
Adaptive Cascade Submodular Maximization
Shaojie Tang

Naveen Jindal School of Management

University of Texas at Dallas

Richardson, TX, USA

shaojie.tang@utdallas.edu

Jing Yuan

Department of Computer Science

University of Texas at Dallas

Richardson, TX, USA

csyuanjing@gmail.com

ABSTRACT
In this paper, we propose and study the cascade submodular max-

imization problem under the adaptive setting. The input of our

problem is a set of items, each item is in a particular state (i.e., the

marginal contribution of an item) which is drawn from a known

probability distribution. However, we can not know its actual state

before selecting it. As compared with existing studies on stochastic

submodular maximization, one unique setting of our problem is

that each item is associated with a continuation probability which

represents the probability that one is allowed to continue to select

the next item after selecting the current one. Intuitively, this term

captures the externality of selecting one item to all its subsequent

items in terms of the opportunity of being selected. Therefore, the

actual set of items that can be selected by a policy depends on the

specific ordering it adopts to select items, this makes our problem

fundamentally different from classical submodular set optimization

problems. Our objective is to identify the best sequence of select-

ing items so as to maximize the expected utility of the selected

items. We propose a class of stochastic utility functions, adaptive
cascade submodular functions, and show that the objective functions

in many practical application domains satisfy adaptive cascade sub-

modularity. Then we develop a 0.12 approximation algorithm to

the adaptive cascade submodular maximization problem.

KEYWORDS
Adaptive Submodular Maximization; Submodular Sequencing; Cas-

cade Browse Model

ACM Reference Format:
Shaojie Tang and Jing Yuan. 2021. Adaptive Cascade Submodular Maximiza-

tion. In Proc. of the 20th International Conference on Autonomous Agents
and Multiagent Systems (AAMAS 2021), Online, May 3–7, 2021, IFAAMAS,

9 pages.

1 INTRODUCTION
Submodular maximization has been extensively studied in the litera-

ture [10]. Their objective is to select a group of items that maximize

a submodular utility function subject to various constraints. Re-

cently, Golovin and Krause [5] propose the problem of adaptive

submodular maximization, a natural stochastic variant of the classi-

cal submodular maximization. In particular, they assume that each

item is associated with a particular state which is drawn from a

known distribution, the only way to know an item’s state is to

select that item. As compared with the classical submodular max-

imization, feasible solutions are now policies instead of subsets:

Proc. of the 20th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2021), U. Endriss, A. Nowé, F. Dignum, A. Lomuscio (eds.), May 3–7, 2021, Online.
© 2021 International Foundation for Autonomous Agents and Multiagent Systems

(www.ifaamas.org). All rights reserved.

the action taken in each step depends on the observations from

the previous steps. For example, a typical adaptive policy works as

follows: in each step, we select an item, get to see its actual state,

then adaptively select the next item based on these observations

and so on. They show that an adaptive greedy policy achieves a

1− 1/𝑒 approximation ratio when maximizing an adaptive submod-

ular and adaptive monotone utility function subject to a cardinality

constraint. Our problem setting is similar to theirs in that we are

also interested in selecting a sequence of items adaptively so as

to maximize the expected utility. However, one unique setting of

our model is that each item is assigned a continuation probability
[3, 14]. The continuation probability of an item, say 𝑖 , is defined

as the probability that one is allowed to select the next item after

𝑖 is being selected. The probabilistic continuation setting allows

us to capture the scenario where the selecting process could be

terminated prematurely. It can be seen that selecting an item with

low continuation probability decreases the chance of its subsequent

items being selected. Therefore, the actual set of items that can be

selected by a policy depends on the specific ordering it adopts to

select items. Our setting is motivated by many real-world applica-

tions in machine learning, economics, and operations management.

We next give three real-world examples that fit our setting.

Example 1: Taking sponsored search advertising as one exam-

ple, one challenge faced by ad-networks is to select a sequence of

advertisements to display to an online user. It is often assumed

that the visibility of an advertisement is negatively impacted by

the appearances of its preceding advertisements, e.g., the user is

less likely to view a new ad after viewing too many other advertise-

ments. One common way to capture this effect is to introduce the

continuation probability for each advertisement. In particular, Tang

et al. [15] assume that the users scan through the ads in order, after

viewing one advertisement, users decide probabilistically whether

to click it, as well as whether to continue the scanning process with

the ad specific continuation probability. As a result, the user could

terminate the ad session prematurely in a probabilistic manner.

Assume the revenue generated from one click is known, the goal

of ad-network is to adaptively select a sequence of ads to maximize

the expected revenue.

Example 2: Our second practical application is sequential prod-

uct recommendation [4]. One important task of online retailers such

as Amazon is to recommend a list of products to each online user.

Given a list of recommended products, users scan through them

in order, after browsing one product, users decide probabilistically

whether to browse the next product with a product-specific con-

tinuation probability. After browsing some products, users make a

purchase decision within these products (including no purchase op-

tion). Similar to the first application, the recommendation process

stops immediately whenever the user decides not to browse the

Main Track AAMAS 2021, May 3-7, 2021, Online

1299

next product. Assume each product is associated with a revenue,

the goal of the online retailer is to adaptively recommend a group

of products to maximize the expected revenue.

Example 3: The third example is pool-based active learning [5].

For example, given a set of possible hypotheses about the profile

of an online user, we let the user conduct an online survey to rule

out inconsistent hypotheses. One popular way to build the online

survey is called paging design [14] where only one question is

displayed to the user per page. After finishing a question, the user

can click the “Next” button to view the next question or click “Exit”

to terminate the survey process probabilistically. Our goal is to

adaptively choose a sequence of survey questions to infer the user’s

profile as accurate as possible. In Section 5, we use pool-based active

learning as an example application to evaluate the performance of

our algorithms.

One crucial point in the above applications is that the value of a

group of items depends not only on the items belong to that group,

but also on the specific ordering of those items. This makes our

problem different from set optimization problems as we seek a best

sequence of items while considering the externality of one item to

its subsequent items in terms of the chance of being selected. Al-

though sequence selection has attracted increasing attention these

days, most of existing results do not apply to our problem. As will

be discussed in Section 2, our utility function does not satisfy the

property of “non-decreasing”, a common assumption made in many

existing studies. Moreover, while the majority of prior research con-

siders non-adaptive setting, we focus on the adaptive setting, where

we are allowed to dynamically adjust the selecting strategy based

on the current observations. To make our problem approachable,

we restrict our attention to a class of stochastic utility functions,

adaptive cascade submodular functions. Intuitively, any adaptive cas-
cade submodular function must satisfy diminishing return condition
under the adaptive setting. We show that the objective functions

in several practical application domains satisfy adaptive cascade

submodularity. We propose a simple algorithm that achieves a 0.12

approximation ratio. We conduct extensive experiments to evaluate

the performance of our solutions in the context of pool-based active

learning. The experiment results validate the theoretical analysis

of our algorithm.

2 RELATEDWORK
Submodular maximization has been extensively studied in the lit-

erature [10]. However, most of existing studies focus on set opti-

mization problems whose objective is to select set of items that

maximizes a submodular utility function. Our focus is on identify-

ing the best sequence of items so as to maximize the expected utility.

