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ABSTRACT
Recent reinforcement learning studies extensively explore the inter-
play between cooperative and competitive behaviour in mixed en-
vironments. Unlike cooperative environments where agents strive
towards a common goal, mixed environments are notorious for the
conflicts of selfish and social interests. As a consequence, purely
rational agents often struggle to maintain cooperation. A prevalent
approach to induce cooperative behaviour is to assign additional
rewards based on other agents’ well-being. However, this approach
suffers from the issue of multi-agent credit assignment, which can
hinder performance. This issue is efficiently alleviated in cooper-
ative setting with such state-of-the-art algorithms as QMIX and
COMA. Still, when applied tomixed environments, these algorithms
may result in unfair allocation of rewards. We propose BAROCCO,
an extension of these algorithms capable to balance individual and
social incentives. The mechanism behind BAROCCO is to train
two distinct but interwoven components that jointly affect agents’
decisions. We experimentally confirm the advantages of BAROCCO.
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1 INTRODUCTION
Human cooperation is considered an evolutionary puzzle in the
economic literature [3, 6, 9, 16, 20]. Despite the predictions of the
rational choice theory to act selfishly [23], people of different age,
gender, culture, and socioeconomic status engage into cooperation
in a multitude of economic situations [2, 4, 5, 7, 11, 17]. A possible
mechanism to resolve the paradox implies that the agents take
social preferences into account during decision making [8, 9].

The questions of emergence and maintenance of cooperation are
mirrored in the Multi-Agent Reinforcement Learning (MARL) liter-
ature [10, 18, 19, 21, 24, 25]. Numerous works have demonstrated
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that purely rational agents are unable to maintain cooperation and
performworse than those guided by social incentives [14, 15, 19, 27].
Despite this, training fully social agents can be undesirable when
fairness is a concern. Such agents may prefer sacrificing own pay-
offs for the common good to equal reward distribution. A possible
compromise that trades-off fairness and group performance is to
balance selfish and social preferences of the agents.

The simplest way to achieve such balance is to train agents on a
mixture of social [19, 28] and selfish rewards, which we refer to as
Cooperative Reward Shaping (CRS):

𝑟𝑐𝑟𝑠𝑖 = (1 − 𝜆)𝑟𝑖 + 𝜆𝑆𝑊 (r) (1)
where 𝑟𝑖 is the native reward of 𝑖-th agent, r is a vector of rewards of
all agents, 𝑆𝑊 denotes social welfare function like sum orminimum,
𝜆 is prosociality coefficient, and 𝑟𝑐𝑟𝑠

𝑖
is mixed reward. However, CRS

implies decentralized training and does not address such crucial
issues of MARL as non-stationarity and credit assignment [1, 12, 13].
On the other hand, these issues are addressed in the techniques
from fully cooperative MARL like QMIX [21] or COMA [10] that
were shown to outperform decentralized training in such complex
environments as StarCraft 2 [26]. Still, these techniques are only
concerned with performance and ignore fairness.

Figure 1: BAROCCO for Actor-Critic Framework. 𝐶𝑂 , 𝑇𝐷 ,
and 𝑆𝑊 denote counterfactual baseline, temporal difference,
and social welfare function, respectively.
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(a) Apples, all algorithms (b) Gini, all algorithms (c) Apples, varying 𝜆 (d) Gini, varying 𝜆

Figure 2: Experiments in Harvest. ‘Apples‘ denotes total number of apples collected by all agents per episode. ‘Gini‘ denotes
gini coefficient that can be treated as a measure of unfairness.

2 BAROCCO
We propose a meta-algorithm that extends credit assignment tech-
niques like COMA to mixed environments with capability to bal-
ance the incentives, which we refer to as BAROCCO, i.e. BAl-
ancing Rational and Other-regarding preferences in Cooperative-
COmpetitive environments. BAROCCO is based on the insight that
instead of relying on a single model to balance the incentives via
CRS, two distinct components can be trained concurrently and com-
bined during decision making (Fig. 1). While the two approaches are
mathematically equivalent, the latter approach allows us to train
the social component via techniques that address credit assignment.

More specifically, for each agent we train selfish critic via a
variant of MADDPG [18] and social critic via COMA [10]. Then,
the actor is trained via proximal policy gradient [22] on a mixture
of predictions of these two critics. The importance of each critic is
controlled via predefined prosociality coefficient 𝜆.

A crucial novelty of BAROCCO concerns the training of the
social component. Instead of combining agents’ rewards with 𝑆𝑊

function like in eq. 1, we directly combine agents’ values. While in
certain cases the two approaches are mathematically equivalent,
the latter approach might be more suitable for mixed environments
and supports a broader choice of 𝑆𝑊 functions. For example, an
alternative to fairness through selfishness could be to train a fair
centralized system to maximize minimum of agents’ payoffs. We
show that this can be viable if the system is trained with BAROCCO.

3 EXPERIMENTS AND DISCUSSION
We conduct our experiments in the Harvest environment [14],
where five agents collect apples on a partially observable grid-
like map. The regrowth rate of apples increases with the number of
uncollected apples nearby. Therefore, the agents that harvest every
apple in sight quickly exhaust its supplies. The optimal strategy for
a group of agents is to balance harvesting and cultivating apples.

