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ABSTRACT
We investigate whether Jacobi preconditioning, accounting for the

bootstrap term in temporal difference (TD) learning, can help boost

performance of adaptive optimizers. Our method, TDprop, com-

putes a per-parameter learning rate based on the diagonal precon-

ditioning of the TD update rule. We show how this can be used

in both n-step returns and TD(λ). Our theoretical findings demon-

strate that including this additional preconditioning information

is comparable to normal semi-gradient TD if the optimal learning

rate is found for both via a hyperparameter search. This matches

our experimental results. In Deep RL experiments using Expected

SARSA, TDprop meets or exceeds the performance of Adam in all

tested games under near-optimal learning rates, but a well-tuned

SGD can yield similar performance in most settings. Our findings

suggest that Jacobi preconditioning may improve upon Adam in

Deep RL, but despite incorporating additional information from

the TD bootstrap term, may not always be better than SGD. More-

over, they suggest that more theoretical investigations are needed

to understand adaptive optimizers under optimal hyperparame-

ter regimes in TD learning: simpler methods may, surprisingly, be

theoretically comparable after a hyperparameter search.
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1 INTRODUCTION
Reinforcement Learning (RL) systems are tasked with maximizing

the cumulative sum of discounted rewards in a particular environ-

ment. In order to do so, most RL methods rely on estimating the
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value function: the expected sum of discounted rewards. Estimating

the value function efficiently, in terms of number of interactions

with the environment, is crucial to the overall sample efficiency

of the system. Temporal difference (TD) [35] attempts to improve

efficiency of estimation by bootstrapping off of its own estimator.

However, the use of this bootstrapping term requires optimizers

which can handle non-iid data, shifting distributions, and large

stochasticity. These differences between supervised learning and

TD learning, can have a major impact in terms of optimization.

One approach to overcoming these challenges is to use an adap-

tive per-parameter learning rate, as existing adaptive optimizers

do [22, 39]. Most adaptive optimizers, however, are built with su-

pervised learning in mind and do not explicitly account for the TD

case. Previous work has investigated whether adaptive optimizers

can be constructed that are better suited for TD learning [20, 34].

We hypothesize that by taking into account the gradient of the

bootstrap term in TD learning, we can build a more robust TD-

specific adaptive optimizer. We follow recent advances [7, 13] that

derive the optimal gain (learning rate) matrix from the stochas-

tic approximation literature [4] for TD learning. Specifically, they

find that in the linear case, the optimal gain matrix directly corre-

sponds with the Least Squares TD method [5]. Instead, we propose

to approximate the optimal gain matrix by its diagonal, the Jacobi

preconditioner, which results in an efficient and principled adaptive

method for TD – building on prior work [17, 29]. We theoretically

compare the approach in the tabular setting against standard TD

methods. We also show how this method can be easily adapted to

the Deep RL setting and compare and contrast it with other Deep

Learning optimizers. Surprisingly, we find that despite adding ad-

ditional information from the bootstrap term, both theoretically

and empirically, after a hyperparameter search TDprop behaves

similarly to other optimizers (both TDProp and SGD meet or ex-

ceed the performance of Adam). This result suggests that while

Jacobi preconditioning may be an improved approach to adaptive

optimization in Deep TD learning, further work is needed for adap-

tive optimization methods to yield the ambitious goal of a Pareto

improvement over SGD.
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Extended details, proofs, and analyses can be found in the online

appendix
1
and codebase.

2

2 RELATEDWORK
Devraj and Meyn [13] derived and studied using the optimal gain

matrix from stochastic approximation [4] for linear TD learning.

They found that in the linear case, the optimal gain matrix directly

corresponds with the Least Squares Temporal Difference (LSTD)

method [5]. Recently, the approach was extended to the non-linear

function approximation setting [7]. Unlike those methods, we pro-

pose to use a diagonal approximation of the gain matrix. This

change provides us with a computationally tractable approach that

can scale to millions of parameters, as is common in the Deep RL

setting.

A wide range of work has examined adaptive optimization and

preconditioners in supervised learning. For example, LeCun et al.

[24] describe the benefits of the diagonal preconditioner as well

as efficient implementations. Schaul et al. [32] propose a method

for a adaptively tuning both the global learning rate as well as

the per parameter learning rates based off of both the Jacobi pre-

conditoner and local variance of the gradient. Dauphin et al. [12]

discuss trade-offs between the Jacobi preconditioner and the equi-

libriated preconditioner (which has similar properties to popular

methods such as RMSprop [39] and Adam [22]). Finally, Martens

[25] presents a unified view of diagonal methods such as RMSprop

and Adam for approximating the empirical Fisher matrix. Recently,

Sun et al. [34] extended the adaptive update rule from Duchi et al.

