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ABSTRACT

Despite abundant negotiation strategies in literature, the complex-
ity of automated negotiation forbids a single strategy from being
dominant against all others in different negotiation scenarios. To
overcome this, one approach is to use mixture of experts, but at the
same time one problem of this method is the selection of experts, as
this approach is limited by the competency of the experts selected.
Another problem with most negotiation strategies is their incapa-
bility of adapting to dynamic variation of the opponent’s behaviour
within a single negotiation session resulting in poor performance.
This work focuses on both, solving the problem of expert selection
and adapting to the opponent’s behaviour with our Autonomous
Negotiating Agent Framework. This framework allows real-time
classification of opponent’s behaviour and provides a mechanism
to select, switch or combine strategies within a single negotiation
session. Additionally, our framework has a reviewer component
which enables self-enhancement capability by deciding to include
new strategies or replace old ones with better strategies periodically.
We demonstrate an instance of our framework by implementing
maximum entropy reinforcement learning based strategies with a
deep learning based opponent classifier. Finally, we evaluate the
performance of our agent against state-of-the-art negotiators under
varied negotiation scenarios.
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1 INTRODUCTION

Negotiation has been studied for a long time from different perspec-
tives like game theory [42], business [18], psychology [4], neuroeco-
nomics [22] and many more. With the progress of Al-technologies,
automated negotiation allows collaboration and negotiation among
Al-enabled parties. Automated negotiation aims to achieve win-win
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deals for all parties, while simultaneously reducing the time and ef-
fort, thus adding significant value to society as a whole [39]. But the
complexity of automated negotiation still hinders the deployment
of autonomous agents in real-world applications [14].

Though much research already existed in developing negotiation
strategies, Automated Negotiating Agents Competition (ANAC)
brought significant improvements in strategy development [32]. In
spite of such improvements in strategy design, there is no single
strategy that is optimal for all possible domains [30]. One natural
solution is to choose a pool of strategies and use the approach of
mixture of experts during negotiation. At the same time, one needs
to choose an appropriate initial set of expert strategies to excel.
The questions that can originate while designing such an algorithm
are these: What initial set of strategies should we select? On what
conditions should we switch strategies? How to improve the initial
set of chosen strategies? In this work we give a solution to all three
of these questions by introducing our autonomous negotiating
agent framework.

The contributions of this work to the existing research in this
domain are three-fold. Firstly, we propose an autonomous negotiat-
ing agent framework, which facilitates the creation of autonomous
negotiating agents capable of classifying opponent’s behaviour and
adaptively change strategies within a single negotiation session
to reach better agreements. Secondly, we propose a mechanism to
update the base strategies in an algorithmic manner to improve
the overall performance. Finally, we validate this framework and
provide insights in general about autonomous negotiating agents
by evaluating it extensively against state of the art negotiators.

The rest of the paper is organized as follows: Section 2 gives
a sketch of related work in this domain, Section 3 provides the
introduction to negotiation settings. Section 4 gives a detailed de-
scription of each of the components in our framework and Section 5
describes the experimental setup. Section 6 shows the evaluations
of our framework and finally, we conclude with Section 7 by dis-
cussing the limitations and provide direction for future research.

2 RELATED WORK

A considerable amount of literature has already been published on
autonomous negotiation strategies. However, in recent years, the
success of reinforcement learning (RL) algorithms in different fields
has drawn significant attention to its application in autonomous
negotiation [17, 49]. A part of our work falls under the above men-
tioned domain. Additionally, the other part of our work is at the
intersection of the domains of opponent classification and strategy
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selection in autonomous negotiation. In this section we discuss the
work done in both of these domains.

2.1 RL in Autonomous Negotiation

Previously many computational methods including Bayesian Learn-
ing [29, 52] and Genetic Algorithm [21, 35, 40] have been used in
automated negotiation for developing and evaluating negotiation
strategies. Then again, in the last couple of decades several studies
have looked at the application of reinforcement learning (RL) al-
gorithms like Q-learning [17, 20, 47, 49, 50] and REINFORCE [48]
in automated negotiation. Recently, Deep Reinforcement learning
(DRL) has been used to learn the target utility values [16], the accep-
tance strategy [43] or both bidding and acceptance strategies [19].
Moreover, authors of [15] have also shown application of DRL in
concurrent bilateral negotiation.