Although our paper focuses on the adaptive setting, we first review

some important studies in the filed of non-adaptive sequence selec-

tion. Recently, Streeter and Golovin [11] considered the sequence

optimization problem prompted by applications such as online

resource allocation. They defined the properties of monotonicity

and submodularity over sequences instead of sets. Alaei et al. [1]

introduced the term of sequence submodularity and sequence-non-

decreasing. Tschiatschek et al. [16] and Mitrovic et al. [8] defined

the utility of a sequence over the edges of a directed graph connect-

ing the items together with a submodular function. However, their

results do not apply to our setting since our utility function does not

satisfy the property of “sequence monotonicity”. Intuitively, under

our setting, adding an item to an existing sequence could decrease

the utility of the original sequence. For example, assume there is

a sequence 𝑆 with positive utility, as well as an item 𝑖 with zero

utility and zero continuation probability. Consider a new sequence

that concatenates 𝑖 and 𝑆 (𝑖 is placed ahead of 𝑆), it is easy to verify

that the utility of the new sequence is zero which is smaller than

the utility of 𝑆 . Zhang et al. [17] propose the concept of string sub-

modularity. They provide a set of data-dependent approximation

bounds for a greedy strategy. It turns out that our utility function

under the non-adaptive setting is string submodular, however, the

worst-case performance of the greedy strategy [17] is arbitrarily

bad in our setting. Tang and Yuan [14] propose and study the cas-

cade submodular maximization problem under the non-adaptive

setting. They propose a series of approximation algorithms in the

context of quiz design. Note that all studies previously mentioned

restrict themselves to the non-adaptive setting where a sequence

must be selected all at once. Only recently, Mitrovic et al. [9] ex-

tend the previous studies to the adaptive setting and propose the

concept of adaptive sequence submodularity. They follow [16] to

build their basic model. Our study is different from theirs in that

our utility function is defined over subsequences, instead of graphs

[9], making their results not applicable to our setting.

Our work is also closely related to stochastic submodular maxi-

mization [2, 5]. Golovin and Krause [5] extend submodularity to

adaptive policies and propose the concept of adaptive submodular-

ity. They show that the greedy adaptive strategy achieves a 1 − 1/𝑒
approximation ratio for adaptive submodular maximization subject

to a cardinality constraint. Tang [12] develops the first approxima-

tion algorithm for maximizing a non-monotone adaptive submod-

ular function. In this work, we generalize the concept of adaptive

submodularity to functions over sequences instead of sets, and

introduce the concept of adaptive cascade submodular functions.

As mentioned earlier, our model allows us to capture the scenario

where the selecting process could be terminated prematurely. We

develop an adaptive policy that achieves a 0.12 approximation ratio

for solving sequence selection problems with an adaptive cascade

submodular and monotone function.

3 PRELIMINARIES
We first introduce some notations and define the general class of

adaptive cascade submodular functions. In the rest of this paper,

let [𝑛] denote the set {1, 2, · · · , 𝑛}, and we use |𝑆 | to denote the

cardinality of a set or a sequence 𝑆 .

3.1 Items and States
Let 𝐸 denote the entire set of𝑚 items, and each item 𝑖 ∈ 𝐸 is in a

particular state that belongs to a set 𝑂 of possible states. Denote

by 𝜙 : 𝐸 → 𝑂 a realization of the states of items. Let Φ = {Φ𝑖 |
𝑖 ∈ 𝐸} be a random realization where Φ𝑖 ∈ 𝑂 denotes a random

realization of 𝑖 . After selecting 𝑖 , its actual state Φ𝑖 is discovered.
LetU denote the set of all realizations, we assume there is a known

prior probability distribution 𝑝 (𝜙) = {Pr[Φ = 𝜙] : 𝜙 ∈ U} over
realizations. In addition, there is a vector 𝛿 = {𝛿𝑖 | 𝑖 ∈ 𝐸} where 𝛿𝑖
denotes the continuation probability of item 𝑖 ∈ 𝐸, i.e., it represents

Main Track AAMAS 2021, May 3-7, 2021, Online

1300

the probability that one is allowed to continue to select the next

item after selecting 𝑖 . We are interested in selecting a group of

items adaptively as follows: we start by selecting the first item, say

𝑖 ∈ 𝐸, observe its state Φ𝑖 , then with probability 𝛿𝑖 , we continue to

select the next item and observe its state, otherwise we terminate

the selecting process, and so on. During the selecting process, we

say the current process is live if we can continue to select the next

item, otherwise we say this process is dead. Thus, the probability
of a selecting process to be live after 𝑖 is being selected is 𝛿𝑖 . After

each selection, we denote by a partial realization𝜓 the observations

made so far: 𝜓 is a function from some subset (i.e., those items

which are selected so far) of 𝐸 to their states. We define the domain
of𝜓 as the subset of items involved in𝜓 . Given a realization 𝜙 and a

partial realization𝜓 , we say𝜓 is consistent with 𝜙 if they are equal

everywhere in the domain of 𝜓 . We write 𝜙 ∼ 𝜓 in this case. We

say that𝜓 is a subrealization of𝜓 ′ if dom(𝜓) ⊆ dom(𝜓 ′) and they

are equal everywhere in dom(𝜓). In this case we write𝜓 ⊆ 𝜓 ′. We

use 𝑝 (𝜙 | 𝜓) to denote the conditional distribution over realizations

given a partial realization𝜓 : 𝑝 (𝜙 | 𝜓) = Pr[Φ = 𝜙 | Φ ∼ 𝜓].

3.2 Policies and Problem Formulation
Any adaptive strategy of selecting items can be represented using a

function 𝜋 from a set of partial realizations to 𝐸, specifying which

item to select next, if the current selecting process is still live, given

the current observations. Given any policy 𝜋 and realization 𝜙 , we

say 𝜋 adopts 𝑆𝜋,𝜙 under realization 𝜙 if 𝑆𝜋,𝜙 is the longest possible

sequence of items that can be selected by 𝜋 under realization 𝜙 .

Intuitively, by following 𝜋 , one can successfully select all items in

𝑆𝜋,𝜙 under 𝜙 if the selecting process is never dead. By abuse of

notation, we use the same notation 𝑆𝜋,𝜙 to denote the set of items

in 𝑆𝜋,𝜙 . Given a sequence 𝑆𝜋,𝜙 , let 𝑆
(𝑘)
𝜋,𝜙

denote the prefix of 𝑆𝜋,𝜙 of

length 𝑘 and let 𝑆𝑘
𝜋,𝜙

denote the 𝑘-th item in 𝑆𝜋,𝜙 for any 𝑘 ∈ [𝑚].
It follows that under realization 𝜙 , 𝜋 selects all and only items from

𝑆
(𝑘)
𝜋,𝜙

with probability (1 − 𝛿𝑘)
∏

𝑖∈𝑆 (𝑘−1)
𝜋,𝜙

𝛿𝑖 .

For notational convenience, define 𝑆
(0)
𝜋,Φ = ∅ for any 𝜋 and Φ. We

next introduce a utility function 𝑓 from a subset of items and their

states to a non-negative real number: 𝑓 : 2
𝐸 × 𝑂𝐸 → R≥0. The

expected utility of a policy 𝜋 under realization 𝜙 is∑
𝑘∈[|𝑆𝜋,𝜙 |]

(1 − 𝛿
𝑆𝑘
𝜋,𝜙

)
∏

𝑖∈𝑆 (𝑘−1)
𝜋,𝜙

𝛿𝑖 𝑓 (𝑆 (𝑘)𝜋,𝜙
, 𝜙)

Based on this notation, we define the expected utility 𝑓𝑎𝑣𝑔 (𝜋) of a
policy 𝜋 as

𝑓𝑎𝑣𝑔 (𝜋) = EΦ∼𝑝 (𝜙) [
∑

𝑘∈[|𝑆𝜋,Φ |]
(1 − 𝛿

𝑆𝑘
𝜋,Φ
)

∏
𝑖∈𝑆 (𝑘−1)

𝜋,Φ

𝛿𝑖 𝑓 (𝑆 (𝑘)𝜋,Φ,Φ)] (1)

Our goal is to find a policy 𝜋𝑜𝑝𝑡 that maximizes the expected

utility:

𝜋𝑜𝑝𝑡 ∈ argmax

𝜋
𝑓𝑎𝑣𝑔 (𝜋)

3.3 Adaptive Cascade Submodularity and
Monotonicity

We first review two concepts which are defined over set functions.