[14] to the TD setting and studied its convergence properties. Their

theoretical results validate the use of standard adaptive optimizers

from the Deep Learning literature in the TD setting. We compare

and contrast our method to state of the art Deep Learning optimiz-

ers in Section 6.

There has been a vast array of work that explored adaptive

optimizers and preconditioners for linear TD learning. For example,

Scalar Incremental Delta-Bar-Delta (SID) [10] extend Incremental

Delta Bar Delta (IDBD) [37] to linear TD and adaptively tune a single

global learning rate. Similarly, [9] derive and examine an optimal

global (not per parameter) learning rate for linear TD. Recently,

TD Incremental Delta Bar Delta (TIDBD) [21], adaptively learn a

per parameter learning rate based on the correlation between state

features and TD errors. To our knowledge, however, TIDBD has

not been extended to the non-linear setting with TD learning. In

terms of preconditioners, Yao and Liu [45] present a generalized

framework for using varying preconditioners in TD learning and

propose to use the full optimal gain matrix as a preconditioner

for linear TD learning. Perhaps the closest works to our own are

approaches based on approximating the optimal gain matrix, as

in Givchi and Palhang [17], Pan et al. [29]. Both works propose

and examine the use of the diagonal approximation, however, in

both cases the design of the algorithm and the empirical analysis is

restricted to the linear setting. We expand on the theoretical linear

analysis proposed in these works and provide empirical evidence

in the Deep RL settings. In particular, our theoretical comparison

of performance characteristics under optimal learning rates and

1
https://arxiv.org/abs/2007.02786

2
https://github.com/joshromoff/tdprop

matching experimental investigation aims to provide more ties

between theory and practice under hyperparameter searches.

Finally, in the tabular case, Jacobi preconditioning can be in-

terpreted as a per state learning rate based on a partial model of

the world dynamics. Similarly, performing expected TD updates

using a learned model of the transition dynamics has been shown

to improve sample efficiency in both the tabular [36] and the Deep

RL setting [16]. Unlike those methods, our approach does not plan

with the learned model and only requires the tracking of a partial

model of the dynamics, the probability of remaining in the same

state.

3 PRELIMINARIES
We consider the problem of maximizing reward in a fully observable

Markov Decision Process (MDP) [3]. An MDP is defined as a 5-

tuple (S,A, P , r ,γ ), with finite state space S, finite action space

A, transition probabilities P : S × A → (S → [0, 1]) mapping

state-action pairs to distributions over next states, reward function

r : (S×A) → R, and discount factorγ ∈ [0, 1). At every time-step t ,
an agent is in a state st , takes an actionat , receives a reward r (st ,at ),
and transitions to the next state in the system st+1 ∼ P(· | st ,at ).

We aim to learn the value vπ : S → R of a policy π : S → A:

vπ (s) := Eπ [Gt |s0 = s] , (1)

where Gt :=
∑∞
k=0

γkr (st+k ,at+k ) is discounted sum of future

rewards starting at time-step t .
We can train an estimate of the value function, v̂π , by regressing

towards the n-step truncated λ-return, i.e., the truncated forward

view:

Gλ
t :t+n := v̂π (st ) +

n∑
k=1

(γλ)k−1δt+k−1
, (2)

where δt := r (st ,at )+γv̂
π (st+1) − v̂

π (st ) is the one-step Temporal

Difference (TD) error at time-step t and n is the truncation length.

At each time-step t , the parameters of the value function, θ =
(θ1,θ2, ...,θm ), can be updated as follows:

θt+1 = θt + αt+1δ
λ
t :t+n∇θ v̂

π (st ;θt ), (3)

where δλt :t+n = Gλ
t :t+n − v̂

π (st ;θt ) is the error, α is the learning

rate.

3.1 Stochastic Approximation
The stochastic update procedure defined in Equation (3) can be

seen as a specific case of stochastic approximation [4]:

θt+1 = θt + αt+1д(θt , st ), (4)

where θ ∈ Rm is the parameter vector, α is the learning rate, and

д(θ , s) : (θ × s) → Rm is the function that defines how the parame-

ters are updated given observations s .
The optimal gain matrix (learning rate), in terms of asymptotic

convergence properties, is the negative of the inverse gradient of

the expected update function [4]:

H−1 = −(∇θE
µ [д(θ , st )])

−1, (5)

where µ is the stationary distribution induced by the policy and

H−1 ∈ Rm×m is the resulting matrix gain.
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The update to the parameters then becomes:

θt+1 = θt + αt+1H
−1д(θt , st ), (6)

where H−1
is considered to be a preconditioner. Moreover, the

choice of notation for H is intentional, as in gradient descent H
corresponds with the Hessian of the loss function.