Bakker et al. introduced RLBOA framework [17] based on the
BOA architecture [12] for automated negotiating agents, where they
trained the bidding strategy of the agent using Q-learning. Their
approach involves discretizing utility space and using opponent
modelling to choose next offer from a set of offers, where the set of
offers at each time step depends on the action taken. A limitation of
this method is the loss of information due to discretization of utility
space and that leads to further dependence on opponent modelling
for the choice of next offer. In contrast to their work, we do not use
opponent modelling while training bidding strategies. Moreover,
we train the bidding strategy using DRL on continuous state and
action spaces.

The authors of [19] have used DRL algorithms for training both
bidding and acceptance strategies in continuous state and action
spaces. The state space and the action space for their approach
includes actual offer from the outcome space and hence limits the
scope to a particular negotiation scenario. Furthermore, in their
approach one needs to train both acceptance and bidding strategy
for every domain. Moreover, experimental setup and evaluations
were done against fixed preference profiles, which limits the scope
of applicability. In contrast, our approach considers the utility value
of the offers projected to self utility axis, thus making our bidding
strategies applicable to multiple negotiation scenarios. Additionally,
we show the generality of our approach by evaluating in varied
negotiation scenarios while training in a single negotiation domain.

Furthermore, evaluations in both [17] and [19] are against prim-
itive agents only, whereas we evaluated our approach against GE-
NIUS [37] based ANAC [32] winning agents.

2.2 Opponent Modelling and Strategy Selection
in Automated Negotiation

The Opponent modelling is a fundamental component of BOA archi-
tecture proposed in [12]. Commonly, opponent models attempt to
learn one or more of the following opponent’s attribute: acceptance
strategy, deadline, utility function or bidding strategy [11]. How-
ever, our approach does not fit any of these usual types of opponent
models. Unlike popular approaches of learning the bidding strategy,
we classify an opponent depending on the history of bids. In fact
our problem of classifying the opponent falls under the domain of
continuous opponent strategy classification. Under this domain for
instance, authors of [44] used a hierarchical approach with fuzzy
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models to perform the opponent strategy classification in a real
time strategy game. Preference profile learning by classifying the
negotiation trace was done in [29, 38, 39] using Bayesian learning
to determine the best match for the opponent’s preference profile.
However, in this work we classify the opponents bidding behaviour
periodically with respect to a set of negotiator’s bidding behaviours
and select an appropriate strategy for negotiation within a single
negotiation session.

Inspired from algorithm selection method [36], authors of [30]
developed a meta-agent, which predicts the performance of a set of
bilateral negotiation negotiators based on features of domains, and
accordingly chooses the negotiator expected to perform best for
the given negotiation scenario. Extending this idea to multilateral
negotiation settings and using the approach of mixture of experts,
authors of [26] solved the problem of how to combine multiple
experts. However, in all these approaches a single negotiator is
selected throughout a negotiation session. In contrast to that, this
paper focuses on selection and switching (or combination) of strate-
gies within a single negotiation session based on the opponent
behaviour.

3 NEGOTIATION SETTINGS

A bilateral automated negotiation is a negotiation between two
automated entities. We will denote these entities as negotiators. A
negotiation setting consists of a negotiation protocol, the concerned
negotiators and negotiation scenario [9]. A negotiation protocol
defines the rules of the encounter, specifying which actions each
negotiator can perform at any given moment. A negotiation sce-
nario consists of the preference profiles of each negotiator and the
negotiation domain. In this work, a strategy of a negotiator is the
combination of an acceptance strategy and a bidding strategy. Addi-
tionally we denote the opponent negotiators drawn from GENIUS
platform [37] as agents.

The negotiation protocol used throughout this paper is the
stacked alternating offers protocol. Under this protocol, a nego-
tiation session consists of rounds of consecutive turns where each
negotiator can either make an offer, accept offer, or walk away
from the negotiation [7]. The negotiation session ends if both ne-
gotiators find a joint agreement or a deadline is reached or one of
the negotiators decides to walk away from the negotiation result-
ing in no agreement. The deadline can be measured in number of
rounds or actual wall-time. Negotiations are non-repeated, that is
one negotiation session cannot impact actions of any negotiator in
subsequent sessions.