For notational convenience, let ℎ(𝜓) = EΦ∼𝑝 (𝜙 |𝜓) [𝑓 (dom(𝜓),Φ)]
denote the utility of dom(𝜓) under partial realization𝜓 .

Definition 1. [5][Adaptive Submodularity] A set function 𝑓 is
adaptive submodular with respect to a prior distribution 𝑝 (𝜙), if for
any two partial realizations𝜓 and𝜓 ′ such that𝜓 ⊆ 𝜓 ′, and any item
𝑖 ∈ 𝐸 \ dom(𝜓 ′), the following holds:

EΦ∼𝑝 (𝜙 |𝜓) [𝑓 ({𝑖} ∪ dom(𝜓),Φ)] − ℎ(𝜓)
≥ EΦ∼𝑝 (𝜙 |𝜓 ′) [𝑓 ({𝑖} ∪ dom(𝜓 ′),Φ)] − ℎ(𝜓 ′) (2)

Definition 2. [5][Adaptive Monotonicity] A set function 𝑓 is
adaptive monotone with respect to a prior distribution 𝑝 (𝜙), if for
any partial realization𝜓 , and any item 𝑖 ∈ 𝐸 \dom(𝜓), the following
holds:

EΦ∼𝑝 (𝜙 |𝜓) [𝑓 ({𝑖} ∪ dom(𝜓),Φ)] − ℎ(𝜓) ≥ 0 (3)

We next introduce the notation of adaptive cascade submodularity.
For any subset of items 𝑉 ⊆ 𝐸, let Ω(𝑉) denote the set of policies
which are allowed to select items only from𝑉 . It clear that Ω(𝑉) ⊆
Ω(𝑉 ′) for any 𝑉 ⊆ 𝑉 ′.

Definition 3 (Adaptive Cascade Submodularity). A function
𝑓 is adaptive cascade submodular with respect to a prior distribution
𝑝 (𝜙), if for any two partial realizations𝜓 and𝜓 ′ such that𝜓 ⊆ 𝜓 ′,
and any subset of items 𝑉 ⊆ 𝐸 \ dom(𝜓 ′), the following holds for
any 𝛿 :

max

𝜋 ∈Ω (𝑉)
𝑓𝑎𝑣𝑔 (𝜋 ∪ dom(𝜓) | 𝜓) − ℎ(𝜓)

≥ max

𝜋 ∈Ω (𝑉)
𝑓𝑎𝑣𝑔 (𝜋 ∪ dom(𝜓 ′) | 𝜓 ′) − ℎ(𝜓 ′)

where 𝑓𝑎𝑣𝑔 (𝜋 ∪ dom(𝜓) | 𝜓) =

EΦ∼𝑝 (𝜙 |𝜓) [
∑

𝑘∈[|𝑆𝜋,Φ |]
(1 − 𝛿

𝑆𝑘
𝜋,Φ
)

∏
𝑖∈𝑆 (𝑘−1)

𝜋,Φ

𝛿𝑖 𝑓 (𝑆 (𝑘)𝜋,Φ ∪ dom(𝜓),Φ)] (4)

denote the conditional expected utility of a policy that first selects
dom(𝜓), then runs 𝜋 , conditioned on a partial realization𝜓 .

We next show that if 𝑓 is adaptive monotone and adaptive cas-

cade submodular with respect to a prior distribution 𝑝 (𝜙), then
𝑓 is adaptive submodular with respect to the same distribution.

Although the other direction is not necessarily true, that is, adap-

tive submodularity does not imply adaptive cascade submodularity,

we find that many well studied adaptive submodular functions are

also adaptive cascade submodular. In fact, it is easy to show that

if the variables {Φ𝑖 | 𝑖 ∈ 𝐸} are independent, then 𝑓 is adaptive

cascade submodular. One such example is sensor placement [7]

where deployed sensors are assumed to fail probabilistically and

independently. In other applications including influence maximiza-

tion and pool-based active learning [5] where {Φ𝑖 | 𝑖 ∈ 𝐸} are not
independent, their utility functions also satisfy adaptive cascade

submodularity.

Lemma 1. If 𝑓 is adaptive monotone and adaptive cascade sub-
modular with respect to a prior distribution 𝑝 (𝜙), then 𝑓 is adaptive
submodular with respect to 𝑝 (𝜙).

Main Track AAMAS 2021, May 3-7, 2021, Online

1301

Proof: Since 𝑓 is adaptive cascade submodular, we have

max

𝜋 ∈Ω (𝑉)
𝑓𝑎𝑣𝑔 (𝜋 ∪ dom(𝜓) | 𝜓) − ℎ(𝜓)

≥ max

𝜋 ∈Ω (𝑉)
𝑓𝑎𝑣𝑔 (𝜋 ∪ dom(𝜓 ′) | 𝜓 ′) − ℎ(𝜓 ′) (5)

for any two partial realizations 𝜓 and 𝜓 ′ such that 𝜓 ⊆ 𝜓 ′, and
any subset of items 𝑉 ⊆ 𝐸, according to Definition 3. Consider a

singleton 𝑉 = {𝑖} for any 𝑖 ∈ 𝐸 \ dom(𝜓 ′), the strategy set Ω({𝑖})
contains only two strategies for any partial realization𝜓 : selecting 𝑖

or ∅. Due to 𝑓 is adaptive monotone, we have max𝜋 ∈Ω ({𝑖 }) 𝑓𝑎𝑣𝑔 (𝜋∪
dom(𝜓) | 𝜓) = 𝑓𝑎𝑣𝑔 (𝜋 ∪{𝑖} | 𝜓) for any 𝑖 ∈ 𝐸 \dom(𝜓 ′) and partial
realization𝜓 . Condition (5) can be simplified as

𝑓𝑎𝑣𝑔 (𝜋 ∪ {𝑖} | 𝜓) − ℎ(𝜓) ≥ 𝑓𝑎𝑣𝑔 (𝜋 ∪ {𝑖} | 𝜓 ′) − ℎ(𝜓 ′) (6)

for any two partial realizations 𝜓 and 𝜓 ′ such that 𝜓 ⊆ 𝜓 ′, and
any 𝑖 ∈ 𝐸 \ dom(𝜓 ′). According to (4), we have 𝑓𝑎𝑣𝑔 (𝜋 ∪ {𝑖} |
𝜓) = EΦ∼𝑝 (𝜙 |𝜓) [𝑓 ({𝑖} ∪ dom(𝜓),Φ)] for any partial realization𝜓 .

It follows that (6) can be rewritten as

EΦ∼𝑝 (𝜙 |𝜓) [𝑓 ({𝑖} ∪ dom(𝜓),Φ)] − ℎ(𝜓)
≥ EΦ∼𝑝 (𝜙 |𝜓 ′) [𝑓 ({𝑖} ∪ dom(𝜓 ′),Φ)] − ℎ(𝜓 ′) (7)

for any two partial realizations𝜓 and𝜓 ′ such that𝜓 ⊆ 𝜓 ′, and any

𝑖 ∈ 𝐸 \ dom(𝜓 ′). According to Definition 1, (7) implies that 𝑓 is

adaptive submodular with respect to 𝑝 (𝜙). 2

4 THE ADAPTIVE GREEDY PLUS POLICY
In this section, we propose an adaptive policy which achieves a

constant approximation ratio for maximizing an adaptive cascade

submodular function.

4.1 Technical Lemmas
Before presenting our algorithm, we first provide some additional

notations and technical lemmas that will be used to design and an-

alyze the proposed algorithm. We start by introducing the concept

of reachability.