3.2 Jacobi Preconditioning for Regression
In the following sections, we compare and contrast TD learning and

supervised regression. To this end, we first present the common

sum of squares error function:

L(θ ) = Eµ
[

1

2

(ŷt − yt )
2

]
, (7)

where ŷt = f (xt ;θt ) is the estimate given the input xt and param-

eters θt , and yt is the target at time t .
The expected update direction is the negative gradient of L(θ ):

Eµ [д(θ ,x)] = −∇θL(θ ) = −E
µ [δt∇θ ŷt ] , (8)

where δt = ŷt − yt is the error at time t .
The corresponding gradient of the update direction (i.e., the

Hessian of the loss function) is then:

H = −∇θ (−∇θL(θ )) = ∇
2

θL(θ )

= Eµ
[
∇θ ŷt∇θ ŷ

⊤
t + δt∇

2

θ ŷt
]
, (9)

where ∇2
corresponds to applying the gradient operator twice. Es-

timating the full Hessian can be computationally intractable due to

the second order terms from Equation (9). Instead, the outer product

approximation, also known as the Gauss Newton approximation,

drops the second order terms from Equation (9):

H = ∇2

θL(θ ) ≈ E
µ [
∇θ ŷt∇θ ŷ

⊤
t
]
. (10)

The Gauss Newton approximation is a perfect approximation of

the Hessian when the prediction model is parameterized linearly.

Finally, to obtain a per-parameter learning rate, we can approxi-

mate the Hessian matrix by its diagonal:

H̄ ≈ Eµ
[
diag(∇θ ŷt∇θ ŷ

⊤
t )

]
, (11)

which is known as the Jacobi preconditioner [18]. The main benefit

of the diagonal approximation is that estimating and inverting the

gain matrix (which is required to perform updates, see Equation (6))

is significantly cheaper computationally. The approximation ac-

curacy will depend greatly on the problem at hand, with it being

perfectly accurate when the Hessian is diagonal. Nevertheless, both

its low space and computational complexity has led to its usage

[24].

4 JACOBI PRECONDITIONING FOR TD
LEARNING

We first recall that given the semi-gradient update function defined

in Equation (3), we have the following:

д(θt , st ) = δλt :t+n∇θ v̂
π (st ;θt ), (12)

where δλt :t+n = G
λ
t :t+n − v̂

π (st ;θt ) is the error at time t .

We set ŷt = v̂
π (st ;θt ) and arrive at the following calculation for

H :

H = −∇θE
µ

[
δλt :t+n∇θ ŷt

]
= −Eµ

[
∇θδ

λ
t :t+n∇θ ŷ

⊤
t + δ

λ
t :t+n∇

2

θ ŷt
]
. (13)

To obtain an efficient adaptive optimizer we propose to use the

diagonal approximation (the Jacobi preconditioner) as described in

Equation (11):

H̄ ≈ −Eµ
[
diag(∇θδ

λ
t :t+n∇θ ŷ

⊤
t )

]
. (14)

To compare this expression to what was obtained for supervised

regression in Equation (11), we can expand the outer product:

H̄ = Eµ
[

diag

(
∇θ ŷt∇θ ŷ

⊤
t − λ

n−1γn∇θ ŷt+n∇θ ŷ
⊤
t +

n−1∑
k=1

(γλ)k−1 (γλ − γ ) ∇θ ŷt+k∇θ ŷ
⊤
t

)]
, (15)

where we note that the left most term ∇θ ŷt∇θ ŷ
⊤
t is the same as

the diagonal outer product approximation that arises from the sum

of squares loss function in Equation (11). The remaining terms

are unique to temporal difference learning. Moreover, the terms

inside the summation disappear when λ = 1 (i.e., when not using

λ-returns).

5 INTERESTING CASES
The following section discusses some interesting sub-cases of Jacobi

preconditioning.

TD(0): For the special case where λ = 0 we have:

∇θδ
λ=0

t :t+1
= γ∇θ ŷt+1 − ∇θ ŷt , (16)

plugging this back into equation (13) and using the diagonal outer

product approximation:

H̄ = Eµ
[
diag

(
∇θ ŷt∇θ ŷ

⊤
t − γ∇θ ŷt+1∇θ ŷ

⊤
t
) ]
, (17)

which resembles the standard outer product approximation of sum

of squares loss functions in equation (10) with an additional correc-

tion term that depends on the product of gradients of successive

value functions.

Tabular Case: In the tabular case we have that:

H̄−1

i,i =
1

µ(si )(1 − γp(s ′ = s |s = si ,π ))
. (18)

Which can be interpreted as a per state learning rate that is reweighted

by both the stationary distribution and the probability of self-

looping, i.e., the probability of remaining in the current state.