A negotiation domain consists of one or more issues. To reach
an agreement, the negotiators must settle on a specific value for
each negotiated issue. The outcome space of a negotiation domain
denoted by Q is the set of all possible negotiation outcomes. The
outcome space can be defined as the Cartesian product of negoti-
ation issues and is formally denoted as Q = {w1,- -, wp} where
w; is a possible outcome and n is the carnality of outcome space.
A preference profile or utility profile defines a preference order <
that ranks the outcomes in the outcome space. Usually, a prefer-
ence profile of a negotiator is specified by a utility function, which
assigns a utility value to an outcome w; denoted by U(w;). Utility
functions are private information and the negotiators only know
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their own utility functions. The preference profile of an agent also
specifies a reservation value. The reservation value u, is the utility
that the negotiator receives in case of no agreement.

4 PROPOSED NEGOTIATOR FRAMEWORK

In this section we provide the structure and explain the details
of our proposed Autonomous Negotiating Agent Framework, a
framework that facilitates the creation of autonomous negotiating
agents which are capable of classifying opponents in real time
and switching strategies accordingly within a single negotiation
session. First, we introduce the components of our framework and
then describe an approach for designing each of the components.
The proposed framework is comprised of four main components:
negotiator-strategy pair, opponent classifier, strategy switching
mechanism and reviewer. Figure 1 outlines all the components of
the framework, while each of them are discussed in the remainder
of the section.

The first component of our framework is a set of negotiator-
strategy pairs, where negotiators can be any autonomous negotiat-
ing agents and strategies are bidding strategy trained against the
negotiators in addition to fixed acceptance strategy for each chosen
negotiator. The framework gives the user the flexibility to choose
any set of negotiators which we will call the base negotiators for
the rest of this paper. To illustrate, the base negotiators can include
from simple time or behaviour dependent strategies [24] to state-
of-the-art negotiators like ANAC winning agents. In this work, as
described in Section 4.1, we have trained deep reinforcement learn-
ing (DRL) based bidding strategies against each negotiator to form
negotiator-strategy pairs and subsequently showed the superiority
and generality for such class of strategies.

Offers from

. opponent
Action
New
Negofiator 1 - - - -==~, / Stratogy
Reviewer
Classifier Negotiator 2 \
New
Negoliator
Negotiatorn - - -,
Switcher
Strategy 1 Strategy 2 Strategy n
%1 Dotted line connects the best
strategy for a negotiator

Figure 1: Block diagram of proposed framework showing
the following blocks: n base negotiators blocks (blue), n
trained strategies block (green), the classifier block (yellow),
strategy switching block (yellow) and the reviewer block
(purple). The dashed lines connecting a single negotiator to a
single strategy represents negotiator-strategy pair. The com-
ponents inside the solid box are utilised within a negotiation
session whereas the blocks outside the solid box are used
outside a negotiation session.
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The second component is an opponent classifier that classifies
the opponent’s bidding behaviour with respect to the bidding be-
haviour of base negotiators. After every negotiation round during
a negotiation session, the classifier takes a sequence of opponent’s
bid as input and accordingly assigns an estimated probability to
each base negotiator. In this work, we have used only the sequence
of opponent’s offers projected on the self utility axis as input since
our implementation showed similar accuracy with additional in-
formation of self offers. Deep learning based approach, described
in Section 4.2 is used for training the opponent classifier and the
results in Section 6 show the versatility of such classifier in different
negotiation scenarios.

The third component is a switching mechanism, that switches
or combines the strategies learned against base negotiators depend-
ing on the output of the opponent classifier. While the opponent
classifier classifies the behaviour of the opponent negotiator at
every time step, the switching mechanism has added flexibility of
changing decisions after certain intervals. Note that the strategy
switching as narrated in Section 4.3 is performed within a single
negotiation session, and hence makes our negotiator framework
adaptive.

All the three aforementioned components are active components
that function when a negotiation is underway. Whereas, the Re-
viewer is a passive component that does not actively take part in the
negotiation process. Outside the negotiation session, the Reviewer
provides a mechanism that decides if a new negotiator or a new
strategy should be included in the framework. To the best of our
knowledge, all the meta-agent strategies proposed in literature do
not have a mechanism that can enhance their capability by evalu-
ating and adding new strategies. This component is crucial to the
design of our framework as it insures the framework against depre-
ciation in the future. In Section 4.4, we provide the algorithm of the
Reviewer and in the remaining section, we discuss the approaches
for building each component of our framework.