First, we evaluate the performance of BAROCCO, i.e. the total
reward obtained by all agents. To this end, we compare it with sev-
eral baselines: selfish decentralized agents, prosocial decentralized
agents trained via CRS, prosocial centralized agents trained via
COMA. We fix 𝜆 = 1 and 𝑆𝑊 function as sum for BAROCCO, CRS,
and COMA. The results are presented in Figure 2a. ‘BAROCCO,

sum‘ performs slightly better than ‘COMA, sum‘, meaning that our
modifications of the training procedure can be beneficial. However,
both underperform compared to ‘CRS, sum‘, suggesting that addi-
tional complexity of centralized algorithms can hinder performance
in some environments. This result contradicts the findings of the
prior literature where centralization consistently improved perfor-
mance [10, 21]. However, the algorithms suggested in this literature
were not tested in complex mixed environments like Harvest before.

Second, we test whether BAROCCO can achieve both fairness
and performance in a centralized training setup. To this end, we
set 𝑆𝑊 as minimum, assuming that optimizing minimum of agents’
payoffs might lead to fair reward distribution. From Figure 2b we
can see that this is indeed the case: choosing 𝑆𝑊 as minimum yields
more even distribution than 𝑆𝑊 sum. Unsurprisingly, this comes
at some cost of performance (Fig. 2a). It is worth noting that per-
formance of CRS and COMA plummets when sum is replaced with
minimum as 𝑆𝑊 (Fig. 2a), which highlights flexibility of BAROCCO.

Third, we examine the effect of varying prosociality coefficient
𝜆 in BAROCCO. As expected, increasing 𝜆 improves performance
(Fig. 2c) but can result in unfair reward allocation (Fig. 2d). We note
that prosociality coefficient should be treated as a hyperparame-
ter and appropriately tuned for a given environment to maximize
performance while keeping fairness above an acceptable level.

This work contributes to the broader discussion of what consti-
tutes cooperation. Most MARL papers that study mixed environ-
ments focus on efficiency, but we argue that this metric can be too
limiting. Agents that act towards a single common goal are more
reminiscent of a swarm system than a group of distinct individuals
that could mutually benefit from cooperation. We explore ways
to incorporate the notion of fairness into such systems, either by
preserving some individuality of the agents or by modifying the
centralized objective. We hope that our work sparks further discus-
sion regarding other desirable qualities of multi-agent systems and
the means to achieve these qualities.

ACKNOWLEDGMENTS
This research was supported in part through computational re-
sources of HPC facilities at HSE University. Support from the Ba-
sic Research Program of the National Research University Higher
School of Economics is gratefully acknowledged.

Extended Abstract AAMAS 2021, May 3-7, 2021, Online

1537



REFERENCES
[1] Adrian K Agogino and Kagan Tumer. 2004. Unifying temporal and structural

credit assignment problems. In Proceedings of the Third International Joint Con-
ference on Autonomous Agents and Multiagent Systems-Volume 2. IEEE Computer
Society, 980–987.

[2] Michael S Alvard. 2004. The ultimatum game, fairness, and cooperation among
big game hunters. Foundations of human sociality (2004), 413–435.

[3] R Axelrod and WD Hamilton. 1981. The evolution of cooperation. Sci-
ence 211, 4489 (1981), 1390–1396. https://doi.org/10.1126/science.7466396
arXiv:https://science.sciencemag.org/content/211/4489/1390.full.pdf

[4] Joyce F Benenson, Joanna Pascoe, and Nicola Radmore. 2007. Children’s altruistic
behavior in the dictator game. Evolution and Human Behavior 28, 3 (2007),
168–175.

[5] Yongxiang Chen, Liqi Zhu, and Zhe Chen. 2013. Family income affects children’s
altruistic behavior in the dictator game. PloS one 8, 11 (2013).

[6] Andrew M Colman. 2006. The puzzle of cooperation. Nature 440, 7085 (2006),
744–745.

[7] Rachel Croson and Nancy Buchan. 1999. Gender and culture: International
experimental evidence from trust games. American Economic Review 89, 2 (1999),
386–391.

[8] Ernst Fehr and Urs Fischbacher. 2002. Why social preferences matter–the impact
of non-selfish motives on competition, cooperation and incentives. The economic
journal 112, 478 (2002), C1–C33.

[9] Ernst Fehr and Klaus M Schmidt. 1999. A theory of fairness, competition, and
cooperation. The quarterly journal of economics 114, 3 (1999), 817–868.

[10] Jakob N Foerster, Gregory Farquhar, Triantafyllos Afouras, Nantas Nardelli, and
Shimon Whiteson. 2018. Counterfactual multi-agent policy gradients. In Thirty-
second AAAI conference on artificial intelligence.

[11] Joseph Henrich, Robert Boyd, Samuel Bowles, Colin Camerer, Ernst Fehr, Herbert
Gintis, Richard McElreath, et al. 2001. Cooperation, reciprocity and punishment
in fifteen small-scale societies. American Economic Review 91, 2 (2001), 73–78.