TD(1) / Target Network: Another interesting case is when λ = 1

and n = ∞ (i.e TD(1) or Monte-Carlo) or when using a target

network, we get the following outer product approximation:

H̄ = Eµ
[
diag

(
∇θ ŷt∇θ ŷ

⊤
t
) ]
, (19)

which is the same H as the sum of squares loss function. We can

interpret this similarity as suggesting that as n →∞ or when using

a target network, TD learning approaches supervised learning.

Main Track AAMAS 2021, May 3-7, 2021, Online

1084



5.1 Theoretical Analysis
We prove certain convergence properties of applying the Jacobi

preconditioner to TD(0), following a similar asymptotic analysis

to [33] with constant step-sizes. The extension to TD(λ) and n-
step returns is provided in Section 5.2 with analogous results. We

begin by noting that we aim to solve the following linear equation

- assuming a tabular representation and uniform updates:

r + (γP − I )v = 0, (20)

where r ∈ R |S | is the expected reward vector, P ∈ R |S |× |S | is the

transition matrix and v ∈ R |S | is the estimated value function. We

note that r + (γP − I )v = 0 at the solution, i.e., when v = v∗.
We solve for v via the following iterative update:

vt+1 = vt − α (Hvt − r ) , (21)

where α is the constant learning rate, H = (I − γP), and vt is the
estimated value function at time t .

By defining the error vector as et = vt − v
∗
, where for v∗ we

have that Hv∗ − r = 0, we can derive the following recursion:

et+1 = vt+1 −v
∗

= (I − αH )vt + αr −v
∗ + α(Hv∗ − r )︸       ︷︷       ︸

=0

= (I − αH )(vt −v
∗) = (I − αH )t+1e0. (22)

Thus, the error at time-step t depends on the initial error at time-

step 0 and the matrix (I − αH ).
One useful metric for measuring convergence speed is the as-

ymptotic convergence rate, which we now define.

Definition 5.1. (asymptotic convergence rate) Given the recursion
of error vectors et+1 = (I − αH )

t+1e0, the asymptotic convergence
rate is defined as:

lim

t→∞
max

e0∈R|S |\0

(
∥et ∥

∥e0∥

) 1

t
= ρ(I − αH ),

where ρ(·) is the spectral radius.
Applying the Jacobi preconditioner to the original system we

get the following iterative formula:

vt+1 = vt − αH̄
−1 (Hvt − r ) (23)

where following Equation (14), we have H̄ = diag(H ) = diag(I −
γP). We also note that the asymptotic convergence rate of the

preconditioned system is ρ(I − αH̄−1H ).
Using the theory of regular splittings [41] we can frame both the

Jacobi preconditioner and the original system as regular splittings

and thereby prove that it has a better convergence rate.

Definition 5.2. (regular splitting Definition 3.28 [41]) If H = B −C ,
B−1 ≥ 0, and C ≥ 0 for all components, then B − C is said to be a
regular splitting of H .

Moreover, we have the following proposition that allows us

to compare the asymptotic convergence rates of different regular

splittings.

Proposition 5.1. (comparing regular splittings Theorem 3.32 [41]):
Let (B1,C1), and (B2,C2) be regular splittings of H . Then if H−1 ≥ 0

and 0 ≤ C2 ≤ C1 for all components, then:

0 ≤ ρ(B−1

2
C2) ≤ ρ(B−1

1
C1) < 1. (24)

Following Definition 5.2, and using H = I − γP , the Jacobi pre-
conditioner can be seen as a regular splitting H = B̄ − C̄ where

B̄ = H̄ and C̄ = B̄ − H . Similarly, for standard TD we have that

H = B −C where B = I and C = γP forms a valid regular splitting

of H . With both methods framed in terms of regular splittings, we

can now compare their convergence rates using Proposition 5.1

and setting the learning rate to 1, i.e., the standard value iteration

setting.

Theorem 5.1. Let H = I −γP and H̄ = diag(H ), then we have that:

ρ(I − H̄−1H ) ≤ ρ(I − H ) < 1. (25)

The proof is provided in Appendix A.2.

The previous theorem omitted the use of learning rates, in fact,

it explicitly assumed a learning rate of 1. However, it is common to

perform a hyperparameter search over the learning rate to obtain

the best possible performance. To this end, the optimal learning

rate α∗, for the case where eiд(H ) ∈ R, is derived in the following

proposition.

Proposition 5.2. For a matrixH with only positive real eigenvalues
eiд(H ) = {λ1, λ2, ...} ∈ R

>0 we have that:

min

α
ρ(I − αH ) =

λH
max
− λH

min

λH
max
+ λH

min

=
κ(H ) − 1

κ(H ) + 1

. (26)

where κ(H ) = λH
max

λH
min

is the condition number of H .