4.1 Deep Reinforcement Learning Based
Strategies

The prime components of our framework are the negotiation strate-
gies trained against the base negotiators. The whole framework
is based on the presumption that one can successfully learn an
effective strategy against each of the base negotiators. Additional
requirement is that the approach should facilitate the framework
to perform well in a domain-independent manner. Due to recent
success of RL algorithms in training strategies of automated nego-
tiators, we used Soft Actor-Critic [27, 28], a DRL algorithm to train
a bidding strategy against each base negotiator. For acceptance
strategy we adopted the approach of combined acceptance condi-
tion as proposed in [13]. In contrast to RLBOA framework in [17],
no opponent model component is used while training against an
opponent negotiator.

4.1.1 State Space, Action Space and Reward. A major problem for
developing a domain independent negotiator framework is the fact
that the outcome space Q varies significantly across different ne-
gotiation scenarios. Moreover the offers w; € Q are usually non
numerical in nature, which again demands an approach to convert
the offers to numerical value in a meaningful way. To overcome
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both of these problems, we took a similar approach to [17] and
represented every outcome w; by Us (w;) where Uy is the self utility
function. To avoid any information loss we considered the continu-
ous outcome space rather than discretizing it. For our DRL approach
everything in the negotiation scenario including the opponent is
considered as the environment. Let us denote the state and action
in an environment as s; and a; respectively. The state consists of
only the information about the offers and the action determines
what utility value to bid next. For a negotiation session with time
limit T, we defined our state space and action space as

St = {tr, Us(wé_z)a Us (wé_z), Us(wﬁ_l))
Us (wé_1)> Us(w£)> Us(wé)}
a; = ul*l such that u, <us <1

where t, denotes the relative time, »! and w!, denotes offers by self
and opponent at time step ¢ < T respectively. The self reservation
value is denoted by u, and uf™! denotes the utility value of the
next offer. To get the actual offer from the utility value we need an
inverse map U; ! : us — w; of the self utility function Us which
can be a one-to-one or one-to-many mapping. One simple way of
defining the inverse utility function is given in Equation (1).

Us_l(us) = argmin f(w), where
@ )
flw) = (Us(w) - u)®> V oweQ
The goal of the strategies trained is to maximise the average utility
against the corresponding base negotiator. So the reward function
Ris defined as

Us(wq), if there is an agreement w,
-1, for no agreement and s;41
R(st, ap, se+1) = ) .
is terminal state,
0, otherwise.

There is an immediate reward of 0 after every step in a negotiation
session when negotiation has not ended.

4.1.2  Soft Actor-Critic Algorithm. Soft actor-critic (SAC) [27, 28] is
an off-policy algorithm based on maximum entropy reinforcement
learning that aims to maximize both the expected reward and the
policy’s entropy. Policies with higher entropy have more random-
ness, which means that maximum entropy reinforcement learning
learns a policy that has maximum randomness yet achieves a high
reward. Normal reinforcement learning algorithms try to maximize
the expected reward only. On the contrast the reason for maximiz-
ing the the entropy of the policy is to improve both the algorithm’s
robustness to hyperparameters and its sample efficiency [27].In
automated negotiation, this randomness is desirable to reduce the
opponent’s ability to predict the behaviour of an agent and exploit
this information.

An optimal policy 7* in entropy-regularized reinforcement learn-
ing can be expressed as
(o8]
2

t=0

7" = argmaxE,
T

(R(St, at, se+1) + aH (m(+[st)) )} ,

where R is the reward function, y is the discount factor, H denotes
the entropy of policy = and @ > 0 is the entropy regularization
coefficient. s; and a; denotes the state and action at time-step t
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respectively. Now, the corresponding action-value function Q7 (s, a)
for state s and action a can be expressed as
s, a]

SAC concurrently learns a policy 7 and two Q-functions. In our
implementation we used the approach proposed by Haarnoja et
al. [28] where entropy regularization parameter « is also a trainable
parameter. The details of the hyperparameters for our implemented
model are provided in the supplementary material of [45].

Q"(s,@) =Ex | D y'R(st,ar,s041) + &y y'H (n(-|sr))
t=0 t=1

4.2 Deep Learning Based Opponent Classifier

Opponent modelling is a fundamental block of BOA architecture
proposed in [12]. Although we do not have an opponent modelling
block while training the DRL based strategies, our framework con-
tains a classifier that classifies an unknown opponent’s bidding
behaviour with respect to the base negotiator’s behaviour in the
framework. Our approach uses 1D-Convolutional Neural Networks
(1D-CNN) based classifier to classify an unknown opponent at ev-
ery time step of a negotiation. In the following sections we will
describe our classifier’s input/output and the model architecture.