[12] Pablo Hernandez-Leal, Michael Kaisers, Tim Baarslag, and Enrique Munoz de
Cote. 2017. A survey of learning in multiagent environments: Dealing with
non-stationarity. arXiv preprint arXiv:1707.09183 (2017).

[13] Pablo Hernandez-Leal, Bilal Kartal, and Matthew E Taylor. 2019. A survey and
critique of multiagent deep reinforcement learning. Autonomous Agents and
Multi-Agent Systems 33, 6 (2019), 750–797.

[14] Edward Hughes, Joel Z Leibo, Matthew Phillips, Karl Tuyls, Edgar Dueñez-
Guzman, Antonio García Castañeda, Iain Dunning, Tina Zhu, Kevin McKee,
Raphael Koster, et al. 2018. Inequity aversion improves cooperation in intertem-
poral social dilemmas. In Advances in neural information processing systems.
3326–3336.

[15] Natasha Jaques, Angeliki Lazaridou, Edward Hughes, Caglar Gulcehre, Pedro
Ortega, Dj Strouse, Joel Z Leibo, and Nando De Freitas. 2019. Social Influence as

Intrinsic Motivation for Multi-Agent Deep Reinforcement Learning. In Interna-
tional Conference on Machine Learning. 3040–3049.

[16] Dominic DP Johnson, Pavel Stopka, and Stephen Knights. 2003. The puzzle of
human cooperation. Nature 421, 6926 (2003), 911–912.

[17] Sara Elisa Kettner and Israel Waichman. 2016. Old age and prosocial behavior:
Social preferences or experimental confounds? Journal of Economic Psychology
53 (2016), 118–130.

[18] Ryan Lowe, Yi Wu, Aviv Tamar, Jean Harb, OpenAI Pieter Abbeel, and Igor
Mordatch. 2017. Multi-agent actor-critic for mixed cooperative-competitive
environments. In Advances in neural information processing systems. 6379–6390.

[19] Alexander Peysakhovich and Adam Lerer. 2018. Prosocial learning agents solve
generalized stag hunts better than selfish ones. In Proceedings of the 17th Interna-
tional Conference on Autonomous Agents and MultiAgent Systems. International
Foundation for Autonomous Agents and Multiagent Systems, 2043–2044.

[20] David G Rand andMartin ANowak. 2013. Human cooperation. Trends in cognitive
sciences 17, 8 (2013), 413–425.

[21] Tabish Rashid, Mikayel Samvelyan, Christian Schroeder De Witt, Gregory Far-
quhar, Jakob Foerster, and Shimon Whiteson. 2018. QMIX: monotonic value
function factorisation for deep multi-agent reinforcement learning. arXiv preprint
arXiv:1803.11485 (2018).

[22] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
2017. Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347
(2017).

[23] John Scott. 2000. Rational choice theory. Understanding contemporary society:
Theories of the present 129 (2000), 671–85.

[24] Peter Sunehag, Guy Lever, Audrunas Gruslys, Wojciech Marian Czarnecki, Vini-
cius Zambaldi, Max Jaderberg, Marc Lanctot, Nicolas Sonnerat, Joel Z Leibo, Karl
Tuyls, et al. 2017. Value-decomposition networks for cooperative multi-agent
learning. arXiv preprint arXiv:1706.05296 (2017).

[25] Ming Tan. 1993. Multi-agent reinforcement learning: Independent vs. cooperative
agents. In Proceedings of the tenth international conference on machine learning.
330–337.

[26] Oriol Vinyals, Timo Ewalds, Sergey Bartunov, Petko Georgiev, Alexander Sasha
Vezhnevets, Michelle Yeo, Alireza Makhzani, Heinrich Küttler, John Agapiou,
Julian Schrittwieser, et al. 2017. Starcraft ii: A new challenge for reinforcement
learning. arXiv preprint arXiv:1708.04782 (2017).

[27] Jane X Wang, Edward Hughes, Chrisantha Fernando, Wojciech M Czarnecki,
Edgar A Duéñez-Guzmán, and Joel Z Leibo. 2019. Evolving intrinsic motiva-
tions for altruistic behavior. In Proceedings of the 18th International Conference
on Autonomous Agents and MultiAgent Systems. International Foundation for
Autonomous Agents and Multiagent Systems, 683–692.

[28] Weixun Wang, Jianye Hao, Yixi Wang, and Matthew Taylor. 2019. Achieving
cooperation through deep multiagent reinforcement learning in sequential pris-
oner’s dilemmas. In Proceedings of the First International Conference on Distributed
Artificial Intelligence. 1–7.

Extended Abstract AAMAS 2021, May 3-7, 2021, Online

1538

https://doi.org/10.1126/science.7466396
https://arxiv.org/abs/https://science.sciencemag.org/content/211/4489/1390.full.pdf

	Abstract
	1 Introduction
	2 BAROCCO
	3 Experiments and Discussion
	Acknowledgments
	References