Definition 4 (Reachability). Given a sequence of items 𝑆 and
any 𝑘 ∈ [|𝑆 |], we define the reachability of its 𝑘-th item 𝑆𝑘 as∏

𝑖∈𝑆 (𝑘−1) 𝛿𝑖 , e.g., it represents the probability of 𝑆𝑘 being selected
given that 𝑆 is adopted. For notational convenience, assume 𝛿𝑆0 = 1.

Based on the notion of reachability, we next introduce the con-

cepts of 𝜌-reachable sequence, strongly 𝜌-reachable sequence, 𝜌-
reachable policy, and strongly 𝜌-reachable policy.

Definition 5 (𝜌-reachable Seqence). For any 𝜌 ∈ [0, 1], we
say a sequence 𝑆 is 𝜌-reachable if the reachability of all items in 𝑆 is
at least 𝜌 , or in equivalent, the reachability of the last item of 𝑆 is at
least 𝜌 , e.g.,

∏
𝑖∈𝑆 (|𝑆 |−1) 𝛿𝑖 ≥ 𝜌 .

Based on the above definition, it can be seen that if we adopt

a 𝜌-reachable sequence 𝑆 , then the entire 𝑆 can be selected with

probability at least 𝜌 .

Definition 6 (𝜌-reachable Policy). For any 𝜌 ∈ [0, 1], we
say a policy 𝜋 is 𝜌-reachable if for any realization 𝜙 , it holds that∏

𝑖∈𝑆
(|𝑆𝜋,𝜙 |−1)
𝜋,𝜙

𝛿𝑖 ≥ 𝜌 . That is, 𝜋 only adopts 𝜌-reachable sequence.

Let Ω(𝜌) denote the set of all 𝜌-reachable policies.

Definition 7 (Strongly 𝜌-reachable Seqence). For any 𝜌 ∈
[0, 1], we say a sequence 𝑆 is strongly 𝜌-reachable if

∏
𝑖∈𝑆 𝛿𝑖 ≥ 𝜌 .

Definition 8 (Strongly 𝜌-reachable Policy). For any 𝜌 ∈
[0, 1], we say a policy 𝜋 is strongly 𝜌-reachable if for any realization
𝜙 , it holds that

∏
𝑖∈𝑆𝜋,𝜙 𝛿𝑖 ≥ 𝜌 . That is, a strongly 𝜌-reachable policy

only adopts strongly 𝜌-reachable sequence. Let Ω(𝜌+) denote the set
of all strong 𝜌-reachable policies.

We next introduce the term of maximal 𝜌-reachable sequence.

Definition 9 (Maximal 𝜌-reachable Seqence). Fix any 𝜌 ∈
[0, 1]. When

∏
𝑖∈𝐸 𝛿𝑖 < 𝜌 , we say a sequence 𝑆 is a maximal 𝜌-

reachable sequence if 𝑆 is 𝜌-reachable but not strongly 𝜌-reachable.
When

∏
𝑖∈𝐸 𝛿𝑖 ≥ 𝜌 , all sequences are considered as maximal 𝜌-

reachable sequences. LetG(𝜌) denote the set of all maximal 𝜌-reachable
sequences.

Intuitively, when

∏
𝑖∈𝐸 𝛿𝑖 < 𝜌 , a maximal 𝜌-reachable sequence

𝐺 ∈ G(𝜌)must satisfy two conditions: 1. the reachability of all items

in 𝐺 is at least 𝜌 , and 2. any item placed after 𝐺 has reachability

less than 𝜌 .

Based on the above notations, we first show that there exists

a 𝜌-reachable policy whose performance is close to the optimal

policy.

Lemma 2. Fix any 𝜌 ∈ [0, 1]. If 𝑓 is adaptive cascade submodular,
there is a 𝜌-reachable policy 𝜋 ∈ Ω(𝜌) such that 𝑓𝑎𝑣𝑔 (𝜋) ≥ (1 −
𝜌) 𝑓𝑎𝑣𝑔 (𝜋𝑜𝑝𝑡).

Proof: The basic idea of our proof is to show that given an optimal

policy 𝜋𝑜𝑝𝑡 , we can discard those items whose reachability is small

at the cost of a bounded loss. A similar result was proved in [6] for

maximizing a linear utility function under the non-adaptive setting.

For any maximal 𝜌-reachable sequence𝐺 ∈ G(𝜌), let Pr[(𝐺,𝜓)]
denote the probability that 𝐺 is a prefix of some sequence adopted

by 𝜋𝑜𝑝𝑡 while the states of 𝐺 is𝜓 , thus dom(𝜓) = 𝐺 . Based on this

notation, we can represent the expected utility of 𝜋𝑜𝑝𝑡 as follows:

𝑓𝑎𝑣𝑔 (𝜋𝑜𝑝𝑡) =
∑
𝐺 ∈G(𝜌)

∑
Ψ:dom(Ψ)=𝐺 Pr[(𝐺,Ψ)]𝑔(𝐺,Ψ) (8)

where

𝑔(𝐺,Ψ) =
∑

𝑘∈[|𝐺 |]
(1 − 𝛿𝐺𝑘) (

∏
𝑖∈𝐺 (𝑘−1)

𝛿𝑖) 𝑓 (𝐺 (𝑘) ,Ψ)

+(
∏
𝑖∈𝐺

𝛿𝑖) (max

𝜋 ∈Ω (𝐸\𝐺)
𝑓𝑎𝑣𝑔 (𝜋 ∪ dom(Ψ) | Ψ) − ℎ(Ψ))

denotes the expected utility of 𝜋𝑜𝑝𝑡 conditioned on 𝐺 is a prefix

of some sequence adopted by 𝜋𝑜𝑝𝑡 while the states of 𝐺 is Ψ. Ac-
cording to Definition 3, we have max𝜋 ∈Ω (𝐸\𝐺) 𝑓𝑎𝑣𝑔 (𝜋 ∪ dom(Ψ) |
Ψ)−ℎ(Ψ) ≤ max𝜋 ∈Ω (𝐸\𝐺) 𝑓𝑎𝑣𝑔 (𝜋 | ∅)−𝑓 (∅, ∅) due to ∅ ⊆ Ψ. More-

over, max𝜋 ∈Ω (𝐸\𝐺) 𝑓𝑎𝑣𝑔 (𝜋 | ∅)−𝑓 (∅, ∅) = max𝜋 ∈Ω (𝐸\𝐺) 𝑓𝑎𝑣𝑔 (𝜋) ≤
max𝜋 ∈Ω (𝐸) 𝑓𝑎𝑣𝑔 (𝜋) = 𝑓𝑎𝑣𝑔 (𝜋𝑜𝑝𝑡) where the inequality is due to

Ω(𝐸 \𝐺) ⊆ Ω(𝐸). Then we have

max

𝜋 ∈Ω (𝐸\𝐺)
𝑓𝑎𝑣𝑔 (𝜋 ∪ dom(Ψ) | Ψ) − ℎ(Ψ) ≤ 𝑓𝑎𝑣𝑔 (𝜋𝑜𝑝𝑡) (9)

Main Track AAMAS 2021, May 3-7, 2021, Online

1302

It follows that

𝑔(𝐺,Ψ) ≤
∑

𝑘∈[|𝐺 |]
(1 − 𝛿𝐺𝑘) (

∏
𝑖∈𝐺 (𝑘−1)

𝛿𝑖) 𝑓 (𝐺 (𝑘) ,Ψ) +

(
∏
𝑖∈𝐺

𝛿𝑖) 𝑓𝑎𝑣𝑔 (𝜋𝑜𝑝𝑡)

≤
∑

𝑘∈[|𝐺 |]
(1 − 𝛿𝐺𝑘) (

∏
𝑖∈𝐺 (𝑘−1)

