
Preserving Consistency for Liquid Knapsack Voting
Extended Abstract

Pallavi Jain

IIT Jodhpur

pallavi@iitj.ac.in

Krzysztof Sornat

MIT CSAIL

sornat@mit.edu

Nimrod Talmon

Ben-Gurion University

talmonn@bgu.ac.il

ABSTRACT
Liquid Democracy (LD) uses transitive delegations in voting. In its

simplest form, it is used for binary decisions, however its promise

holds also for more advanced voting settings. Here we consider LD

in the context of Participatory Budgeting (PB), which is a direct

democracy approach to budgeting, most usually done in municipal

budgeting processes. In particular, we study Knapsack Voting, in

which PB voters approve projects, such that the sum of costs of

projects each voter approves must respect the budget limit. We

observe possible inconsistencies, as the cost of voter-approved

projects may go over the budget limit after resolving delegations.

We offer ways to overcome them by studying the computational

complexity of updating as few delegations as possible to arrive—

after following all project delegations—to a consistent profile.

KEYWORDS
Participatory Budgeting; Liquid Democracy; Knapsack Voting

ACM Reference Format:
Pallavi Jain, Krzysztof Sornat, and Nimrod Talmon. 2021. Preserving Con-

sistency for Liquid Knapsack Voting: Extended Abstract. In Proc. of the
20th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2021), Online, May 3–7, 2021, IFAAMAS, 3 pages.

1 INTRODUCTION
In combinatorial Participatory Budgeting (PB) [1, 2, 4, 7, 12, 16]—

used usually for deciding on the use of public funds in amunicipality

by direct democracy—voters provide their preferences over a set

of projects, where each project has its own cost; the aggregation

task is then to choose a project subset whose total cost does not

exceed some given budget limit. In Knapsack Voting [13], voters

provide their preferences as follows: each voter selects a subset of

projects which total cost does not exceed the given budget limit.

(Effectively, this means that each voter shall solve an instance of

the Knapsack problem herself; Goel et al. [13] discuss advantages

of Knapsack Voting for PB.)

In Liquid Democracy (LD) [3, 6, 14], voters can transitively del-

egate their decisions to other voters. The main merit of LD is the

flexibility it gives voters, which also improves the scalability of

decision making.

In this paper we investigate the use of LD in the context of Knap-

sack Voting for Participatory Budgeting (PB) [9]. While a simplest

form of LD for Knapsack Voting would be to allow voters to del-

egate their whole ballot, here we are interested in even greater

Proc. of the 20th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2021), U. Endriss, A. Nowé, F. Dignum, A. Lomuscio (eds.), May 3–7, 2021, Online.
© 2021 International Foundation for Autonomous Agents and Multiagent Systems

(www.ifaamas.org). All rights reserved.

flexibility, and propose “project-wise delegations” (generally speak-

ing, we follow the Pairwise Liquid Democracy approach [8] and the

approach of Bloembergen et al. [5]): each voter 𝑣 , for each project

𝑝 , can choose between the following two options: (1) vote directly,

deciding whether to approve 𝑝 or disapprove 𝑝 (i.e., whether to

select 𝑝 or not); or (2) delegate the decision on whether to approve

𝑝 or disapprove 𝑝 to another voter of her choice.

While such project-wise delegations indeed provide even greater

voter flexibility, there is a risk of inconsistent ballots; consider

the following example with 3 voters 𝑢, 𝑣,𝑤 , and 4 projects 𝑎, 𝑏, 𝑐, 𝑑 ,

where voter 𝑢 is positive towards approving project 𝑎 but does not

like project 𝑏. Then, 𝑢 approves project 𝑎 and disapprove project

𝑏. It is possible, that voter 𝑢 is not sure about the project 𝑐 due to

the lack of information, knowledge, or some other reason. But, she

trusts voter 𝑣 for the project 𝑐 . So, she delegates her vote for 𝑐 to

𝑣 ; and will take the same decision as of 𝑣 . It is possible that 𝑢 does

not find 𝑣 competitive enough to take decision for the project 𝑑

and trusts 𝑤 more than 𝑣 . So, she delegates her vote for 𝑑 to 𝑤 .

