝑞,
and, by construction, 𝑥𝑖 is on the primary trace. Consider now the

node 𝑥𝑖 · 𝛽 . There are three cases to consider:

(1) If 𝜋 (𝑥𝑖 ) = 𝛽 , then we set 𝑥𝑖+1 = 𝑥𝑖 · 𝛽 , 𝜋 (𝑥𝑖+1) = 𝑤𝑖+1
and 𝑟𝜋 (𝑥𝑖+1) = 𝑞𝑖+1. Note that 𝑥𝑖+1 is, by construction, the

successor of 𝑥𝑖 on the primary trace. Thus, the projection of

𝑟𝜋 on the primary trace of 𝜋 is precisely 𝑟 , so 𝑟𝜋 is accepting

along the primary path.

(2) If 𝜋 (𝑥𝑖 ) [− 𝑗] = 𝛽 [− 𝑗] and 𝜋 (𝑥𝑖 ) ≠ 𝛽 for some 𝑗 ∈ Ω \𝑊 ,

then we set 𝑟𝜋 (𝑥𝑖 · 𝛽) = 𝑞′
𝑗
= 𝛿 𝑗 (𝑞 𝑗 , 𝛽), where 𝑞 𝑗 is the

𝑗-th component of 𝑞. Since 𝑞 𝑗 ∈ 𝑊𝑖𝑛0 (𝐺 𝑗 ), we have that

𝑞′
𝑗
∈ 𝑊𝑖𝑛0 (𝐺 𝑗 ). By Theorem 4.1, 𝑇𝑊 is nonempty when

started in state𝑞′
𝑗
. That is, there is a tree 𝜋𝑞′

𝑗
and an accepting

run 𝑟𝑞′
𝑗
of𝑇𝑊 on 𝜋𝑞′

𝑗
, starting from𝑞′

𝑗
. So we take the subtree

of 𝜋 rooted at the node 𝑥𝑖 · 𝛽 to be 𝜋𝑞′
𝑗
, and the run of 𝑇𝑊

from 𝑥𝑖 · 𝛽 is 𝑟𝑞′
𝑗
. So all paths of 𝑟𝜋 that go through 𝑥𝑖 · 𝛽 are

accepting.

(3) Finally, if 𝜋 (𝑥𝑖 ) [− 𝑗] ≠ 𝛽 [− 𝑗] for all 𝑗 ∈ Ω \𝑊 , then 𝑥𝑖 · 𝛽
is neither on the primary trace nor on a 𝑗-deviant trace

for some 𝑗 ∈ Ω \𝑊 . So we set 𝑟𝜋 (𝑥𝑖 · 𝛽) = 𝑞𝐴 as well as

𝑟𝜋 (𝑦) = 𝑞𝐴 for all descendants 𝑦 of 𝑥𝑖 · 𝛽 . The labels of 𝑥𝑖 · 𝛽
and it descendants can be set arbitrarily. So all paths of 𝑟𝜋
that go through 𝑥𝑖 · 𝛽 are accepting.

(←) Assume 𝑇𝑊 is nonempty. Then, we know that it accepts at

least one tree 𝜋 : Σ∗ → Σ. In particular, since 𝑇𝑊 accepts on all

branches of 𝜋 it accepts on the primary trace, denoted as 𝜋𝑝 .

Since 𝑇𝑊 accepts on 𝜋𝑝 , we can consider the run of 𝑇𝑊 on 𝜋

which we denote 𝑟 : Σ∗ → 𝑄 . Let the image of 𝑟 (𝜋𝑝 ) be 𝑄∗ ⊆ 𝑄 .
We claim that 𝑄∗ ⊆ 𝑄 ′.

Assume otherwise, that for some finite prefix of the primary trace

of 𝜋 denoted 𝑝 we have that 𝑟 (𝑝) ∉ 𝑄 ′. Since 𝑟 (𝑝) clearly is inside

𝑄 , it must be the case that for some 𝑗 ∈ Ω \𝑊 𝑟 (𝑝) [ 𝑗] ∉𝑊𝑖𝑛0 (𝐺 𝑗 ).
Since 𝑟 (𝑝) [ 𝑗] is not in𝑊𝑖𝑛0 (𝐺 𝑗 ), it must be in𝑊𝑖𝑛1 (𝐺 𝑗 ). This
means that, upon observing 𝑝 , a direction 𝛽 exists that transitions

𝑇𝑊 into a state 𝑞′ ∈𝑊𝑖𝑛1 (𝐺 𝑗 ). From here player 1 has a winning

strategy in 𝐺 𝑗 . Following one of the paths created by player 1

playing directions according to this winning strategy and player 0

playing anything in response, we get that player 1 will eventually

win the game, forcing𝑇𝑊 to attempt a transition into 𝐹 𝑗 and getting

stuck. Therefore 𝑇𝑊 does not actually accept 𝜋 , a contradiction.