𝛿𝑖) 𝑓 (𝐺 (𝑘) ,Ψ) + 𝜌 𝑓𝑎𝑣𝑔 (𝜋𝑜𝑝𝑡)

where the first inequality is due to (9) and the second inequality is

due to 𝐺 is a maximal 𝜌-reachable sequence. Then we have

𝑓𝑎𝑣𝑔 (𝜋𝑜𝑝𝑡) =
∑

𝐺∈G(𝜌)

∑
Ψ:dom(Ψ)=𝐺

Pr[(𝐺,Ψ)]𝑔 (𝐺,Ψ)

≤
∑

𝐺∈G(𝜌)

∑
Ψ:dom(Ψ)=𝐺

Pr[(𝐺,Ψ)]

×(
∑

𝑘∈[|𝐺 |]
(1 − 𝛿

𝐺𝑘) (
∏

𝑖∈𝐺 (𝑘−1)
𝛿𝑖) 𝑓 (𝐺 (𝑘) ,Ψ)) + 𝜌𝑓𝑎𝑣𝑔 (𝜋𝑜𝑝𝑡)(10)

Based on the above results, we next construct a 𝜌-reachable pol-

icy whose expected utility is at least (1− 𝜌) 𝑓𝑎𝑣𝑔 (𝜋𝑜𝑝𝑡). Assume the

optimal policy 𝜋𝑜𝑝𝑡 is given, we run 𝜋𝑜𝑝𝑡 until the last item whose

reachability is smaller than 𝜌 is selected or the current selecting

process is dead, whichever comes first. It is clear that the above

policy is 𝜌-reachable, and its expected utility is∑
𝐺∈G(𝜌)

∑
Ψ:dom(Ψ)=𝐺

Pr[(𝐺,Ψ)] (
∑

𝑘∈[|𝐺 |]
(1 − 𝛿

𝐺𝑘) (
∏

𝑖∈𝐺 (𝑘−1)
𝛿𝑖) 𝑓 (𝐺 (𝑘) ,Ψ))

whose value is lower bounded by (1 − 𝜌) 𝑓𝑎𝑣𝑔 (𝜋𝑜𝑝𝑡) according to
(10). This finishes the proof of this lemma. 2

According to Lemma 2, there exists a 𝜌-reachable policy whose

expected utility is at least (1 − 𝜌) 𝑓𝑎𝑣𝑔 (𝜋𝑜𝑝𝑡), then the optimal 𝜌-

reachable policy has the same performance bound. In particular,

let 𝜋𝑜𝑝𝑡1 denote the optimal solution to P1, we have the following
lemma.

Lemma 3. Fix any 𝜌 ∈ [0, 1]. If 𝑓 is adaptive cascade submodular,
we have 𝑓𝑎𝑣𝑔 (𝜋𝑜𝑝𝑡1) ≥ (1 − 𝜌) 𝑓𝑎𝑣𝑔 (𝜋𝑜𝑝𝑡).

Lemma 3 allows us to put our focus on solving P1.

P1: Maximize 𝑓𝑎𝑣𝑔 (𝜋)
subject to: 𝜋 ∈ Ω (𝜌)

We next introduce a new optimization problem P2 subject to

only adopting strongly 𝜌-reachable sequences. Let 𝜋𝑜𝑝𝑡2 denote

the optimal solution to P2.

P2: Maximize 𝑓𝑎𝑣𝑔 (𝜋)
subject to: 𝜋 ∈ Ω (𝜌+)

Notice that every strongly 𝜌-reachable sequence is also a 𝜌-

reachable sequence, similarly, every strongly 𝜌-reachable policy is

also a 𝜌-reachable policy. Therefore, 𝑓𝑎𝑣𝑔 (𝜋𝑜𝑝𝑡2) is upper bounded
by 𝑓𝑎𝑣𝑔 (𝜋𝑜𝑝𝑡1). However, we next show that the gap between

𝑓𝑎𝑣𝑔 (𝜋𝑜𝑝𝑡1) and 𝑓𝑎𝑣𝑔 (𝜋𝑜𝑝𝑡2) can be bounded. For notational sim-

plicity, we use 𝑓 (𝑖,Φ) to denote 𝑓 ({𝑖},Φ).

Lemma 4. Denote by 𝑖∗ = max𝑖∈𝐸 EΦ∼𝑝 (𝜙) [𝑓 (𝑖,Φ)] a single item
with the maximum expected utility. If 𝑓 is adaptive cascade submod-
ular, then 𝑓𝑎𝑣𝑔 (𝜋𝑜𝑝𝑡2) + EΦ∼𝑝 (𝜙) [𝑓 (𝑖∗,Φ)] ≥ 𝑓𝑎𝑣𝑔 (𝜋𝑜𝑝𝑡1).

Proof: Assume the optimal 𝜌-reachable policy 𝜋𝑜𝑝𝑡1 is given, we

next construct a strongly 𝜌-reachable policy 𝜋 ′ as follows: we run
𝜋𝑜𝑝𝑡1 until it violates the strongly 𝜌-reachable constraint (the item

whose addition to the current solution violates the constraint is

not selected) or the current selecting process is dead, whichever

comes first. Observe that any sequence 𝑆 of length 𝑘 can be rep-

resented as 𝑆 (𝑘−1) ⊕ 𝑆𝑘 , where ⊕ is the concatenation operator.

Assume 𝑆 is a 𝜌-reachable sequence, we have

∏
𝑖∈𝑆 (𝑘−1) 𝛿𝑖 ≥ 𝜌 ,

thus 𝑆 (𝑘−1) is a strongly 𝜌-reachable sequence according to Defi-

nition 7. Based on this observation, it is easy to verify that given

any full realization, 𝜋𝑜𝑝𝑡1 selects at most one more item (the item

that violates the strongly 𝜌-reachable constraint) than 𝜋 ′. Due to
the adaptive submodularity of 𝑓 (Lemma 1), the expected mar-

ginal utility of that item is upper bounded by EΦ∼𝑝 (𝜙) [𝑓 (𝑖∗,Φ)].
It follows that 𝑓𝑎𝑣𝑔 (𝜋 ′) + EΦ∼𝑝 (𝜙) [𝑓 (𝑖∗,Φ)] ≥ 𝑓𝑎𝑣𝑔 (𝜋𝑜𝑝𝑡1). Be-
cause 𝜋𝑜𝑝𝑡2 is the optimal strongly 𝜌-reachable policy, we have

𝑓𝑎𝑣𝑔 (𝜋𝑜𝑝𝑡2) +EΦ∼𝑝 (𝜙) [𝑓 (𝑖∗,Φ)] ≥ 𝑓𝑎𝑣𝑔 (𝜋 ′) +EΦ∼𝑝 (𝜙) [𝑓 (𝑖∗,Φ)] ≥
𝑓𝑎𝑣𝑔 (𝜋𝑜𝑝𝑡1). This finishes the proof of this lemma. 2

According to Definition 8, a policy 𝜋 is strongly 𝜌-reachable if

∀𝜙 :

∏
𝑖∈𝑆𝜋,𝜙 𝛿𝑖 ≥ 𝜌 , which is equivalent to ∀𝜙 :

∑
𝑖∈𝑆𝜋,𝜙 − log𝛿𝑖 ≤

− log 𝜌 . Replacing 𝜋 ∈ Ω(𝜌+) by ∀𝜙 :

∑
𝑖∈𝑆𝜋,𝜙 − log𝛿𝑖 ≤ − log 𝜌 ,

we obtain an alternative formulation P2.1 of P2.
P2.1: Maximize 𝑓𝑎𝑣𝑔 (𝜋)
subject to: ∀𝜙 :

∑
𝑖∈𝑆𝜋,𝜙 − log𝛿𝑖 ≤ − log 𝜌

To facilitate the analysis of our proposed algorithm, we intro-

duce another optimization problem P3 by replacing the objective

function 𝑓𝑎𝑣𝑔 (𝜋) in P2.1 using EΦ∼𝑝 (𝜙) [𝑓 (𝑆𝜋,Φ,Φ)].
P3: Maximize EΦ∼𝑝 (𝜙) [𝑓 (𝑆𝜋,Φ,Φ)]
subject to: ∀𝜙 :

∑
𝑖∈𝑆𝜋,𝜙 − log𝛿𝑖 ≤ − log 𝜌

Note that EΦ∼𝑝 (𝜙) [𝑓 (𝑆𝜋,Φ,Φ)] is the expected utility of a policy

𝜋 assuming that the selecting process is never dead. Therefore, if 𝑓

is adaptive monotone, then 𝑓𝑎𝑣𝑔 (𝜋) ≤ EΦ∼𝑝 (𝜙) [𝑓 (𝑆𝜋,Φ,Φ)] for any
𝜋 . For notation simplicity, define 𝑓 𝑎𝑣𝑔 (𝜋) = EΦ∼𝑝 (𝜙) [𝑓 (𝑆𝜋,Φ,Φ)].
Then we have the following lemma.

