
Multiagent Task Allocation and Planning with Multi-Objective
Requirements
Extended Abstract

Thomas Robinson
University of Wollongong
Wollongong, Australia

tmr463@uowmail.edu.au

Guoxin Su
University of Wollongong
Wollongong, Australia
guoxin@uow.edu.au

Minjie Zhang
University of Wollongong
Wollongong, Australia
minjie@uow.edu.au

ABSTRACT
In service robot applications, planning is often integrated with task
allocation. Linear Temporal Logic (LTL) as an expressive high-level
formalism is widely used for task specification, and allows for for-
malised restrictions on temporal sequences of tasks. In multiagent
planning, a Multi-Objective Markov Decision Process extends the
standard model with vector rewards capturing possibly conflicting
planning objectives. Such objectives include the success rates of
accomplishing individual tasks, and the cost budgets for individ-
ual agents. In this paper, we consider the problem of concurrently
allocating LTL task sequences to a team of agents and calculat-
ing optimal task schedulers simultaneously, satisfying cost and
probability thresholds. We reduce this problem to multi-objective
scheduler synthesis for a team MDP structure, whose size is linear
in the number of agents. Our preliminary experiment demonstrates
the scalability of our approach.

KEYWORDS
Multiagent Planning; Multi-Objective Planning; Task Allocation
ACM Reference Format:
Thomas Robinson, Guoxin Su, and Minjie Zhang. 2021. Multiagent Task
Allocation and Planning with Multi-Objective Requirements: Extended
Abstract. In Proc. of the 20th International Conference on Autonomous Agents
and Multiagent Systems (AAMAS 2021), Online, May 3–7, 2021, IFAAMAS,
3 pages.

1 INTRODUCTION
Traditionally, multiagent planning aims at computing a solution
(i.e., scheduler) for agents to achieve a pre-defined objective. In
many real-world applications of service robots, a set of possibly
heterogeneous tasks are assigned to a team of robots to accom-
plish. Furthermore, those service robots may be constrained by cost
budgets. For example, a set of tasks requiring different numbers of
consecutive sprints are assigned to a team of robots, which have dif-
ferent success rates of sprints and cause different costs (i.e., energy
consumption or maintenance cost). For a multi-robot system, plan-
ning is often integrated with allocating tasks to the robots, coined
as a (simultaneous) task allocation and planning (TAP) problem in
[24]. Separating allocation from planning reduces the complexity
of a TAP problem but may result in a sub-optimal solution.

In this paper, we consider the TAP problem for multiagent sys-
tems with respect to multi-objective requirements. Following [24],

Proc. of the 20th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2021), U. Endriss, A. Nowé, F. Dignum, A. Lomuscio (eds.), May 3–7, 2021, Online.
© 2021 International Foundation for Autonomous Agents and Multiagent Systems
(www.ifaamas.org). All rights reserved.

we adopt a fragment of LTL, called co-safe LTL [25], to specify the
tasks. As we are interested in stochastic planning, our approach
is close to [5], which extends the TAP framework of [24] to the
uncertainty setting, and in particular, employs MDPs as agent mod-
els. However, while [5] solves the TAP problem with respect to
an overall probability requirement, we aim to deal with a Multi-
Objective version of the TAP problem (MOTAP) which involves both
probability and cost requirements.

In this paper we formulate the MOTAP problem as a randomised
allocation of tasks to agents and reduce the problem to a multi-
objective scheduler synthesis problem for a team MDP structure.
The overall aim is to provide an approach to solving amulti-objective
task allocation and planning problem, scaling linearly in the number
of agents.

2 APPROACH
Tasks as Automata: LTL formulas 𝜑 over a finite set 𝐴𝑃 of atomic
propositions are defined using the following grammar:

𝜑 ::= ⊤ | a | ¬𝜑 | 𝜑1 ∧ 𝜑2 | X𝜑 | 𝜑1 U𝜑2 (1)

where a ∈ 𝐴𝑃 . The operators X and U stand for “next" and “until”,
respectively.