4.2.1 Input and Output. The input to the classifier is a sequence
of offers by the opponent projected to self utility axis. Similar to
Section 4.1, we will denote each offer as w; and the self utility
value for the offer as Us (w;). The choice of using self utility value
ensures the input sequence to be numerical all the time and can be
directly provided to the classifier without any requirement of pre-
processing. Another significant benefit is, it allows the framework
to work across different negotiation scenarios without retraining
the classifier for each domain. The output of the classifier are the
estimated probabilities for each base negotiator. Let us denote the
input to the classifier at the current negotiation time step t as I/
and output as Oct . Then,
i=t-1

Ict {Us(wi) i=t—k
O; [P+ pnl

where n is the number of base negotiators in the framework. Z,
denotes the set of positive integers. p; denotes the estimated proba-
bility of the opponent behaving as the i th negotiator. Values of input
array I are zero before the first opponent offer, that is, Us(w;) = 0
if i < 0. k is the window length and is fixed before training. More-
over, greater the value of k, greater is the information provided to
the classifier.

where k€Z, and k> 1.

4.2.2 Classifier Model. The input to the classifier at every time
step Z! is a time-series. For such time series data, Long short-term
memory (LSTM) or recurrent neural network (RNN) architectures
perform incredibly well. But, a major problem with LSTM and
RNN is that they require datasets of massive sizes and large com-
putational resources for training. To overcome such difficulties
1D-CNNs have shown great promise [33]. 1D-CNN based classifiers
have been successfully used in structural damage detection [2, 5],
fault detection in modular multilevel converters [34], condition
monitoring in rotating mechanical machine parts [23, 31].

In our classifier model, we have consecutive 1D-CNN layers fol-
lowed by consecutive Dense layers. The depth of the model will
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increase or decrease with the increase or decrease of the window
length k respectively. Moreover, a greater value of k will result in
a larger part of history of opponent offers to be considered by the
classifier. This will reduce the model accuracy. On the other hand a
very small value of k will make the model myopic and will be error
prone in classification. Some hyperparameter tuning is required
for adjusting the value of the window length. The model architec-
ture and the hyperparameters are provided in the supplementary
material of [45].

4.3 Strategy Switching Mechanism

Depending on the output of the classifier Of, this component
switches or combines the strategies to take the next action. The
algorithm for the switching mechanism is provided in Algorithm 1.
Although the opponent classification is done at every time step,
the approach of choosing next offer need not change after every
time step. In Algorithm 1 the parameter f; where i € [1, n] tunes
the algorithm from a hard switcher to a combination mechanism.
The algorithm becomes a pure switching algorithm if f; = 1 and
Pr=0V k+#i

Algorithm 1: Algorithm for strategy switching

Input: O! = {p1,-- -, pn} from the opponent classifier
Data: Sj, = {s1,-- - ,sn}, the set of base strategies
corresponding to the set of base negotiators
Np ={Ny,---,Np}
Output: Action: next offer or Accept
Choose initial strategy sinir € Sp, Saction = Sinir
i = argmax(OL) where N; denotes the base negotiator with
highest classification probability
if action by strategy s; is Accept then
Accept opponent’s offer
else
witl =yt (leizg {Br * us, )} where ug, is the utility
value by strategy si for next time step and fy. is the
weight parameter
end

4.4 Reviewer Mechanism

This component enables the addition of new negotiators or strate-
gies or both to the RL-agent instantiated by our framework. To show
the basic operation of this component, we implemented an evalua-
tion based approach for the Reviewer. The algorithm is provided in
Algorithm 2 where the parameters « and f are threshold parame-
ters. When a new negotiator Nyeyy is introduced to the Reviewer,
first a new strategy Sirqin is trained against it. Subsequently, Strqin
and the RL-agent are evaluated against Nyeq. Finally, depending of
the parameter « if the evaluation with the Sy4ip, is better in com-
parison with RL-agent, then the reviewer will provide confirmation
and S;rqin will added to the pool of strategies and the classifier
will be retrained with a new class Nyew.