Lemma 5. Let 𝜋𝑜𝑝𝑡3 denote the optimal solution to P3. If 𝑓 is
adaptive monotone, then 𝑓 𝑎𝑣𝑔 (𝜋𝑜𝑝𝑡3) ≥ 𝑓𝑎𝑣𝑔 (𝜋𝑜𝑝𝑡2).

Algorithm 1 Candidate Policy 𝜋𝐵

1: 𝑆 = ∅;𝜓 = ∅
2: while the selecting process is live do
3: let 𝑖𝑟 = argmax𝑖∈𝐸 Δ(𝑖 | 𝜓)/𝑐 (𝑖);
4: add 𝑖𝑟 to 𝑆 ;𝜓 = 𝜓 ∪ {𝜙𝑖𝑟 };
5: end while
6: return 𝑆

4.2 Algorithm Design
Now we are ready to present our adaptive greedy plus policy

𝜋greedy+. Define 𝑐 (𝑖) = − log𝛿𝑖 as the virtual cost of an item 𝑖 ∈ 𝐸.
Intuitively, an item with a higher continuation probability has a

smaller virtual cost. 𝜋greedy+ randomly picks one solution from the

Main Track AAMAS 2021, May 3-7, 2021, Online

1303

Algorithm 2 Restricted Candidate Policy 𝜋 restricted
𝐵

1: 𝑆 = ∅;𝐵 = − log 𝜌 ;𝜓 = ∅
2: while the selecting process is live do
3: let 𝑖𝑟 = argmax𝑖∈𝐸 Δ(𝑖 | 𝜓)/𝑐 (𝑖);
4: if 𝐵 − 𝑐 (𝑖𝑟) ≥ 0 then
5: add 𝑖𝑟 to 𝑆 ;

6: 𝜓 = 𝜓 ∪ {𝜙𝑖𝑟 };𝐵 ← 𝐵 − 𝑐 (𝑖𝑟);
7: else
8: add 𝑖𝑟 to 𝑆 ;

9: break;

10: end if
11: end while
12: return 𝑆

two candidates 𝜋𝐴 and 𝜋𝐵 such that 𝜋𝐴 is selected with probability

1− 1

𝜌 (1−1/𝑒)+1 and 𝜋𝐵 is selected with probability
1

𝜌 (1−1/𝑒)+1 , where
the value of 𝜌 will be decided later. We next describe 𝜋𝐴 and 𝜋𝐵 in

details.

Design of 𝜋𝐴. Selecting a singleton 𝑖∗ with the maximum ex-

pected utility as the first item, then follow an arbitrary sequence

of the remaining items to select the next item until the selecting

process is dead. Clearly, 𝑓𝑎𝑣𝑔 (𝜋𝐴) ≥ EΦ∼𝑝 (𝜙) [𝑓 (𝑖∗,Φ)] due to 𝑓 is

adaptive monotone.

Design of 𝜋𝐵 . Selecting items in a greedy manner as follows: In

each round 𝑟 of a live selecting process, 𝜋𝐵 selects an item 𝑖𝑟 with

the largest “benefit-to-cost” ratio

𝑖𝑟 = argmax

𝑖∈𝐸
Δ(𝑖 | 𝜓)/𝑐 (𝑖)

where Δ(𝑖 | 𝜓) = EΦ∼𝑝 (𝜙 |𝜓) [𝑓 (𝑖 ∪ dom(𝜓),Φ)] −ℎ(𝜓) denotes the
expected marginal benefit of 𝑖 conditioned on the current partial re-

alization𝜓 . This process iterates until the current selecting process

is dead. A detailed description of 𝜋𝐵 is listed in Algorithm 1.

4.3 Performance Analysis
For the purpose of analysis, we first introduce a restricted version

𝜋 restricted
𝐵

(Algorithm 2) of the second candidate solution 𝜋𝐵 by

enforcing a budget constraint − log 𝜌 on the total virtual cost of

selected items. That is, in each round of a live selecting process,

𝜋 restricted
𝐵

selects an item that maximizes the ratio of the expected

marginal benefit to the virtual cost, and this process continues

until the total virtual cost of selected items is larger than − log 𝜌
or the current selecting process is dead. Note that 𝜋 restricted

𝐵
is very

similar to the adaptive greedy algorithm proposed in [5] except that

𝜋 restricted
𝐵

is allowed to violate the budget constraint by adding one

more item. That is, the first item that violates the budget constraint

is also selected by 𝜋 restricted
𝐵

. As 𝜋𝐵 always selects items no less

than 𝜋 restricted
𝐵

, 𝜋𝐵 can not perform worse than 𝜋 restricted
𝐵

due to the

utility function 𝑓 is adaptive monotone. To analyze the performance

of 𝜋𝐵 , it suffice to give a lower bound on 𝑓𝑎𝑣𝑔 (𝜋 restricted𝐵
).

Now we are ready to present the main theorem of this paper.

Theorem 1. Fix any 𝜌 ∈ [0, 1]. If 𝑓 is adaptive cascade submodu-
lar and adaptive monotone, then

𝑓𝑎𝑣𝑔 (𝜋greedy+) ≥
𝜌 (1 − 1/𝑒) (1 − 𝜌)
𝜌 (1 − 1/𝑒) + 1 𝑓𝑎𝑣𝑔 (𝜋𝑜𝑝𝑡)

Proof: We first build a relation between 𝑓𝑎𝑣𝑔 (𝜋 restricted𝐵
) and

𝑓 𝑎𝑣𝑔 (𝜋𝑜𝑝𝑡3). Because we assume 𝑓 is adaptive monotone and adap-

tive cascade submodular, we have 𝑓 is adaptive submodular accord-

ing to Lemma 1. Therefore, P3 is an adaptive submodular maximiza-

tion problem subject to a budget constraint, where the cost of each

item 𝑖 ∈ 𝐸 is 𝑐 (𝑖) and the budget constraint is − log 𝜌 . According to
[5, 13], the “benefit-to-cost” ratio based greedy algorithm achieves

approximation ratio 1 − 1/𝑒
𝑙
𝐵 when maximizing an adaptive sub-

modular and adaptive monotone function, where 𝑙 is the (expected)

actual amount of budget consumed by the algorithm and 𝐵 is the

budget constraint. This ratio is lower bounded by 1 − 1/𝑒 when

𝑙 ≥ 𝐵. In our case, because 𝜋 restricted
𝐵

is allowed to violate the budget

constraint by adding one more item to the solution, we have

𝑓 𝑎𝑣𝑔 (𝜋 restricted𝐵
) ≥ (1 − 1/𝑒) 𝑓 𝑎𝑣𝑔 (𝜋𝑜𝑝𝑡3) (11)