It is natural to consider task allocation which completes in finite
time, especially in the circumstance where we consider allocating
sequences of tasks to a single agent. Task formulation which com-
pletes in finite time requires a subset of LTL formulas which are
guaranteed to have a finite fragment. We then only want to con-
sider the co-safe language L𝑐 = Σ𝜔 \ L𝑠𝑎𝑓 𝑒 , where if 𝑥 ∈ Σ∗ and
an accepting prefix, and 𝑦 ∈ Σ𝜔 then 𝑥 .𝑦 ∈ L. It has been shown
that any LTL formula containing only the temporal operators X
(next), U (until), an F (eventually) in positive normal form (PNF)
always results in a co-safe property satisfying L𝑐 [12]. Further, be-
cause the infinite part of a co-safe LTL formula does not affect the
outcome of any sequence [12], we may define a non-deterministic
finite automaton (NFA) which is always accepting for the finite
sequence [2]. It is well known that deterministic finite automata
(DFA) and NFA are equally expressive so then we may construct a
DFA, A 𝑗 = (𝑄 𝑗 , 𝑞 𝑗,0, 𝑄 𝑗,𝐹 , Σ, 𝛿) for any co-safe LTL task formula.

Agent models: An agent with some expectation of uncertainty
in the outcome of its actions is represented by a labelled Markov
decision process (MDP)1 defined as a tuple M = (𝑆, 𝑠0, 𝐴, 𝑃, 𝐿)
where 𝑆 is a finite state space, 𝑠0 ∈ 𝑆 is an initial state, 𝐴 is as
set of actions, 𝑃 : 𝑆 × 𝐴 × 𝑆 ↦→ [0, 1] is a transition function,
𝐿 : 𝑆 ↦→ Σ is a labelling function. We want to verify that the

1See [2] for more details on model checking MDPs

Extended Abstract AAMAS 2021, May 3-7, 2021, Online

1628

Table 1: Model size and runtime comparison between the
team MDP and MAMDP in Experiment 1, where 𝑡 - runtime
in seconds, |𝑆 | - state space, |𝑃 | - number of transitions, |𝑆 |′ -
reachable states, |𝑃 | - number of reachable transitions.

#Agents Team MDP MAMDP
𝑡 |𝑆 | |𝑃 | 𝑡 |𝑆 | |𝑃 | |𝑆 |′ |𝑃 |′

3 9 4320 9504 9 26091 259853 1000 9000
4 12 7488 21488 77 260901 3.3 × 106 10000 120000
5 17 9360 34992 627 2.1 × 106 2.9 × 107 100000 1.5 × 106
6 23 11232 50976 7585 2 × 107 3.6 × 108 1 × 106 1.8 × 107
7 30 13104 69120 - - - 1 × 107 2.1 × 108

(𝑠, 𝑞) (𝑠′, 𝑞′)
𝛼

(a) A pre-modified
self loop

(𝑠, 𝑞) (𝑠′, 𝑞′)

(𝑠new, 𝑞)

𝛼

𝛼
𝛼

(b) Amodified self
loop

(𝑠, 𝑞) (𝑠′, 𝑞′)

(𝑠′′, 𝑞′′)

{fail(A𝜑) }

𝛼

𝛼

(c) A pre-modified
failure

(𝑠, 𝑞) (𝑠∗, 𝑞′)

(𝑠′, 𝑞′)

{justFail(A𝜑) }

(𝑠′′, 𝑞′′)

𝛼

𝛼 𝜏

(d) Amodified fail-
ure

Figure 1: Modification diagram for self loops and failures to
accurately evaluate task rewards.