Moreover, The new trained strategy S;rqin is cross-evaluated
with base negotiators and compared with the base strategies. De-
pending on the evaluation and parameter f, base strategies may
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Algorithm 2: Algorithm for Reviewer component

Input: New strategy Speqw Or new negotiator Npeqy
Data: S, = {s1,- - -, sn}, the set of base strategies
corresponding to the set of base negotiators
Np = {N1, -, Np}, Eval function that provides an
evaluation score of strategy for a negotiator.
Function StrategyEvaluation(Siest, Ni, si, f):
éx = Eval(Nj, Stest)
er = Eval(Nj, s;)
if é; > fp * e then
‘ return Accept and replace s; with Segr
else
‘ return Reject
end
if Input is Npey then
Train new strategy Syrqin against Nyew
ef = Eval(Nnew, RL-agent)
€s = Eval(Nnew, Strain)
if eg > a = ef then
‘ Accept Npew and Strain
else
| Reject
end
for (k € [1,n])
| StrategyEvaluation(Strgin, Nk, Sk, B)

end
if Input is Spew then
for (k € [1,n])
| StrategyEvaluation(Sneqs g, Sk f)

end

be updated with S¢r4ipn. In this manner the Reviewer provides a
mechanism for gradual improvement of the agent.

5 EXPERIMENTAL SETUP

The goals of our experiments are two fold. First, we introduce our
RL-agent based on the proposed framework with small number of
base negotiators and show that the RL-agent, while generalizing
over negotiation scenarios performs on average better than state
of the art ANAC winning agents. Secondly, we show the value of
the reviewer mechanism by evaluating and adding new negotiators
and subsequently show improvement of our RL-agent.

We analyzed our proposed system in 18 domains of ANAC 2013
with cardinality of outcome space ranging from 3 to 56700 and
opposition [10] ranging from 0.002 to 0.606 as shown in Table 1. All
the negotiation experiments are conducted using the NEGotiation
MultiAgent System (NegMAS) platform [41, 51]. For the purpose of
calculating benchmarks and evaluating performance we used the
given preference profiles of ANAC 2013 for each domain. Among
the negotiation settings, the reserved value is kept zero and the
discount factor is ignored for all negotiations. Moreover, we used
min-max normalisation for normalising the utility values between
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Table 1: Overview of the ANAC 2013 domains. We consid-
ered 18 domains with a pair of utility functions.

Domain  Opposition  Outcome Space
Acquisition  0.104 384
Animal 0.15 1152
Camera 0.076 3600
Coffee 0.279 112
Defensive Charms 0.193 36
Dog Choosing  0.002 270
Fifty Fifty 0.498 11
House Keeping 0.13 384
Ice-cream 0.01 720
Kitchen 0.219 15625
Laptop 0.076 27
Lunch 0.246 3840
Nice Or Die 0.177 3
Outfit  0.049 128
planes  0.606 27
Smart Phone 0.022 12000
Ultimatum  0.319 9
Wholesaler 0.128 56700

0 and 1. For performance comparisons average utility values are
calculated on negotiation data obtained from 50 to 100 negotiations
between a pair of agents for each negotiation scenario.

For training a bidding strategy against a given negotiator we gen-
erate a random utility function for the opponent and used fixed self
utility function. This ensures the that maximum entropy reinforce-
ment learning algorithm can learn a stochastic policy that performs
well in varied negotiation scenarios. Additionally, the training of
strategies are done in a single domain and evaluations are done in
all 18 domains. For our experiments all strategies are trained on
the camera domain and tested across other domains. Moreover, for
simplicity all hyperparameters of SAC algorithm were kept fixed
while training against different negotiators. Training of RL-agent
was done using the TF-Agents [46] library.

For the opponent classifier we used a window length of 20 and
the model consists of three consecutive 1D-CNN layers followed by
two Dense layers. The training data for the classifier was generated
by multiple simulations of the base negotiators while training the
RL strategies against them. Additionally, the classifier is trained
only on the data generated in the camera domain while the same
classifier has been used in the evaluation for all other domains. The
training of the classifier was done using TensorFlow library [1].

Evaluations of our proposed framework are done by first instan-
tiating an RL-agent with the number of base negotiators n = 1 and
then increasing it to n = 3 with the help of Reviewer mechanism.
We used parameters a = f# = 1.1 for the Reviewer and for simplic-
ity, opted for a pure switching mechanism instead of combining
strategies. Furthermore, we conducted t-tests with Bonferroni’s
conservative multiple-comparisons correction [3] for analysing if
the difference in mean utilities are statistical significant.
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6 RESULTS

In this section we present the results according to the experimental
setup of Section 5. First we will present the detailed results of
our experiments with 7 ANAC winning agents. Next we present
the evaluations of the Reviewer mechanism. Finally, we present
a summarised result against 47 GENIUS agents. For comparison,
we created three different benchmarks and then compared the
performance of RL-agent against each of the benchmarks. Now,
ngb “d Jenotes the average utility achieved by agent a against b in
domain d over 100 runs with two different utility functions. A and
D denotes the set of agents and domains respectively over which
the benchmark is calculated and |.| denotes the cardinality of a set.