The proof is provided in Appendix A.2.

Wehighlight that from Proposition 5.2, the optimal spectral radius
is a monotonically increasing function of the condition number,
which means that poorly conditioned matrices will induce a slow

convergence. As a result, we seek to reduce the condition number

of H with the Jacobi preconditioner. By comparing the condition

numbers of the Jacobi preconditioned TD and standard TD we can

determine which method has better convergence properties and

performs best under their respective optimal learning rates in the

case where H is symmetric.

Theorem 5.2. Let H = (I − γP) and H̄ = diag (I − γP), then as-
suming that H is symmetric we have that:

κ
(
H̄−1H

)
≤ 2κ (H ) . (27)

The proof is provided in Appendix A.2.

In words, when H is symmetric, the condition number of the

Jacobi preconditioned system is at most a constant factor of 2 worse

than the original system. In practice, we would expect that in the

worst case, once a hyperparameter search has been conducted over

the learning rate, the Jacobi preconditioner would have similar

performance to the original system.

5.2 Extension to n-step and λ returns
In the case of n-step and λ-returns we can derive analogous results

to the single step case. This can be done by framing both the n-step
and λ Jacobi preconditioning as regular splittings of their respective
linear systems.
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For n-step returns we have the following iterative update:

vt+1 = vt − α

(
Hnvt −

n−1∑
k=0

(γP)kr

)
, (28)

where α is the learning rate, Hn = (I − γ
nPn ), and vt is the es-

timated value function at time t . By defining the error vector as

before, et = vt −v
∗
, we have that et+1 = (I − αHn )

t+1e0.

By applying the Jacobi preconditioner to the n-step system we

get the following iterative formula:

vt+1 = vt − αH̄
−1

n

(
Hnvt −

n−1∑
k=0

(γP)kr

)
(29)

where following equation 14, we have:

H̄n = diag(Hn ) = diag

(
I − γnPn

)
. (30)

We also note that the asymptotic convergence rate of the precon-

ditioned system is ρ(I − αH̄−1

n Hn ). Under the same assumptions,

analogous results for theorems 5.1 and 5.2 for the n-step precondi-

tioned system also hold. The full proof can be found in Appendix

A.2.

For λ-returns we have the following iterative update:

vt+1 = vt − α
(
Hλvt − (I − γλP)

−1 r
)
, (31)

where α is the learning rate, Hλ = (I − γλP)
−1 (I − γP), and vt is

the estimated value function at time t . By defining the error vector

as before, et = vt −v
∗
, we have that et+1 = (I − αHλ)

t+1e0.

By applying the Jacobi preconditioner to the λ linear system we

get the iterative formula:

vt+1 = vt − αH̄
−1

λ

(
Hλvt − (I − γλP)

−1 r
)
, (32)

where following equation 14, we have:

H̄λ = diag

(
(I − γλP)−1 (I − γP)

)
. (33)

We also note that the asymptotic convergence rate of the precon-

ditioned system is ρ(I − αH̄−1

λ Hλ). Under the same assumptions,

analogous results for theorems 5.1 and 5.2 for the λ system also

hold. The full proof can be found in Appendix A.2.

5.3 Practical Implementation
We seek to track all required statistics for the diagonal outer product

approximation, specifically (for each parameter i):

H̄ i,i = zi = −Eµθ
[
∇θi δ

λ
t :t+n∇θi ŷt

]
. (34)

In practice, we use |H̄ | because in non-convex optimization H
might be indefinite, see [12]. Moreover, we found in initial testing

that tracking H̄ and then computing |H̄ |, led to poor performance

due to the cancellation of positive and negative samples. Instead, to

track z we compute an exponential moving average of the squared

sampled statistic:

zt+1 = βzt + (1 − β)(−∇θδ
λ
t :t+n ⊙ ∇θ ŷt )

2, (35)

where ⊙ is the element-wise product and β ∈ [0, 1) is the tracking
hyperparameter. We then update the parameter vector θ using the

square root of z:

θt+1 = θt + αt+1

(
Z

1

2

t+1
+ ϵI

)−1

δλt :t+n∇θ ŷt , (36)

where Zt+1 is the diagonal matrix formed from the elements of the

vector zt+1, α is the global learning rate, and ϵ is a damping hyper-

parameter. The full algorithm, which we call TDprop, is provided

in Algorithm 1.