traces generated on a labelled MDP is exactly those accepted by
the collection of task DFA. To do this we can iteratively construct a
product MDP M𝑖 ⊗ A = (M𝑖 ⊗ A1) ⊗ A2) . . .) ⊗ A𝑚 for agent
𝑖 using the collection of task DFA {A1, . . . ,A𝑚} according to [2]
for which the resulting state space is 𝑆𝑖 ×𝑄 . A standard product
MDP is unsuitable for optimising task allocation and requires a
number of modifying steps, the resulting structure is distinguished
asM𝑖 ⊗A = (𝑆𝑖 ×𝑄, (𝑠𝑖,0, 𝑞0), 𝐴𝑖 , 𝑃𝑖 , 𝐿𝑖) for agent 𝑖 . The goal of an
agent is to minimise the paths of an allocated task leading to failure
and checking that the failure probability is within some acceptable
threshold. Therefore, it is natural that once a task has been initiated
by an agent it is carried out to completion. To account for this we
make the following modification to self-loops, for each 𝛼 ∈ 𝐴′(𝑠, 𝑞)
redirect the self-loop of (𝑠, 𝑞) under the action 𝛼 to a pair (𝑠new, 𝑞)
as long as 𝑞𝑖 is not accepted or rejected, demonstrate in Figures
(1a, 1b). Further, rewards (penalties) should only be assigned for
task failure when a task has reached a failure state for the first time.
We add another new state 𝑠∗ if there is a non-zero probability of
transitioning from a non-failure state to one that satisfies failure
for task 𝑗 , shown in Figures (1c, 1d). States in the local product for
which some combination of tasks are initial or completed/rejected
are labelled Stoppable(A 𝑗).

Rewards Structures: A rewards function maps state-action
pairs to an 𝑛(agents) +𝑚(tasks) rewards vector 𝜌 (𝑠, 𝑎) = (𝑐1, ..., 𝑐𝑛,
𝑡1, ..., 𝑡𝑚) where 𝑐𝑖 = 𝜌 ((𝑠, 𝑞), 𝑎) inherited from the agent MDP
when a task is initial or in-progress for agent 𝑖 and 0 everywhere else.
The elements 𝑡𝑖 ∈ 𝜌 ((𝑠, 𝑞), 𝑎) are task rewards derived from Equa-
tion 2 below. Computing optimal schedulers relies on optimising
convex combinations of expected total rewards using 𝜌 ((𝑠, 𝑞), 𝑎).

𝜌 𝑗+𝑛 ((𝑠, 𝑞), 𝑎) =
{
1 if (𝑠, 𝑞) |= justFail(A 𝑗)
0 otherwise.

(2)

Problem Definition: A collection of tasks is a valid mission
if three conditions hold: (i) only one task is active at any given
time, (ii) there is only one action relevant to a task progress in any
reachable state, (iii) after a task is completed the MDP returns back
to its initial state. Then given a set of agents and rewards structures,
a multi-objective task allocation and planning (MOTAP) problem
is to find a randomised allocation function which satisfies task
completion probability thresholds and each agents cost constraint.
A randomised allocation function is derived from the pareto optimal
schedulers, and optimally allocates tasks to agents in a memoryless
way. Therefore, tasks can be concurrently distributed to agents,
who carry out tasks according to an optimal plan. To solve the
MOTAP problem we require a team MDP,𝑀𝐼 = (𝑆𝐼 , 𝑠𝐼 ,0, 𝐴𝐼 , 𝑃𝐼 , 𝐿𝐼)
constructed in a similar way to [5], in the sense that a team MDP
is a collection of local products with virtual switch transitions
𝑏 ∈ 𝐴𝐼 . In our team MDP, switch transitions exist between any
state labelled with Stoppable(A 𝑗) to an initial state of the 𝑖 + 1 ∈ 𝐼

agent, 𝑃𝐼 ((𝑠, 𝑞), 𝑏, (𝑠𝑖+1,0, 𝑞)).

3 EXPERIMENTS
Our approach was evaluated for model size, number of states |𝑆 |
and |𝑃 | transitions, and runtime 𝑡 . The aim of the experiment was
to determine how our approach scaled in the number of agents
compared to a traditional implementation of an asynchronous mul-
tiagent MDP (MAMDP) in PRISM [13] for the same set of agents
and LTL formulation.