(1) Self utility benchmark: In this benchmark, score of an agent
Sa = m DdeD 2beA U,?Xb:d is the mean utility acquired
by the agent a when negotiating with every agent b € A in
all negotiation scenarios.

(2) Utility against opponent benchmark : In this benchmark, score
against an agent a, Oy = m YdeD ZbeAla UgXb:d
denotes the mean utility acquired by agents b € A/a while
negotiating with agent a in all negotiation scenarios.

(3) Domain utility benchmark: In this benchmark, score of a
domain d, Dy = ﬁ Dbea ngb:d denotes the mean utility
obtained by all agents a € A in domain d, while negotiating
with every agent b € A.

6.1 Performance against ANAC Winning
Agents

Before evaluating our agent, we first calculate the benchmark scores
with 7 ANAC winning agents and then compare the score of our
RL agent with each benchmarks as shown in Figure 2. The agents
selected are Atlas3, ParsAgent, RandomDance, ParsCat, AgentYX,
Caduceus and PonpokoAgent [6, 8, 25]1. It is clearly visible from
Figure 2, that our RL-agent outperformed all 7 agents in all the
benchmarks. The error bars in Figure 2a and Figure 2b denote the
standard deviation of average utilities obtained over the domains.
In comparison with self utility benchmark, RL-agent performed
25% better than the agent which acquired highest average utility
in that benchmark as shown in Figure 2a. Overall, our agent’s
score was 37% higher than the average scores of all other agents.
Glancing at the error bars, one can understand that the RL-agent
has the minimum standard deviation among all other agents and
hence shows the robustness of the agent in varied negotiation
domains. In comparison with utility against opponent benchmark,
the average utility obtained by the RL-agent outperformed the
benchmark scores in a range of 11% to 50% as shown in Figure 2b.
This shows that the RL-agent outperforms the average score of
the opponents against each agent. Proceeding to the comparison
with domain benchmark illustrated in Figure 2c, one can clearly
visualize that the scores of RL-agent is better than the highest score
by any agent in 13 out of 18 domains. In fact the average score of
RL-agent is more than the utility benchmark by a range of 4% to
450%.

! Atlas3 (2015 winner), ParsAgent (2015 2"¢ position), RandomDance (2015 3”4 po-
sition), Caduceus (2016 winner), ParsCat (2016 2nd position), AgentYX (2016 and
position) and PonpokoAgent (2017 winner)
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Figure 2: (a) Comparison of RL-agent with self utility benchmark consisting of 7 ANAC winning agents. It also shows the
performance of RL-agent with n = 1,n = 2 and n = 3. (b) Comparison of RL-agent with utility against opponent benchmark
consisting of 7 ANAC winning agents. (c) Comparison of RL-agent with domain benchmark consisting of 18 domains.

6.2 Performance of Reviewer

Although the final comparison shown in Figure 2 is the instance of
RL-agent with three negotiator-strategy pairs, the framework was
first initialized with only one negotiator, that is, with the Random
negotiator. One RL based strategy was trained against it and in-
cluded in the negotiator-strategy pair. Opponent classifier training
was not needed as number of base negotiator n = 1. As expected
the performance of the initial RL-agent was poor as shown in Fig-
ure 2a. Next we introduced a simple time dependent agent called
Boulware agent [24], to the Reviewer. After receiving acceptance
from reviewer, new RL based strategy was added to the strategy
pool and the opponent classifier was trained for n = 2. In a similar
way, a new behavioural strategy based agent, Naive tit-fot-tat and
corresponding RL based strategy was included in the RL-agent and
classifier was trained for n = 3. Furthermore, the strategy trained
against random negotiator was replaced by the RL strategy trained
against Naive tit-for-tat as per the evaluation of the Reviewer. Mov-
ing ahead, we introduced other agents from the pool of 7 ANAC
agents to the Reviewer, but the Reviewer rejected the inclusion
of any additional agents. It is to be noted that all evaluations by
the Reviewer were also restricted to a single domain only (camera
domain). The performance of the RL-agent with different number
of base negotiators is shown in Figure 2a. It can be clearly seen that
the performance of the RL-agent has increased with the addition of
strategies and hence shows the significance of the Reviewer mech-
anism in our framework. To keep the visualisations simple, further
comparisons with other benchmarks as shown in Figure 2b and
Figure 2c are only shown with number of base negotiators n = 3.
The results obtained have two fold significance, firstly it shows
that the bidding behaviour of all 7 opponent agents can be approxi-
mated by a piece-wise function of Boulware type, behavioural type
or random type negotiator. So the strategy switching technique
within a negotiation session, with strategies specifically trained
for three basic negotiators works undoubtedly well against these
7 opponents. Secondly, it shows the Reviewer mechanism plays a
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key role in addition of base strategies and thereby improving the
RL-agent’s overall performance.