Since the image of 𝑟 (𝜋𝑝 ) is contained within 𝑄 ′, we claim that

𝐴′
𝑊

accepts the word formed by the labels along 𝜋𝑝 , which we

denote by 𝛼 (𝜋𝑝 ). Since 𝑇𝑊 accepts along 𝜋𝑝 and the run 𝑟 (𝜋𝑝 )
never leaves 𝑄 ′, we have that there are infinitely many members

of the set 𝐹 ∩𝑄 ′ in the run 𝑟 (𝜋𝑝 ), satisfying the Büchi condition of

𝐴′
𝑊
. And since any states in which some 𝑄 𝑗

for 𝑗 ∈ Ω \𝑊 reaches

a final state are excluded from 𝑄 ′, 𝐴′
𝑊

will never get stuck reading

𝛼 (𝜋𝑝 ). Therefore, 𝐴′𝑊 accepts 𝛼 (𝜋𝑝 ) and is therefore nonempty.

□

Corollary 4.3. Let 𝐺 be an iBG and𝑊 ⊆ Ω be a set of agents.
Then, a𝑊 -NE strategy exists in 𝐺 iff the automaton 𝐴′

𝑊
constructed

with respect to 𝐺 is nonempty.

5 COMPLEXITY AND ALGORITHMS
5.1 Complexity
The algorithm outlined by our previous constructions consists of

two main part. First, we construct and solve a safety game for

each agent. Second, for𝑊 ⊆ Ω, we check the automaton 𝐴′
𝑊

for

nonemptiness. The input to this algorithm consists of 𝑘 goal DFAs

with alphabet Σ and a set of 𝑘 alphabets Σ𝑖 corresponding to the

actions available to each agent. Therefore, the size of the input is

the sum of the sizes of these 𝑘 goal DFAs.

In the first step, we construct a safety game for each of the

agents. The size of the state space of the safety game for agent 𝑗 is

|𝑄 𝑗 | ( |Σ| + 1). The size of the edge set for the safety game can be

bounded by ( |𝑄 𝑗 | ∗ |Σ|) + (|𝑄 𝑗 |2 ∗ |Σ|), where |𝑄 𝑗 | ∗ |Σ| represents
the |Σ| outgoing transitions from each state in 𝑄 𝑗

owned by player

0 and |𝑄 𝑗 |2 ∗ |Σ| is an upper bound assuming that each of the states

in 𝑄 𝑗 × Σ owned by player 1 can transition to each of the states in

𝑄 𝑗
owned by player 0. Since safety games can be solved in linear

time with respect to the number of the edges [2], each safety game

is solved in polynomial time. We solve one such safety game for

each agent which represents a linear blow up. Therefore, solving

the safety games for all agents can be done in polynomial time.

For a given𝑊 ⊆ Ω, querying the automaton 𝐴′
𝑊

for nonempti-

ness can be done in PSPACE, as the state space of 𝐴′
𝑊

consists of

tuples from the product of input DFAs. We can then test 𝐴′
𝑊

on the

fly by guessing the prefix of the lasso and then guessing the cycle,

which can be done in polynomial space [30].

Theorem 5.1. The problem of deciding whether there exists a𝑊 -
NE strategy profile for an iBG 𝐺 and a set𝑊 ⊆ Ω of agents is in
PSPACE.

5.2 PSPACE Lower Bound
In this section we show that the problem of determining whether a

𝑊 -NE exists in an iBG is PSPACE-hard by providing a reduction

from the PSPACE-complete problem of DFA Intersection Emptiness

(DFAIE). TheDFAIE problem is as follows: Given𝑘 DFAs𝐴0 . . . 𝐴𝑘−1

with a common alphabet Σ, decide whether
⋂

0≤𝑖≤𝑘−1𝐴
𝑖 ≠ ∅ [15].