Now, say that each project costs 1 and the budget limit is 2. If 𝑣

decides to approve project 𝑐 and also𝑤 decides to approve project

𝑑 then effectively voter 𝑢 would approve projects 𝑎, 𝑐 , and 𝑑 , thus

in total she approves projects of cost 3, which is strictly above the

budget limit. Thus, due to following the direct decisions and the

delegations as expressed by voter 𝑢, we have that the vote of 𝑢

violates the constraints of Knapsack Voting.

Our main aim in this paper is to explore possibilities of miti-

gating such possible inconsistencies. To this end, our approach is

to look for the most delicate changes we can apply to the given

votes to arrive to an instance in which such inconsistencies are

avoided. We formulate our approach as the combinatorial problem

of updating as few delegations as possible so that, after following

all delegations, all votes satisfy the Knapsack constraint of Knap-

sack Voting. Figure 1 shows an example of solving an instance of

Consistent Knapsack Voting (CKV) defined as follows.

Consistent Knapsack Voting (CKV)

Input: A set of projects 𝑃 , cost function 𝑐 : 𝑃 → R≥0, a budget
𝐵, an integer 𝑘 , a set of voters 𝑉 , a set of votes {𝐿𝑣 : 𝑣 ∈ 𝑉 },
where 𝐿𝑣 ∈ {0, 1,𝑉 \ {𝑣}} |𝑃 | and 𝐿𝑣 (𝑝) ∈ 𝑉 \ {𝑣} means that a

voter 𝑣 delegates decision on 𝑝 to 𝐿𝑣 (𝑝).
Question: Can we update at most 𝑘 delegations to 0 or 1 so that

the resultant instance, after following all transitive delegations,

would result in all voters respecting the Knapsack constraint?

2 RESULTS
We analyze the parameterized complexity [10, 11] of CKV, for these

parameters: the number |𝑉 | of voters, the number |𝑃 | of projects,
the budget limit 𝐵, and the number of updates𝑘 (we refer to𝑘 also as

the solution size), the number 𝐷 =
∑

𝑣∈𝑉 |{𝑝 ∈ 𝑃 : 𝐿𝑣 (𝑝) ∉ {0, 1}}|

Extended Abstract AAMAS 2021, May 3-7, 2021, Online

1542

Figure 1: An instance of CKV. There is a set of projects 𝑃 =

{𝑝1, 𝑝2, 𝑝3}, each of unit cost, and the budget limit is 𝐵 = 2.
There are voters𝑉 = {𝑢, 𝑣,𝑤, 𝑥}, whose votes are represented
as vectors where the left entry corresponds to 𝑝1, the middle
entry to 𝑝2, and the right entry to 𝑝3; e.g., voter 𝑢 delegates
the decision on 𝑝1 to 𝑤 , approves 𝑝2, and delegates the deci-
sion on 𝑝3 to 𝑥 . Note that if we follow the delegations then
both 𝑢 and 𝑣 would violate the Knapsack constraints. If we
update the delegation of voter 𝑤 wrt. 𝑝1 (i.e., change it so
that 𝑤 would disapprove 𝑝1), however, then we will have a
consistent instance, thus with 𝑘 = 1, this is a yes-instance.

of delegations, the maximum number of delegations a single voter

can use and the maximum length of a delegation chain1.
First, we offer some preprocessing methods:

(1) Removing cycles: indeed, there could be cycles (e.g., voter

𝑢 delegates the decision on 𝑝 to voter 𝑣 , which, in turn, delegates

the decision on 𝑝 “back” to voter 𝑢 (of course, there might be also

cycles containing more than two voters); in the context of CKV,

however, we can change all corresponding votes in a cycle to be

disapprovals, as we are interested in minimizing the number of

changes of delegations to have Knapsack-consistent ballots, so

having disapprovals is always better for us than having approvals.

So we can assume wlog. that there are no delegation cycles in our

CKV instances.