6.3 Performance against GENIUS Agents

To show the versatility of the proposed framework, we chose the
already created RL-agent with only 3 base negotiators and evalu-
ated it against the benchmarks scores of 47 GENIUS agents which
includes ANAC competitors from year 2015 to 2017. The results
are illustrated in Figure 4 and Figure 3 where the error bars de-
note the standard deviation over the domains. In comparison with
self utility benchmark, our RL-agent performed better than other
agents in the range of 11% to 139%. The average improvement is
37.4% with an improvement of more than 50% against 12 agents as
shown in Figure 4a. The relatively low standard deviation marks
the robustness of our agent in different domains. Next, comparison
with the utility against opponent benchmark as shown in Figure 3,
reveals that the RL-agent outperformed in 40 out of 47 comparisons.
Individual performance improvement ranges from 1% to 428% with
an improvement of over 50% against 19 agents and 100% against
5 agents. Finally, comparison with domain benchmark is shown
in Figure 4b, where it is visible that the scores of RL-agent is bet-
ter than the highest score by any agent in 13 out of 18 domains.
Additionally, the RL-agent outperformed the average benchmark
scores in all the domains. The performance improvement over the
benchmark scores in each domain ranges from 10% to 488% with an
improvement of at least 50% in 7 domains. Finally, we calculate the
statistical significance of the differences. For the utility differences
to be statistically significant, following Bonferroni’s conservative
multiple-comparisons correction the p-values of each t-tests in self
utility benchmark, utility against opponent benchmark and domain
benchmark should be less than 0.0011, 0.0011 and 0.0028 respec-
tively. It turns out that for self utility benchmark, differences of
utility in 30 out of 47 comparisons were statistically significant
whereas in utility against opponent benchmark 32 out of 47 were
statistically significant. In case of domain benchmark, all differences
of utilities were statistically significant.
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Figure 4: Comparison of the performance of RL-agent (a) with self utility benchmark consisting of 47 GENIUS Agents

with domain benchmark consisting of 18 domains.

7 CONCLUSION AND FUTURE WORK

In this work we proposed an autonomous negotiating agent frame-
work with four components: negotiators paired with trained strate-
gies, an opponent classifier, a switching mechanism and a reviewer
mechanism. Strategies included are RL based strategies whereas
strategy switching depends on the classification probabilities of
the opponent classifier. The proposed opponent classifier classifies
the opponent’s bidding behaviour with respect to the base negotia-
tor’s behaviour at every time step thus allows the agent to switch
or combine strategies within a single negotiation session. These
functionalities together gives our RL-agent versatility even with
a small pool of base negotiators as illustrated in our evaluations.
Furthermore, the reviewer mechanism helps in the decision making
of adding more negotiators and strategies to the existing pool of
base negotiators and strategies. This helps in incremental improve-
ment of the RL-agent and also restricts unnecessary addition of
base entities.
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In our experimental setup, all training and evaluations were done
by removing the discount factor and keeping the reserved utility
value as zero. It would be interesting to obtain and compare the
results with varying discount factors and reserved utility values.
Moreover, while training bidding strategies, we have used the same
acceptance strategies against all negotiators. At the same time, it
has been noticed that the performance of trained strategy depends
on the choice of acceptance strategy. So our future work involves
training the acceptance strategy together with the bidding strat-
egy. Also, to show the concept of reviewer mechanism, we have
implemented an evaluation based reviewer. Another interesting
direction could be using unsupervised clustering algorithms on
the negotiators bidding behaviour to differentiate a new negotiator
from the pool of negotiators. That will remove the additional step
of training a new strategy each time for evaluation by the reviewer
and at the same time will give us a concrete picture about the type
of base negotiators that make the RL-agent perform better across
various negotiation scenarios and against varied opponents.
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