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ABSTRACT
A finite-time consensus protocol is developed for a connected net-

work of agents, where communication between agents occurs lo-

cally, some of the agents are malicious, and the non-malicious or

cooperative agents do not know the identities of the malicious ones.

The agents are modeled with first-order dynamics, and the inputs to

each agent that enable consensus are designed using the principles

of sliding mode control (SMC). The use of the SMC algorithm guar-

antees finite-time consensus and ensures that in the transient stage,

the agents’ states are contained within the convex hull formed by

their initial conditions (ICs). With this feature and by modeling the

network as a connected graph, the protocol guarantees consensus

amongst the cooperative agents when the malicious agents trans-

mit values of their states lying outside the convex hull of ICs, and

the graph formed by the cooperative agents with the removal of

the malicious agents is strongly connected. The protocol does not

require a cooperative agent to know the number of malicious or

other cooperative agents in the network, and is based only on local

communication.
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1 INTRODUCTION
Consensus algorithms for a connected network of agents, when

some of the agents in the network become malicious, for instance,

as the result of an external attack, are of current interest. Such

algorithms, which are distributed in nature and are based on local

information exchanges, are denoted as resilient consensus algo-
rithms or protocols (RCP) [14, 20]. The malicious agents (MA) can

drive the consensus value of the cooperative (CO) agents to an

undesirable value or even to an unsafe region.

In this work, an RCP is developed using concepts from SMC

theory, for a network of agents defined by first-order dynamics [18];

there are recent examples of such protocols [3, 6, 8, 13]. The input

to the dynamic system is chosen to be discontinuous on a switching

manifold. As a result, “sliding mode”, which defines the closed-loop
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dynamics, occurs within a finite-time interval (see Utkin [17] for

properties of sliding mode). Due to this property, an SMC-based

RCP can be designed to lead to consensus within a finite-time

interval—this is in contrast with most non-SMC based protocols,

where only asymptotic consensus is guaranteed.

In the distributed computing literature [2, 12], consensus is de-

scribed as a decision problem for n processes, some of which may

be faulty [10]. The consensus protocol must fulfill the following

conditions: i. Consistency: all non-faulty processes must return the

same output value; ii. Termination: every non-faulty process must

return an output value within some finite time; and iii. Validity: if
every process is given the same input value, then every process

must return that very value as output. Certain impossibility results

follow, of which the best known is that in a strictly asynchronous

system, consensus cannot be achieved even if a single processor

fails [7], though this can be relaxed if even weak synchrony is

possible [5].

An RCP is similarly expected to satisfy the conditions that define

consensus amongst CO agents, in the presence of MAs. These con-

ditions are the agreement condition—the states of any connected

pair of CO agents should reach the same value; and the validity
condition—the trajectories of the CO agents should lie within the

interval defined by the agents’ ICs. Most RCPs [1, 4, 9, 11, 16, 19, 20],

require CO agents to know the number of MAs in the network.

With our SMC-based RCP described here, this requirement is

eliminated for MAs that send values that lie outside the convex hull

formed by the agents’ ICs. An MA can also send different values,

that lie outside the convex hull, to different CO agents. This is an

assumptionmade for Fault Identification andDetection algorithms—

a faulty agent can be detected only if its input drives its state out of

some known bounds [15, 20]. The SMC-based RCP ensures i. that
the CO agents satisfy the validity and the agreement conditions if

and only if the sub-graph induced by the removal of the MAs is

connected; and ii. consensus occurs amongst the CO agents for any

attack model and network topology, for instance, one with cycles

and cliques (see LeBlanc et al. [11] for types of attack models in

networks with MAs).

2 MAIN RESULTS
The SMC-based RCP is developed for a network of agents as shown

in Fig. 1, where some of the agents are MAs. The network topology

is defined by an undirected graphG withn vertices. This assumption

implies that information flow is in both directions between a pair

of connected agents. ForG , the symmetric Laplacian matrix L(G) ∈
ℜn×n

which satisfies L(G) = D(G) − A(G) can be defined. D(G) is
a diagonal matrix consisting of the positive integers dii , 1 ≤ i ≤ n
that denote the number of neighbors of agent i; A(G) is also a
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symmetric matrix with elements ai j = aji = +1 if agents i and j
are connected to each other, and 0 otherwise. For the undirected

graphG , these integers satisfy
∑
ai j = di . Since the rank of L(G) is

(n − 1), a vector xr ∈ ℜn×1
, with non-zero identical elements, can

be found such that L(G)xr = 0. It is this property of the Laplacian

matrix that is used to provide consensus.