(2) Removing disapproval chains A disapproval chain is a del-
egation chain ending in a disapproval; e.g., voter 𝑢 delegates the

decision on 𝑝 to 𝑣 , 𝑣 delegates the decision on 𝑝 to𝑤 , and𝑤 disap-

proves 𝑝; following the delegations, we will have disapprovals for

all voters in a disapproval chain, for the corresponding project at

hand. So, as having disapprovals is always better for us in the con-

text of CKV, we can simply change all delegations in a disapproval

chain to be disapprovals. So we can assume wlog. that there are no

disapproval chains in our CKV instances.

Our main results are aggregated in the following theorem.

Theorem 1. The following hold:
• CKV is NP-hard even if: each voter delegates to only one other
voter, |𝑃 | = 4, 𝐵 = 1, the maximum number of delegations in
a vote is 3, the maximum number of approvals in a vote is 1,
the costs of all projects are equal, the maximum length of a

1
An approval delegation chain for some project 𝑝 is a sequence of voters, each delegates

the decision on 𝑝 to the next voter in the chain, where the last voter in the chain

delegates the decision on 𝑝 to some voter that approves 𝑝 . Disapproval delegation

chains can be removed in preprocessing.

delegation chain is 2, the maximum in-degree in the delegation
graph is 3.

• CKV is W[2]-hard wrt. 𝑘 even if each voter can delegate to
only one other voter.

• CKV can be solved in polynomial-time when every voter dele-
gates at most one project.

• CKV can be solved in time2 O∗ ((𝐶
𝑘

))
≤ O∗ (2𝐶), where 𝐶 is

the number of delegation components.
• CKV can be solved in time O∗ (2 |𝑉 | · |𝑃 |).
• CKV can be solved in O∗ (2O(2|𝑉 |+log |𝑉 |)) time, hence the prob-
lem is FPT wrt. |𝑉 |.

• Unless Exponential Time Hypothesis [15] fails, there is no al-
gorithm for CKV that runs in time 2𝑜 (|𝑃 |+ |𝑉 |+𝑘+𝐵) .

• CKV can be solved in polynomial-time if all delegation chains
are of length at most one.

• We can formulate CKV as an integer program with 𝐶 binary
variables, where𝐶 is the number of delegation components. (In
the full version of the paper we report on computer simulation
made using such a formulation.)

• Let I be an instance of CKV and let 𝑝 ∈ [0, 1) be a fixed con-
stant. There exists a polynomial-time algorithm that returns
a solution to I in which all voters exceed (additively) the Knap-
sack constraint by atmostmax{3 ln(2|𝑉 |),

√
3 ln(2|𝑉 |)𝐵}with

probability at least 𝑝 . Note that in the case 3 ln(2|𝑉 |) ≤ 𝐵 it
is a 2-approximation algorithm wrt. the Knapsack constraint.

3 DISCUSSION AND OUTLOOK
Motivating by the desire to get the benefits of LD for PB, we consid-

ered the option of allowing per-project delegations for Knapsack

Voting. Observing that with the additional flexibility given to vot-

ers, there could be inconsistencies by naively following delegation

chains, we considered altering as few delegations as possible to

solve such inconsistencies. We have shown that this is computa-

tionally very hard; but it can be done efficiently (1) if |𝑉 | is small

and for other restricted cases; (2) if we settle for approximation

algorithms; and (3) if we are using ILP solvers. This opens the way

to solve many instances efficiently. We believe that it is useful to al-

low fine-grained transitive delegations to PB as we view our results

as showing that it is possible to enable it, at least in certain cases.

The most pressing future research direction would be to develop

and analyze other ways of solving such inconsistencies, such as:

(1) having voters rank the projects she delegates so that we could

go greedily over such rankings; (2) updating a set of delegations

whose total cost is the minimum (and not its size, as we study here);

(3) updating a set of delegations while not tackling only the roots of

delegation chains, e.g., by minimizing the number of voters affected.

ACKNOWLEDGMENTS
Krzysztof Sornat was partially supported by the Foundation for

Polish Science (FNP) within the START programme, the National

Science Centre, Poland (NCN; Grant No. 2018/28/T/ST6/00366) and

the Israel Science Foundation (ISF; Grant No. 630/19). Nimrod Tal-

mon was supported by the Israel Science Foundation (ISF; Grant

No. 630/19).