The outcome of the experiment can be observed in Table 1. When
scaling in the number of agents, there was a significant difference
in the rate of change between team MDP and the MAMDP, with
the former having a much lower model checking time and a much
smaller model size. Scaling the multiagent model to 7 agents caused
PRISM to experience an out of memory exception. As the number
of agents increased, the total model checking time for the team
MDP grew linearly as expected, while that for MAMDP grew expo-
nentially. For the team MDP there is a slight divergence between
state-space growth and number of transitions (which is not ob-
served in the MAMDP multi-objective model checking). That is due
to the additional switch transitions handing over control of tasks to
the next agent, which increased the number of transitions, but that
increment was small compared with the size of state space. Our
findings in this experiment support the claim that MOTAP is more
suitable for handling larger multiagent systems than conventional
models.

4 CONCLUSION AND FUTUREWORK
This paper proposed an efficient approach for allocating tasks, spec-
ified as co-safe LTL, that synthesised randomised schedulers for
MDP agents meeting multi-objective requirements involving both
cost and probability thresholds. Several future directions of the cur-
rent work exist. While the team MDP allows decoupling of agents,
there is possibly a further extension to decouple tasks. Exploration
of the framework to remove the condition of an MDP returning
to its initial state after task completion. Last, incorporating multi-
objective reinforcement learning [21] into our framework to perform
task allocation and planning in the model-free setting.

Extended Abstract AAMAS 2021, May 3-7, 2021, Online

1629

REFERENCES
[1] Christel Baier, Holger Hermanns, and Joost-Pieter Katoen. 2019. The 10,000 facets

of MDP model checking. In Computing and Software Science. Springer, 420–451.
[2] Christel Baier and Joost-Pieter Katoen. 2008. Principles of Model Checking. The

MIT Press, Cambridge, Mass. OCLC: ocn171152628.
[3] Krishnendu Chatterjee, Rupak Majumdar, and Thomas A Henzinger. 2006.

Markov decision processes with multiple objectives. In Annual Symposium on
Theoretical Aspects of Computer Science. Springer, 325–336.

[4] Peng Dai, Daniel S Weld, Judy Goldsmith, et al. 2011. Topological value iteration
algorithms. Journal of Artificial Intelligence Research 42 (2011), 181–209.

[5] Fatma Faruq, David Parker, Bruno Laccrda, and Nick Hawes. 2018. Simultaneous
Task Allocation and Planning Under Uncertainty. In 2018 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE, Madrid, 3559–3564.
https://doi.org/10.1109/IROS.2018.8594404

[6] Vojtěch Forejt, Marta Kwiatkowska, Gethin Norman, David Parker, andHongyang
Qu. 2011. Quantitative multi-objective verification for probabilistic systems. In
International Conference on Tools and Algorithms for the Construction and Analysis
of Systems. Springer, 112–127.

[7] Vojtěch Forejt, Marta Kwiatkowska, and David Parker (Eds.). 2011. Automatic
Verification Techniques for Probabilistic Systems. Formal Methods for Eternal
Networks 6659 (2011), 60–120. https://doi.org/10.1007/978-3-642-21455-4

[8] Vojtěch Forejt, Marta Kwiatkowska, and David Parker. 2012. Pareto curves for
probabilistic model checking. In International Symposium on Automated Technol-
ogy for Verification and Analysis. Springer, 317–332.

[9] Meng Guo and Dimos V Dimarogonas. 2015. Multi-agent plan reconfiguration
under local LTL specifications. The International Journal of Robotics Research 34,
2 (2015), 218–235.

[10] Ernst Moritz Hahn, Vahid Hashemi, Holger Hermanns, Morteza Lahijanian,
and Andrea Turrini. 2017. Multi-objective robust strategy synthesis for interval
Markov decision processes. In International Conference on Quantitative Evaluation
of Systems. Springer, 207–223.

[11] Marechal Juin and Abdel-Illah Mouaddib. 2006. Collective multi-objective plan-
ning. In IEEE Workshop on Distributed Intelligent Systems: Collective Intelligence
and Its Applications (DIS’06). IEEE, 43–48.

[12] Orna Kupferman and Moshe Y Vardi. 2001. Model Checking of Safety Properties.
Formal methods in system design 19, 3 (2001), 291–314.