The difference between TDprop and other Deep Learning op-

timizers, such as Adam [22] and RMSprop [39], is that we need

to track the gradient of the output function (the value function in

our case) whereas Adam and RMSprop track different moments

of the gradient of the loss function. In the mini-batch setting, TD-

prop needs to compute the required statistic for each sample in our

mini-batch. Naively, this would increase the computation time by

the size of the mini-batch. To alleviate this cost, we parallelize the

computation with backpack [11], a package for pytorch [30].

Moreover, we note that we can learn Q-values using our opti-

mizer. Specifically, using Expected SARSA [40] we have the follow-

ing definition for the TD error:

δt :t+1 = r (st ,at ) + γ
∑
a

π (st+1,a)Q(st+1,a) −Q(st ,at ). (37)

Which can then be used directly by TDprop or other optimizers. A

detailed description of synchronous n-step expected SARSA (which

will be used in the experiments) can be found in Algorithm 4.

Algorithm 1 TDprop

Require: α : Learning rate
Require: β1, β2 ∈ [0, 1): Exponential decay rates

Require: ϵ ∈ (0, 1]: Damping Hyperparameter

д0 ← 0

z0 ← 1

t ← 0

function Update(δt , vt , θt )
t ← t + 1

дt ← β1 · дt−1 + (1 − β1) · δt∇θvt
zt ← β2 · zt−1 + (1 − β2) · (∇θδt∇θvt )

2

θt ← θt−1 − α · дt /(
√
zt + ϵ) (Update parameters)

end function

Algorithm 2 Adam1

Require: α : Learning rate
Require: β1, β2 ∈ [0, 1]: Exponential decay rates

Require: ϵ ∈ [0, 1): Damping Hyperparameter

д0 ← 0

z0 ← 0

t ← 0

function Update(δt , vt , θt )
t ← t + 1

дt ← β1 · дt−1 + (1 − β1) · δt∇θvt
zt ← β2 · zt−1 + (1 − β2) · (δt∇θvt )

2

θt ← θt−1 − α · дt /(
√
zt + ϵ) (Update parameters)

end function
1
we omit bias corrections for conciseness.
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Algorithm 3 SGD

Require: α : Learning rate

Require: β1 ∈ [0, 1): Exponential decay rates

д0 ← 0

t ← 0

function Update(δt , vt , θt )
t ← t + 1

дt ← β1 · дt−1 + (1 − β1) · δt∇θvt
θt ← θt−1 − α · дt (Update parameters)

end function

Algorithm 4 Synchronous n-step Expected SARSA (per thread)

Require: θ : Parameter vector

Require: T = 0 Max steps counter

t ← 1 (n-step counter)

repeat
t0 = t
Get state st
repeat

Take action at according to policy.

Receive reward r (st , at ) and new state st+1

t ← t + 1

T ← T + 1

until t − t0 == n
for i ∈ {0, . . . , n − 1} do

Store TD error: δ λ=1

t0 :t0+n−i
=

∑k=n−i
k=0

γ k r (si+k , ai+k ) +
γ n−i

∑
a π (st , a)Q (st , a; θ ) −Q (st0+i , at0+i ; θ )
Store Value: Q (st0+i , at0+i ; θ )

end for
Send TD errors and values to master and wait for updated parameters

Master performs batched update: Update(·) using optimizer.

until T > Tmax

6 EXPERIMENTS
Weperform a randomhyperparameter search for TDprop, Adam [22],

as well as vanilla stochastic gradient descent (SGD), on four Deep

RL tasks selected from the Arcade Learning Environment (ALE)

[2] (we use NoFrameSkip-v4 from OpenAI Gym [6]): Beam Rider,

Breakout, Qbert, and Space Invaders. Pseudocode is provided for

the different optimizers that were used: TDprop in Algorithm 1,

Adam in Algorithm 2, and SGD in Algorithm 3. We select these

four games based on a random sampling from the original DQN

benchmark paper [27]. We train each algorithm for 10M training

steps using n-step expected SARSA [40], by modifying an existing

A2C implementation of Kostrikov [23]. Specifically, in 16 parallel

threads we sample 5 transitions using the current policy. We then

perform multi-step Expected SARSA updates based on the acquired

batch of transitions and repeat the sampling process. Our implemen-

tation of Expected SARSA is summarized in Algorithm 4. For the

hyperparameter search we sample 50 random hyperparameter sets

from the ranges that are summarized in Table 2 (in the appendix).

Full experimental details are provided in Appendix A.3.

6.1 Deep Expected SARSA Baseline
While, DQN [28], the Deep version of Q-learning [42], is a popular

choice for Deep RL, it was not an optimal choice for assessing the

effects of Jacobi preconditioning in TD settings, as it requires a

target network and is off-policy. While TDprop can be extended to

the off-policy setting, it is out of the scope of this paper and is left for

future work. Another popular choice are Policy Gradient methods

[38], such as A3C [26], which learn a separate parameterized policy

to take actions in the environment. Since actions are not directly

chosen from the value function, the impact of an optimizer for

the value function is less direct. Instead, we chose to use Expected

SARSA [40], which is an on-policy value based algorithm that

has less variance than SARSA with the same amount of bias. See

Appendix A.3.3 for extended comparison against existing baselines.