2O∗
hides factors that are polynomial in the input size.

Extended Abstract AAMAS 2021, May 3-7, 2021, Online

1543

REFERENCES
[1] Haris Aziz, Barton E. Lee, and Nimrod Talmon. 2018. Proportionally Representa-

tive Participatory Budgeting: Axioms and Algorithms. In Proceedings of the 17th
International Conference on Autonomous Agents and MultiAgent Systems (AAMAS
2018). 23–31.

[2] Haris Aziz and Nisarg Shah. 2020. Participatory Budgeting: Models and Ap-

proaches. CoRR abs/2003.00606 (2020).

[3] Jan Behrens. 2017. The Origins of Liquid Democracy. The Liquid Democracy
Journal 5, 2 (2017), 7–17.

[4] Gerdus Benade, Swaprava Nath, Ariel D. Procaccia, and Nisarg Shah. 2017. Pref-

erence Elicitation for Participatory Budgeting. In Proceedings of the 31st AAAI
Conference on Artificial Intelligence (AAAI 2017). 376–382.

[5] Daan Bloembergen, Davide Grossi, and Martin Lackner. 2019. On Rational

Delegations in Liquid Democracy. In Proceedings of the 33rd AAAI Conference on
Artificial Intelligence (AAAI 2019). 1796–1803.

[6] Christian Blum and Christina Isabel Zuber. 2016. Liquid Democracy: Potentials,

Problems, and Perspectives. Journal of Political Philosophy 24, 2 (2016), 162–182.

[7] Florian Brandl, Felix Brandt, Dominik Peters, Christian Stricker, and Warut

Suksompong. 2019. Donor Coordination: Collective Distribution of Individual

Contributions. http://brandlf.com/publications/donate. Online; accessed 15

February 2021.

[8] Markus Brill and Nimrod Talmon. 2018. Pairwise Liquid Democracy. In Proceed-
ings of the 27th International Joint Conference on Artificial Intelligence (IJCAI 2018).
137–143.

[9] Yves Cabannes. 2004. Participatory Budgeting: A Significant Contribution to

Participatory Democracy. Environment and Urbanization 16, 1 (2004), 27–46.

[10] Marek Cygan, Fedor V. Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel Marx,

Marcin Pilipczuk, Michał Pilipczuk, and Saket Saurabh. 2015. Parameterized
Algorithms. Springer.

[11] Rodney G. Downey and Michael R. Fellows. 1995. Fixed-Parameter Tractability

and Completeness I: Basic Results. SIAM J. Comput. 24, 4 (1995), 873–921.
[12] Rupert Freeman, David M. Pennock, Dominik Peters, and Jennifer Wortman

Vaughan. 2019. Truthful Aggregation of Budget Proposals. In Proceedings of the
2019 ACM Conference on Economics and Computation (EC 2019). 751–752.

[13] Ashish Goel, Anilesh K. Krishnaswamy, Sukolsak Sakshuwong, and Tanja Aita-

murto. 2019. Knapsack Voting for Participatory Budgeting. ACM Trans. Economics
and Comput. 7, 2 (2019), 8:1–8:27.

[14] James Green-Armytage. 2015. Direct Voting and Proxy Voting. Constitutional
Political Economy 26, 2 (2015), 190–220.

[15] Russell Impagliazzo and Ramamohan Paturi. 2001. On the Complexity of k-SAT.

J. Comput. Syst. Sci. 62, 2 (2001), 367–375.
[16] Nimrod Talmon and Piotr Faliszewski. 2019. A Framework for Approval-Based

Budgeting Methods. In Proceedings of the 33rd AAAI Conference on Artificial
Intelligence (AAAI 2019). 2181–2188.

Extended Abstract AAMAS 2021, May 3-7, 2021, Online

1544

http://brandlf.com/publications/donate

	Abstract
	1 Introduction
	2 Results
	3 Discussion and Outlook
	Acknowledgments
	References