Given a DFA 𝐴𝑖 = ⟨𝑄𝑖 , 𝑞𝑖
0
, Σ, 𝛿𝑖 , 𝐹 𝑖 ⟩, we define the goal DFA

𝐴𝑖 = ⟨𝑄̂𝑖 , 𝑞𝑖
0
, Σ̂, ˆ𝛿𝑖 , 𝐹 𝑖 ⟩ as follows:

(1) Σ̂ = Σ ∪ {𝐾}, where 𝐾 is a new symbol, i.e. 𝐾 ∉ Σ
(2) 𝑄̂𝑖 = 𝑄𝑖 ∪ {accept, reject},
(3) 

ˆ𝛿𝑖 (𝑞, 𝑎) = 𝑞 for 𝑞 ∈ {accept, reject} and 𝑎 ∈ Σ̂
ˆ𝛿𝑖 (𝑞, 𝑎) = 𝛿𝑖 (𝑞, 𝑎) for 𝑞 ∈ 𝑄𝑖

and 𝑎 ∈ Σ
ˆ𝛿𝑖 (𝑞, 𝐾) = accept for 𝑞 ∈ 𝐹 𝑖
ˆ𝛿𝑖 (𝑞, 𝐾) = reject for 𝑞 ∈ 𝑄𝑖 \ 𝐹 𝑖

(4) 𝐹 𝑖 = {accept}
Intuitively, accept and reject are two new accepting and rejecting

states that have no outgoing transitions. The new symbol 𝐾 takes

accepting states to accept and rejecting states to reject. The purpose
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of 𝐾 is to synchronize acceptance by all goal automata. We call the

process of modifying 𝐴𝑖 into ˆ𝐴𝑖 transformation.

The transformation from 𝐴𝑖 to 𝐴𝑖 can be done in linear time

with respect to the size of 𝐴𝑖 , as the process only involves adding

two new states. Furthermore, if 𝐴𝑖 is a DFA then 𝐴𝑖 is also a DFA.

Given an instance of DFAIE, i.e., 𝑘 DFAs 𝐴0 . . . 𝐴𝑘−1, we create
an iBG 𝐺 , defined in the following manner.

(1) Ω = {0, 1 . . . 𝑘 − 1}
(2) The goal for agent 𝑖 is 𝐴𝑖

(3) Σ0 = Σ ∪ {𝐾}
(4) Σ𝑖 = {∗} for 𝑖 ≠ 0. Here ∗ represents a fresh symbol, i.e.,

∗ ∉ Σ and ∗ ≠ 𝐾 .
Clearly, the blow-up of the construction is linear. Since each

agent except 0 is given control over a set consisting solely of ∗,
the common alphabet of the 𝐴𝑖 is technically Σ̂ × {∗}𝑘−1. This
alphabet is isomorphic to Σ̂, so by a slight abuse of notation we

keep considering the alphabet of the 𝐴𝑖 to be Σ̂.
Before stating and proving the correctness of the reduction, we

make two observations. We are interested here in Nash equilibria

in which every agent is included in𝑊 . This implies the following:

(1) The existence of an Ω-NE is defined solely by the Primary-

Trace Condition. Since there are no agents in Ω \𝑊 , there is

no concept of a 𝑗-Deviant-Trace. If we are given an infinite

word that satisfies the Primary-Trace Condition, we can

extend it to a full Ω-NE strategy tree by labeling the nodes

that do not occur on the primary trace arbitrarily.

(2) Since there are no 𝑗-Deviant-Traces in this specific instance

of the Ω-NE Nonemptiness problem, we can relax our as-

sumption that |Σ 𝑗 | ≥ 2 for all 𝑗 ∈ Ω, since there is no

meaningful concept of deviation in an Ω-NE. Recall that this
assumption was made only for simplicity of presentation

regarding 𝑗-Deviant Traces.

Theorem 5.2. Let 𝐴0 . . . 𝐴𝑘−1 be 𝑘 DFAs with alphabet Σ. Then,⋂
0≤𝑖≤𝑘−1 𝐿(𝐴𝑖 ) ≠ ∅ iff there exists anΩ-NE in the iBG𝐺 constructed

from 𝐴0 . . . 𝐴𝑘−1.

Proof. In this proof, we introduce the notation 𝑆 to denote an

infinite suffix, which is an arbitrarily chosen element of {Σ ∪ 𝐾}𝜔 .
(→) Assume that

⋂
0≤𝑖≤𝑘−1 𝐿(𝐴𝑖 ) ≠ ∅. Then, there is a word

𝑤 ∈ Σ∗ that is accepted by each of 𝐴0 . . . 𝐴𝑘−1. We now show that

𝑤 · 𝐾 · 𝑆 satisfies all goals 𝐴0 . . . 𝐴𝑘−1. Since each of 𝐴0 . . . 𝐴𝑘−1

accepts 𝑤 , each of 𝐴0 . . . 𝐴𝑘−1 reaches a final state of 𝐴0 . . . 𝐴𝑘−1,
respectively, after reading 𝑤 . Then, after reading 𝐾 , 𝐴0 . . . 𝐴𝑘−1

all simultaneously transition to accept. Therefore all goals 𝐴𝑖 are

satisfied on 𝑤 · 𝐾 · 𝑆 and 𝑤 · 𝐾 · 𝑆 satisfies the Primary-Trace

Condition. Since we are considering an Ω-NE, there is no need to

check deviant traces and𝑤 · 𝐾 · 𝑆 can be arbitrarily extended to a

full Ω-NE strategy profile tree.