Moreover, because 𝜋 restricted
𝐵

does not violate the budget constraint

until the last round, the reachability of every item selected by

𝜋 restricted
𝐵

is lower bounded by 𝜌 . Thus the expected utility of

𝜋 restricted
𝐵

is at least 𝑓𝑎𝑣𝑔 (𝜋 restricted𝐵
) ≥ 𝜌 𝑓 𝑎𝑣𝑔 (𝜋 restricted𝐵

). It follows
that

𝑓𝑎𝑣𝑔 (𝜋 restricted𝐵
) ≥ 𝜌 (1 − 1/𝑒) 𝑓 𝑎𝑣𝑔 (𝜋𝑜𝑝𝑡3) (12)

due to (11). Now we are ready to bound the approximation ratio of

𝜋greedy+. Let 𝛼 (𝜌) = 1

𝜌 (1−1/𝑒)+1 and 𝛼 (𝜌) = 1 − 𝛼 (𝜌), we have

𝑓𝑎𝑣𝑔 (𝜋greedy+) = 𝛼 (𝜌) 𝑓𝑎𝑣𝑔 (𝜋𝐴) + 𝛼 (𝜌) 𝑓𝑎𝑣𝑔 (𝜋𝐵) (13)

≥ 𝛼 (𝜌) 𝑓𝑎𝑣𝑔 (𝜋 restricted𝐵
) + 𝛼 (𝜌)EΦ∼𝑝 (𝜙) [𝑓 (𝑖∗,Φ)] (14)

≥ 𝜌 (1 − 1

𝑒
)𝛼 (𝜌) 𝑓 𝑎𝑣𝑔 (𝜋𝑜𝑝𝑡3) + 𝛼 (𝜌)EΦ∼𝑝 (𝜙) [𝑓 (𝑖∗,Φ)](15)

≥ 𝜌 (1 − 1

𝑒
)𝛼 (𝜌) (𝑓𝑎𝑣𝑔 (𝜋𝑜𝑝𝑡2) + EΦ∼𝑝 (𝜙) [𝑓 (𝑖∗,Φ)]) (16)

≥ 𝜌 (1 − 1

𝑒
)𝛼 (𝜌) 𝑓𝑎𝑣𝑔 (𝜋𝑜𝑝𝑡1) (17)

≥ (1 − 𝜌)𝜌 (1 − 1

𝑒
)𝛼 (𝜌) 𝑓𝑎𝑣𝑔 (𝜋𝑜𝑝𝑡) (18)

(13) is due to 𝜋greedy
+
randomly picks one between 𝜋𝐴 and 𝜋𝐵 such

that 𝜋𝐴 is selected with probability 1 − 𝛼 (𝜌) and 𝜋𝐵 is selected

with probability 𝛼 (𝜌); (14) is due to 𝑓𝑎𝑣𝑔 (𝜋 restricted𝐵
) ≤ 𝑓𝑎𝑣𝑔 (𝜋𝐵)

and 𝑓𝑎𝑣𝑔 (𝜋𝐴) ≥ EΦ∼𝑝 (𝜙) [𝑓 (𝑖∗,Φ)]; (15) is due to (12); (16) is due

to Lemma 5; (17) is due to Lemma 4; (18) is due to Lemma 3. This

finishes the proof of this theorem. 2

It can be seen that if we set 𝜌 =

√
𝑒 (2𝑒−1)−𝑒

𝑒−1 , then (1 − 𝜌)𝜌 (1 −
1/𝑒)𝛼 (𝜌) > 0.12. Hence, 𝜋greedy+ achieves a 0.12 approximation

ratio at 𝜌 =

√
𝑒 (2𝑒−1)−𝑒

𝑒−1 .

Corollary 2. If we set 𝜌 =

√
𝑒 (2𝑒−1)−𝑒

𝑒−1 , then our adaptive greedy
plus policy 𝜋greedy+ achieves a 0.12 approximation ratio given that 𝑓
is adaptive cascade submodular and adaptive monotone.

5 PERFORMANCE EVALUATION
In this section, we conduct experiments to evaluate the perfor-

mance of our proposed algorithm in the context of active learning.

Assume that we are given a set of hypotheses 𝐻 , and a set of un-

labeled data points 𝑋 where each 𝑥 ∈ 𝑋 is drawn independently

Main Track AAMAS 2021, May 3-7, 2021, Online

1304

Figure 1: Reduction in version space vs. number of possible labels for each query.

Figure 2: (a) Reduction in version space vs. lower end of the sample range of the continuation probability for each query; and
(b) Statistics of the percentage of the selected queries in each group.

Figure 3: Statistics of the percentage of the selected queries in each group.

from some distribution 𝐷 . In pool-based active learning, in order to

avoid the cost of obtaining labeled data from domain experts, we

adaptively identify a sequence of queries that labels a few unlabeled

examples until the labels of all unlabeled examples are implied by

the obtained labels. Each query is associated with a continuation

probability. In the context of online survey (the third example in-

troduced in Section 1), the continuation probability of a query (a

survey question) represents the likelihood of a user continuing to

answer the next query after answering the current one.

We define the version space to be the set of hypotheses consis-

tent with the observed labels. Intuitively our goal is to reduce the

probability mass of the version space as much as possible. Reduc-

ing the version space amounts to filtering false hypotheses with

stochastic queries. Note query 𝑥 ∈ 𝑋 filters all hypotheses that dis-

agree with the target hypotheses ℎ∗ at 𝑥 . The reduction in version

space mass is shown to be adaptive submodular [5]. When running

𝜋greedy+, we measure the conditional marginal utility of a query as

the expected reduction in version space based on the observation

of previous requested labels.

In our experiments, we consider 1000 hypotheses with 50 unla-

beled data points. For each hypothesis, its probability is drawn from

(0, 1) uniformly at random with unity generalization; each data

point is assigned a value randomly selected from its possible set

of labels. All experiments were run on a machine with Intel Xeon

2.40GHz CPU and 64GB memory, running 64-bit RedHat Linux

Main Track AAMAS 2021, May 3-7, 2021, Online

1305

server. For each set of experiments, we run the simulation for 1, 000

rounds and report the average results as follow.

Our first set of experiments evaluate the performance of our

algorithm as measured by the yielded reduction in version space

with respect to the changes in the number of possible labels for

each data point. We use a random algorithm as our baseline. The

random algorithm outputs a sequence of queries in an adaptive

manner where each query is randomly selected until the current

selecting process is dead. We consider the scenario where each data

point has the same number of possible labels. We vary the size of

the label set and measure how the performance of our algorithm

changes under different settings.

The results are plotted in Figure 1(a) and 1(b). As shown in the

figures, the 𝑥-axis refers to the size of the label set, ranging from

two to six. The 𝑦-axis refers to the reduction in version space gen-

erated by the corresponding algorithms. We consider two settings

of the continuation probability for each query. Figure 1(a) shows

the results where each query is assigned a continuation probability

drawn uniformly at random from [0, 1). We observe that as the size

of the label set increases, the reduction in version space increases

for both algorithms. We also observe that 𝜋greedy+ yields 96.931%
reduction in version space for binary labels. It achieves 99.505% re-

duction when data points have 6 possible labels. It also significantly

outperforms the baseline random algorithm in all test cases. The

random algorithm only yields 65% reduction in the case of binary

labels. Note that our algorithm considers the marginal utility as well

as the continuation probability for each query, leading to a higher

reduction in version space. In Figure 1(b), each query is assigned a

continuation probability drawn uniformly at random from [0.5, 1).
Similarly, we observe that 𝜋greedy+ yields 97.729% reduction in the

case of binary labels, and achieves 99.786% reduction when data

points have 6 possible labels. Again it outperforms the baseline

significantly.