[13] Marta Kwiatkowska, Gethin Norman, and David Parker. 2011. PRISM 4.0: Verifi-
cation of Probabilistic Real-time Systems. In Proc. 23rd International Conference
on Computer Aided Verification (CAV’11) (LNCS, Vol. 6806), G. Gopalakrishnan

and S. Qadeer (Eds.). Springer, 585–591.
[14] Marta Kwiatkowska, David Parker, andHongyangQu. 2011. Incremental quantita-

tive verification for Markov decision processes. In 2011 IEEE/IFIP 41st International
Conference on Dependable Systems & Networks (DSN). IEEE, 359–370.

[15] Matt Luckcuck, Marie Farrell, Louise A Dennis, Clare Dixon, and Michael Fisher.
2019. Formal specification and verification of autonomous robotic systems: A
survey. ACM Computing Surveys (CSUR) 52, 5 (2019), 1–41.

[16] Erion Plaku and Sertac Karaman. 2016. Motion planning with temporal-logic
specifications: Progress and challenges. AI communications 29, 1 (2016), 151–162.

[17] Amir Pnueli. 1977. The temporal logic of programs. In 18th Annual Symposium
on Foundations of Computer Science (sfcs 1977). IEEE, 46–57.

[18] Amir Pnueli and Roni Rosner. 1989. On the synthesis of a reactive module.
In Proceedings of the 16th ACM SIGPLAN-SIGACT symposium on Principles of
programming languages. 179–190.

[19] Martin L Puterman. 2014. Markov decision processes: discrete stochastic dynamic
programming. John Wiley & Sons.

[20] Roxana Rădulescu, Patrick Mannion, Diederik M Roijers, and Ann Nowé. 2020.
Multi-objective multi-agent decision making: a utility-based analysis and survey.
Autonomous Agents and Multi-Agent Systems 34, 1 (2020), 10.

[21] Diederik M Roijers, Peter Vamplew, ShimonWhiteson, and Richard Dazeley. 2013.
A survey of multi-objective sequential decision-making. Journal of Artificial
Intelligence Research 48 (2013), 67–113.

[22] Indranil Saha, Rattanachai Ramaithitima, Vijay Kumar, George J Pappas, and San-
jit A Seshia. 2014. Automated composition of motion primitives for multi-robot
systems from safe LTL specifications. In 2014 IEEE/RSJ International Conference
on Intelligent Robots and Systems. IEEE, 1525–1532.

[23] Philipp Schillinger, Mathias Bürger, and Dimos V. Dimarogonas. 2018. De-
composition of Finite LTL Specifications for Efficient Multi-agent Planning.
In Distributed Autonomous Robotic Systems, Roderich Groß, Andreas Kolling,
Spring Berman, Emilio Frazzoli, Alcherio Martinoli, Fumitoshi Matsuno, and
Melvin Gauci (Eds.). Vol. 6. Springer International Publishing, Cham, 253–267.
https://doi.org/10.1007/978-3-319-73008-0_18 Series Title: Springer Proceedings
in Advanced Robotics.

[24] Philipp Schillinger, Mathias Bürger, and Dimos V. Dimarogonas. 2018. Simulta-
neous Task Allocation and Planning for Temporal Logic Goals in Heterogeneous
Multi-Robot Systems. The International Journal of Robotics Research 37, 7 (June
2018), 818–838. https://doi.org/10.1177/0278364918774135

[25] Moshe Y Vardi and Pierre Wolper. 1994. Reasoning about infinite computations.
Information and computation 115, 1 (1994), 1–37.

Extended Abstract AAMAS 2021, May 3-7, 2021, Online

1630

https://doi.org/10.1109/IROS.2018.8594404
https://doi.org/10.1007/978-3-642-21455-4
https://doi.org/10.1007/978-3-319-73008-0_18
https://doi.org/10.1177/0278364918774135

	Abstract
	1 Introduction
	2 Approach
	3 Experiments
	4 Conclusion and Future Work
	References