(←) Assume that the iBG 𝐺 with goals 𝐴0 . . . 𝐴𝑘−1 admits an

Ω-NE. We claim that its primary trace must be of the form𝑤 ·𝐾 · 𝑆 ,
where 𝑤 ∈ Σ∗ does not contain 𝐾 . This is equivalent to saying

that a satisfying primary trace must have at least one 𝐾 . This is

easy to see, as the character 𝐾 is the only way to transition into an

accepting state for each 𝐴𝑖 , therefore it must occur at least once if

all 𝐴𝑖 are satisfied on this trace.

We now claim that each of 𝐴0 . . . 𝐴𝑘−1 accept𝑤 . Assume this is

not the case, and some 𝐴𝑖 does not accept𝑤 . Then, while reading

𝑤 , 𝐴𝑖 never reaches accept, as𝑤 does not contain 𝐾 . Furthermore,

upon seeing the first 𝐾 , 𝐴𝑖 transitions to reject, since 𝐴𝑖 is not in a

final state in 𝐹 𝑖 after reading 𝑤 . Thus, 𝐴𝑖 can never reach accept,

contradicting the assumption that𝑤 ·𝐾 · 𝑆 was an Ω-NE. Therefore
all 𝐴𝑖 must accept𝑤 , and

⋂
0≤𝑖≤𝑘−1 𝐿(𝐴𝑖 ) ≠ ∅.

□

This establishes a polynomial time reduction from DFAIE to𝑊 -

NE Nonemptiness; therefore𝑊 -NE Nonemptiness is PSPACE-hard.

In fact this reduction has shown that checking the Primary-Trace

Condition is itself PSPACE-hard. Combining this with our PSPACE

decision algorithm yields PSPACE-completeness.

Theorem 5.3. The problem of deciding whether there exists a
𝑊 -NE strategy profile for an iBG 𝐺 and a set𝑊 ⊆ Ω of agents is
PSPACE-complete.

6 CONCLUDING REMARKS
The main contribution of this work is Theorem 5.3, which charac-

terizes the complexity of deciding whether a𝑊 -NE strategy profile

exists for an iBG 𝐺 and𝑊 ⊆ Ω is PSPACE-complete.

Separation of Strategic and Temporal Reasoning. : The main ob-

jectives of this work is to analyze equilibria in finite-horizon multi-

agent concurrent games, focusing on the strategic-reasoning aspect

of the problem, separately from temporal reasoning. In order to

accomplish this, we used DFA goals instead of goals expressed in

some finite-horizon temporal logic. For these finite-horizon tempo-

ral logics, previous analysis [12] consisted of two steps. First, the

logical goals are translated into a DFA, which involves a doubly

exponential blow up [6, 17]. The second step was to perform the

strategic reasoning, i.e., finding the Nash equilibria with the DFA

from the first step as input. In terms of computational complexity,

the first step completely dominated the second step, in which the

strategic reasoning was conducted with respect to the DFAs. Here

we eliminated the doubly exponential-blow up from consideration

by starting with DFA goals and provided a PSPACE-completeness

result for the second step.

Future Work. : Our immediate next goals are to analyze problems

such as verification (deciding whether a given strategy profile is

a𝑊 -NE) and strategy extraction (i.e., construction a finite-state

controller that implements the𝑊 -NEs found) within the context

of our DFA based iBGs. Furthermore, we are interested in imple-

mentation, i.e. a tool based on the theory developed in this paper.

Further points of interest can be motivated from a game-theory

lens, such as introducing imperfect information. Earlier work has

already introduced imperfect information to problems in synthesis

and verification - see [3, 8, 28]. Finally, the work can be extended

to both the general CGS formalism (as opposed to iBGs) and to

querying other properties/equilibrium concepts outside of the Nash

equilibria. Strategy Logic [21] has been introduced as a way to

query general game theoretic properties on concurrent game struc-

tures, and a version of strategy logic with finite goals would be a

promising place to start for these extensions.
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