A1 A2

A3 A4

A5 A6

A7

Figure 1: Network of CO (in white) and MA (in gray) agents

The agents in the network are defined by the dynamics Ûxi =
ui , 1 ≤ i ≤ n, xi (t = 0) , x j (t = 0), i , j. Thus, the SMC-based

RCP involves the selection of the inputs ui such that within a finite-

time intervalTC , the states satisfy xi (TC ) = x j (TC ), i , j , and ∀ t ≥
0, xi (t) ∈ Conv(xi (t = 0), 1 ≤ i ≤ n), where Conv(xi (t = 0), 1 ≤

i ≤ n) is the convex hull formed by the agents’ ICs. CO agents in

the network apply the same input form, while an MA, with state

xMj , is one that does not apply the same form of the input as the

CO agents and also transmits as its state information, a value that

satisfies xMj (t) < Conv(xi (t = 0), 1 ≤ i ≤ n) to its neighbors. Note

that an MA can also send different values to different neighbors and

CO agents can identify and ignore information from MAs. With

these definitions, the main results are presented as follows.

Theorem 2.1. For a network comprised of f MAs and (n − f ) CO
agents, the SMC protocol

ui = −Msign(si ), si = Li(GR )xCi , M > 0, (1)

leads to consensus amongst the CO agents if and only if the graph
GR formed by the removal of the MAs is connected, where Li(GR ) is
the row i of the Laplacian matrix of the reduced graph GR , and xCi
is the vector of the CO agents’ states.

Proof. If f = 0, then it is known [13] that the consensus proto-

col (1) leads to consensus amongst the agents within a finite-time

interval. The proof [13] is extended when the network has MAs.

When 0 < f < n, a CO agent can disregard the information sent by

MAs connected to it. Let CO agent i be connected to 0 ≤ fi < dii
MAs. Since agent i disregards information from the fi MAs, the

elements of row i of the Laplacian matrix from the original graph

G become diiR = (dii − fi ) > 0, and ai j = 0, where agent j is MA.

Similarly, let all CO agents disregard information from MAs.

Now, if graphGR consisting of only CO agents is connected, then its

Laplacian matrix L(GR ) is also rank deficient (n− f −1), and satisfies
all properties of any graph Laplacian matrix. Now, following the

earlier proof [13], for the graphwith only CO agents, the SMC-based

RCP (1) guarantees consensus within a finite-time interval. □

Remarks: 1. The consensus value is the average of theminimum

and maximum ICs of the CO agents; 2. the consensus time can be

tuned using the control gainM ; 3. the RCP (1) guarantees consensus
amongst CO agents for the case when MAs transmit the same state

to all their neighbors that also satisfy xMj (t) ∈ Conv(xi (t = 0), 1 ≤

i ≤ n), in this case, the consensus value is decided by the values

xMj .

3 SIMULATION RESULTS
Agents A3 and A4 in Fig. 1 are MAs; the graph with the removal of

these is connected. The ICs of the CO agents are randomly chosen

between [0, 1]; the control gain is set toM = 5. Fig, 2 shows the CO

agents continuing to be in consensus when A3,4 become malicious

after they reach a consensus with their neighbors. The result where

the CO agents reach consensus at the value of the single MA that

lies within the convex hull of ICs is validated in Fig. 3. As can be

seen, this result satisfies both the agreement and validity conditions

required in an RCP.
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Figure 2: Agents “become” malicious for t > TC
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Figure 3: Single MA with state ∈ Conv(xi (t = 0))

4 CONCLUSIONS
The SMC-based RCP given here has a unified feature and leads

to finite-time consensus for a variety of MAs and network topolo-

gies without needing knowledge of the MAs. Consensus can be

guaranteed amongst the CO agents even if some agents become

malicious after a time interval. Since the protocol does not require

heavy computation by each agent, it is simple to implement and

can be used in diverse applications.
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