6.2 Isolating Effects From Momentum
We note that we use β1 = 0 for Adam throughout this work. We do

so to emphasize the investigation on the per-parameter learning

rates rather than the gradient smoothing role that β1 plays. We

also note that per Kingma and Ba [22], if β1 = 0 Adam is similar

to Adagrad [14]. We also note that β1 = 0 has been used to great

success empirically [15]. That being said, we caveat that results

may change if β1 is used in both TDprop and Adam simultaneously.

From now on all references to β refer to the β2 parameter.

6.3 Results
Figure 1 shows the results of randomly sampling 50 hyperparameter

configurations – matching ranges across optimizers to the extent

possible. Table 1 shows the average returns (all episodic returns

averaged across the learning process) achieved in both the entire

hyperparameter sample and the top 25th percentile.

We examine hyperparameter configurations as a whole since

our theoretical results consider optimal learning rates, thus the top

percentile of the random configurations should represent settings

close to the optimal learning rate. When the top 25th percentile of

hyperparameters is selected, TDprop performs as well as or signifi-

cantly better than Adam in all four games. However, confirming

the theory of Theorem 5.2, we find that vanilla SGD under optimal

learning rates performs as well as or better than Adam in all games

tested and beats TDprop in one game – in all cases coming close to

the TDprop achieved performance.

We compare the effect of the learning rate for TDprop, Adam,

and SGD, in Figure 2. Specifically, Figure 2 provides a scatter plot

of the average return compared against the learning rate. We find

that in certain tasks SGD prefers a considerably larger learning

rate than both aforementioned methods, roughly two orders of

magnitude larger at approximately > 10
−0.5

for Qbert, Breakout,

and Beam Rider. However, the optimal learning rate for SGD on

Space Invaders was drastically smaller at approximately 10
−2.5

.

This discrepancy is not seen for TDprop and Adam, which both

tend to have optimal values close to 10
−3

across tasks. See Appendix

A.3 for scatter plots of β and ϵ .
We compare the effect of β and ϵ for TDprop and Adam in

Figure 3. Specifically, we measure the difference in performance

between TDprop and Adam (TDprop - Adam) across tasks and

hyperparameters. We find that in most tasks (except for Qbert),

TDprop has a better overall coverage of the hyperparameter space,
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Figure 1: The normalized asymptotic returns (the average returns of the final 100 episodes) of all hyperparameter configura-
tions within the top 25th percentile (left) and the normalized average returns (of all episodes across the learning trajectory) of
all hyperparameter configurations within the top 25th percentile (right). Normalization is performed by taking themaximum
value for the game and dividing all results by this value. Significance tests are done usingWelch’s t-test, per recommendations
from Colas et al. [8], Henderson et al. [19]. P-value annotation legend is as follows. ns: 0.05 < p <= 1; *: 0.01 < p <= 0.05; **:
0.001 < p <= 0.01; ***: 0.0001 < p <= 0.001; ****: p <= 0.0001. See Appendix A.4 for more details and results.

All Hyperparameter Samples

Game SGD Adam TDprop

BeamRider 778.6 (686.4, 867.7) † 673.9 (584.4, 760.4) † 907.7 (815.3, 995.3)
Breakout 12.2 (7.9, 16.0) 16.9 (11.7, 21.7) 20.2 (13.3, 26.5)

SpaceInvaders 330.6 (314.3, 347.5) † 302.3 (278.3, 325.1) 362.3 (343.1, 381.3)
Qbert 654.3 (519.5, 781.7) 599.2 (483.4, 703.9) 552.3 (444.0, 651.0)

Top 25%

BeamRider 1226.2 (1192.4, 1259.7) † 1131.8 (1069.3, 1192.5) 1336.2 (1282.2, 1377.5)
Breakout 33.0 (26.5, 38.9) 42.1 (32.5, 50.0) 53.9 (41.1, 65.1)

∗

SpaceInvaders 404.9 (394.3, 415.5) 425.0 (407.1, 442.3)† 451.4 (435.7, 467.0)
Qbert 1366.8 (1243.9, 1483.3)

∗
1157.8 (956.8, 1351.3) 1048.5 (860.6, 1199.5)

Table 1: For up to 10M timesteps. Average return (across the entire learning trajectory) with bootstrap confidence intervals
in parentheses. Bolded text indicates best based on bootstrap significance test. † indicates runner up by significance testing.
If multiple values fall into a tier, denote them by the same marker. For the top 25% of TDprop vs SGD on QBert, the only
significant comparison is against SGD (TDProp is significantly worse than SGD, but Adam is not significantly better (or worse)
than TDprop or SGD). Conversely for SGD and TDprop on Breakout. This is indicated by ∗. See Appendix A.4 for more details
and results.

suggesting it improves stability in the non-convex regime. See Ap-

pendix A.3 for the full array of heat maps over all hyper parameter

combinations.