Our second set of experiments explore the impact of the contin-

uation probability of the queries on the reduction in version space,

as illustrated in Figure 1(c). We consider the scenario where data

points have various numbers of possible labels. We randomly divide

our 50 unlabeled data points into three groups. The first group con-

tains 40 data points with binary labels. The second group contains

5 data points with three possible labels. The third group contains

5 data points with four possible labels. We vary the lower end of

the interval from which we sample the continuation probability of

queries, ranging from 0 to 0.9. Specifically, if the lower end is set

to 0, we sample the continuation probability uniformly at random

from [0, 1); if the lower end is set to 0.6, we sample the continuation

probability uniformly at random from [0.6, 1).
As shown in Figure 1(c), the 𝑥-axis holds the lower end of the

sample interval, and the 𝑦-axis holds the reduction in version space

generated by the corresponding algorithms. We observe that as

expected, the reduction in version space increases as the lower

end of the sample interval increases. Intuitively a larger lower end

indicates that the continuation probability is sampled from a pool of

larger values. Therefore more queries can be selected in the output

sequence, leading to a higher reduction in version space.

Our next set of experiments evaluate how the solution size

changes with respect to the changes in the size of the label set,

under the scenario where each data point has the same number of

possible labels. We vary the size of the label set and measure how

the solution size changes under different settings. Figure 2(a) and

2(b) show the results where each query is assigned a continuation

probability drawn uniformly at random from [0, 1) and [0.5, 1),
respectively. We observe that as the size of the label set increases,

the size of the solution generated by 𝜋greedy+ decreases. We also

observe that the size of the solution generated by the random algo-

rithm does not change with the size of the label set.

Next we explore the impact of the continuation probability of

the queries on the solution size, as illustrated in Figure 2(c). We use

the same setting as in Figure 1(c). We observe that as the sample

range of the continuation probability narrows down to the large

values, the size of the solution generated by the random algorithm

increases rapidly. For 𝜋greedy+, the solution size does not change

much with the sample range.

We take a closer look at the composition of the queries in the

output sequence generated by 𝜋greedy+. As aforementioned we have

three groups of queries. We measure the percentage of selected

queries in each group. For example, out of 40 data points with bi-

nary labels, if 2 of them are selected, then 2/40 = 5% of the queries

in group 1 are selected. We plot the statistics for each query group

in Figure 3. The 𝑥-axis refers to the group number of the queries,

and the 𝑦-axis refers to the percentage of the selected queries in the

corresponding group. Figure 3(a), 3(b) and 3(c) plot the results as

the continuation probability of each query is sampled from [0, 1),
[0.5, 1), [0.8, 1), respectively. We observe that as the sample range

narrows down to the larger values, more queries in group 3, and

less queries in group 1, are selected. The reason is that 𝜋greedy+

takes into account both conditional marginal utility and the con-

tinuation probability for each candidate query. For the case with

sample interval [0, 1), while queries with four possible labels tend

to yield a higher marginal utility, all of them may not be associated

with a large continuation probability. Choosing one with small con-

tinuation probability may diminish the chance of choosing more

queries to further reduce the version space. Therefore some queries

with four possible labels are displaced in the output sequence in

favor of queries with binary labels and large continuation proba-

bility. As the lower limit of the continuation probability goes up,

more queries with four possible labels are included in the output

sequence.

6 CONCLUSION
In this paper, we propose and study a new stochastic optimization

problem, called adaptive cascade submodular maximization. Our

goal is to adaptively select a sequence of items that maximizes

the expected utility. Our problem is motivated by many real-world

applications where the selecting process could be terminated prema-

turely. We show that existing studies on submodular maximization

do not apply to our setting. We start by introducing a class of sto-

chastic utility functions, adaptive cascade submodular functions.

Then we propose an adaptive policy that achieves a constant ap-

proximation ratio given that the utility function is adaptive cascade

submodular and adaptive monotone. In the future, we would like to

extend this work by incorporating some practical constraints such

as cardinality constraint to the existing model.

Main Track AAMAS 2021, May 3-7, 2021, Online

1306

REFERENCES
[1] Saeed Alaei, Ali Makhdoumi, and Azarakhsh Malekian. 2010. Maximizing

sequence-submodular functions and its application to online advertising. arXiv
preprint arXiv:1009.4153 (2010).

[2] Arash Asadpour and Hamid Nazerzadeh. 2016. Maximizing stochastic monotone

submodular functions. Management Science 62, 8 (2016), 2374–2391.
[3] Nick Craswell, Onno Zoeter, Michael Taylor, and Bill Ramsey. 2008. An ex-

perimental comparison of click position-bias models. In Proceedings of the 2008
international conference on web search and data mining. 87–94.

[4] Alvaro Flores, Gerardo Berbeglia, and Pascal Van Hentenryck. 2019. Assortment

optimization under the sequential multinomial logit model. European Journal of
Operational Research 273, 3 (2019), 1052–1064.

[5] Daniel Golovin and Andreas Krause. 2011. Adaptive submodularity: Theory and

applications in active learning and stochastic optimization. Journal of Artificial
Intelligence Research 42 (2011), 427–486.

[6] David Kempe and Mohammad Mahdian. 2008. A cascade model for externalities

in sponsored search. In International Workshop on Internet and Network Economics.
Springer, 585–596.

[7] Andreas Krause and Carlos Guestrin. 2007. Near-optimal observation selection

using submodular functions. In AAAI, Vol. 7. 1650–1654.
[8] Marko Mitrovic, Moran Feldman, Andreas Krause, and Amin Karbasi. 2018.

Submodularity on hypergraphs: From sets to sequences. arXiv preprint
arXiv:1802.09110 (2018).

[9] Marko Mitrovic, Ehsan Kazemi, Moran Feldman, Andreas Krause, and Amin Kar-

basi. 2019. Adaptive sequence submodularity. In Advances in Neural Information

Processing Systems. 5352–5363.
[10] George LNemhauser, Laurence AWolsey, andMarshall L Fisher. 1978. An analysis

of approximations for maximizing submodular set functions-I. Mathematical
programming 14, 1 (1978), 265–294.

[11] Matthew Streeter and Daniel Golovin. 2009. An online algorithm for maximizing

submodular functions. In Advances in Neural Information Processing Systems.
1577–1584.

[12] Shaojie Tang. 2020. Beyond pointwise submodularity: Non-monotone adaptive

submodular maximization in linear time. Theoretical Computer Science 850 (2020),
249–261.

[13] Shaojie Tang and Jing Yuan. 2020. Influence maximization with partial feedback.

Operations Research Letters 48, 1 (2020), 24–28.
[14] Shaojie Tang and Jing Yuan. Forthcoming. Cascade Submodular Maximization:

Question Selection and Sequencing in Online Personality Quiz. Production and
Operations Management (Forthcoming).

[15] Shaojie Tang, Jing Yuan, and Vijay Mookerjee. 2020. Optimizing ad allocation in

mobile advertising. In Proceedings of the Twenty-First International Symposium
on Theory, Algorithmic Foundations, and Protocol Design for Mobile Networks and
Mobile Computing. 181–190.

[16] Sebastian Tschiatschek, Adish Singla, and Andreas Krause. 2017. Selecting se-

quences of items via submodular maximization. In Thirty-First AAAI Conference
on Artificial Intelligence.

[17] Zhenliang Zhang, Edwin KP Chong, Ali Pezeshki, and William Moran. 2015.

String submodular functions with curvature constraints. IEEE Trans. Automat.
Control 61, 3 (2015), 601–616.

Main Track AAMAS 2021, May 3-7, 2021, Online

1307

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Items and States
	3.2 Policies and Problem Formulation
	3.3 Adaptive Cascade Submodularity and Monotonicity

	4 The Adaptive Greedy Plus Policy
	4.1 Technical Lemmas
	4.2 Algorithm Design
	4.3 Performance Analysis

	5 Performance Evaluation
	6 Conclusion
	References