Our results suggest that while TDProp improves performance by

a small, but statistically significant, amount under a hyperparameter

search in some settings, SGD can as well in other settings. The

theory we derive provides some explanation for this phenomenon

that we hope may lead to a better understanding of optimization in

TD learning and future TD-specific optimizers.

7 DISCUSSION
In this paper, we proposed using Jacobi preconditioning for TD

learning to adapt a per-parameter learning rate throughout training.

We highlighted that in the iterative policy evaluation setting, Jacobi

preconditioning, known in this setting as Jacobi matrix splitting

[31], has a faster convergence rate than the non-preconditioned

system. While this result was already known in the literature, we

extended these results to both the n-step and λ-return settings,

proving analogous convergence rate improvements.

Theoretically, we showed that the convergence rate improve-

ment for Jacobi splitting does not necessarily extend to cases where

a constant learning rate can be tuned. Empirically, we derived a

practical algorithm based off of Jacobi preconditioning that is com-

petitive with state of the art adaptive optimizers in the Deep RL

literature. However, we note that consistent with the theory, once
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Figure 2: Scatter plots of the hyperparameter search onQbert, Breakout, Space Invaders, and BeamRider. The y-axis represents
the average undiscounted return per episode over 10 million training steps. As can be seen, the optimal learning rate for SGD
is significantly higher than both Adam and TDProp. Both adaptive optimizers also have higher variance in outcomes than
SGD due to additional hyperparameter settings being tested (ϵ , β).

Figure 3: Heat maps of the hyperparameter search on Qbert, Breakout, Space Invaders, and Beam Rider. The heat map rep-
resents the difference in average undiscounted return between TDprop and Adam (TDprop - Adam). Generally, TDprop has
higher returns most ϵ and β cross-paired values, except as β → 1, where Adam begins to outperform TDProp in some games.

the global learning rate has been tuned, all of the optimizers that

were tested performed similarly.

The fact that SGD is able to perform similarly to TDprop in

many cases under optimal hyperparameter settings (and outper-

forming Adam without momentum) follows our theoretical results.

Yet, this is surprising. Under the complicated optimization land-

scape of online on-policy TD learning, we would expect that even

under optimal learning rates adaptive optimization should consis-

tently outperform SGD. Our contrary findings here are not only

relevant for understanding the role of Jacobi preconditioning, but

suggest that further theoretical investigations of optimal learning

rate regimes are needed for adaptive optimization in TD learning

as a whole.

An interesting avenue of future work would be to explore the

different interpretations of Jacobi splitting, which notably can also

be understood as prescribing a per state learning rate or a per state

n-step return. As we mentioned in Section 2, in the tabular case,

Jacobi splitting can be interpreted as a per state learning rate based

on the probability of self-looping. The extension to function approx-

imation is not trivial, as self-looping in the function approximation

setting is ill-defined, since the agent almost never revisits the exact

same state. Nevertheless, a model-based approach that learns an

estimate for the probability of self-looping and uses this directly

as a per-state learning rate would be an interesting research direc-

tion. However, we would expect to at best achieve similar results

to TDprop, since the theory presented in this chapter implies that

once the learning rate has been tuned, a per state learning rate

based on Jacobi preconditioning is not guaranteed to have better

performance.

Alternatively, another potential research direction could be to

explore implementing Jacobi preconditioning in terms of random

stopping times [1, 43]. Instead of a per-state learning rate, in this

case, Jacobi preconditioning can be interpreted as a per-state n-step
return based on self-looping. Specifically, n varies from state to

state and from trajectory to trajectory. As long as the agent remains

in the same state as the reference state st , the current n is increased,

and another sample is used in the current return. Recently, there

have been some works that vary the amount of bootstrapping on

a state by state basis based on meta-gradients [44]. The random

stopping times prescribed by Jacobi splitting could be an interesting

alternative to such approaches.

Future theoretical investigations stemming from our work could

help discover adaptive optimizers for TD learning which are guar-

anteed to outperform SGD even in optimal learning rate regimes.

We hope that our open-source Deep Expected SARSA baseline and

implementation of TDprop provide a starting ground for better un-

derstanding adaptive optimization in online on-policy TD learning.
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