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ABSTRACT

Most existing incentive allocation approaches rely on sufficient
information about users’ attributes, such as their preferences, fol-
lowers in the social network, and activities, to customize effective
incentives. However, this may lead to failure when such knowledge
is unavailable. In this light, we propose an end-to-end reinforce-
ment learning-based framework, named Geometric Actor-Critic
(GAC), to discover effective incentive allocation policies towards
users in a social network. More specifically, given a limited budget,
the proposed approach can extract information from a high-level
network representation for learning effective incentive allocation
policies. The proposed GAC only requires the topology of the social
network and does not rely on any prior information about users’
attributes. We use three real-world social network datasets to evalu-
ate the performance of the proposed GAC. The experimental results
demonstrate the effectiveness of the proposed approach.
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1 INTRODUCTION

Incentivizing users to take behaviors that are profitable or benefi-
cial to the incentive providers is a crucial problem to many fields,
including promoting sales [6, 21, 22], hiring workers [2, 8, 10],
encouraging beneficial behaviors [12, 15, 17]. Such processes are
computationally modeled as incentive allocation problem, where the
goal is to incentivize users with effective incentives under a budget
limitation, such that the number of users who take the behavior
that the incentive provider expects is maximized.

Given a finite budget, the key factor for a successful incentive
allocation is whether the incentive structure and the pricing policies
for users are reasonable or not, as overpricing the incentive would
waste the budget, whereas underpricing could fail to incentivize the
user [11]. Namely, the pricing policies should consider the utilities
of both incentive providers and users. Some studies attempted to
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model users’ attributes, such as users’ preferences and skill abilities
(2, 4, 8,9, 17-19], to generate “optimal” incentives. However, these
methods could be impotent when such information is lacking or
unavailable.

Some studies also consider exploiting social influence to incen-
tivize users, as information diffusion plays a crucial role in propa-
gating persuasive information among friends in a social network
[5]. However, recognizing influential users in a social network is
difficult in practice. Although we can collect the topology of a social
network and identify if a user is influential or not based on the
number of her followers, it may contain false or weak edges that are
ineffective at spreading influence [1, 7, 14]. In principle, we could
conduct exhaustive surveys on all users to estimate their influential
abilities. Nevertheless, such surveys are very labor-intensive and
impractical [13].

Is it possible to perform effective incentive allocation for realizing
user incentivization in a social network, where the information
about users and influence strength among users is absent, and the
budget is restricted? To tackle the incentive allocation problem
on online social networks, in this paper, we propose an end-to-
end reinforcement learning-based framework, named Geometric
Actor-Critic (GAC), which can learn to extract information from
the network for generating incentive allocation policies. GAC is
able to learn both global representations for the entire network and
local representations for the individual users. This allows the RL
agent to estimate if the user is influential in the network, such that
determine the incentive value for her.

2 PROBLEM FORMULATION

Let G = (V,E) represents a social network, where G denotes a
directed graph, V = {0y, ..., v;} denotes a set of user agents, and E
denotes a set of edges in the network. Each edge implies that v;
can influence v;’s behaviors, and the strength of influence is from
0 to 1. We also define v;’s one-hop neighbors who can influence v;
directly as in-neighbors, and those who are directly influenced by
v; as out-neighbors. Each user v; would take a behavior based on
own preferences at every time step. Let the range of an incentive
be from 0 to 1. Given a finite budget B, the objective is to maxi-
mize the number of users who take z* as behaviors by providing
users incentives, where z* represents the behavior expected by the
incentive provider.

3 GEOMETRIC ACTOR-CRITIC

To tackle the incentive allocation problem in a social network, it
is essential to take both the structure of the network and users’
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Figure 1: Performance comparison of GAC and baseline approaches

features into consideration when generating incentive policies. Due
to the complexity of a social network, it is necessary to encode the
information about a network in a low-level graph representation.

The input of GAC includes the user feature matrix and two dif-
ferent adjacency matrices, i.e., the in-adjacency matrix and the
out-adjacency matrix. The reason why we input two adjacency ma-
trices is that a social network is typically a directed graph structure,
and its adjacency matrix is not symmetric. To keep all structural
information about the graph, we deploy two independent compo-
nents consisting of Graph Neural Networks (GNNs) to encode both
the out-adjacency and the in-adjacency matrices, respectively. In
each network encoding component, a Mean “variant” of GraphSage
[3] is deployed first to learn refined user features by aggregating
features from their neighbors. Through the first GraphSage layer,
we can obtain local representation for all users, i.e., node embed-
ding. After learning the node embeddings for all users, we use two
Diffpoll layers [20] to learn the global representation of the entire
social network, which can aggregate user features in a hierarchical
manner.

Once the local and global representations are obtained, i.e., node
embeddings for all users and graph embedding, they can be com-
bined as a vector containing information from both the local and
global representations via a matrix-vector product. These two newly
generated vectors would be concatenated. The concatenated vec-
tor would be normalized by using L2-Norm and subsequently fed
through three fully connected layers with nonlinear activation func-
tions. The first two layers use ReLU as activation functions, while
the last layer uses tanh as the activation function. Due to the range
of each entry in the output is from -1 to 1, we need to re-scale it to
the range from 0 to 1 before allocating incentives for users.

4 EXPERIMENT

To evaluate the performance of the proposed GAC, we conduct
the simulation by deploying three real-world social networks, i.e.,
dolphins (62 nodes and 159 edges)!, Twitter(236 nodes and 2478
edges)?, and Wiki-Vote(889 nodes and 2914 edges)®. Meanwhile,

!http://networkrepository.com/soc-dolphins.php
Zhttps://snap.stanford.edu/data/ego-Twitter.html
3http://networkrepository.com/soc-wiki-Vote.php
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we utilize the Agent-based Decision Making (ADM) model [16] to
simulate users’ behaviors, in which the values of users’ preferences
are randomly derived from the uniform distribution U(0, 1). In
addition, we also assign a random value from 0 to 1 for the influence
strength of each edge, and ensure that the sum of influence strength
from the user’s in-neighbors would not exceed 1.

The performance of the proposed GAC is compared with four
baseline approaches: ¢ No Incentive. Here all users would receive
no incentives and make decisions only based on their preferences
and social influence from neighbors. ¢ Uniform Allocation. This
is a Naive approach, which allocates the same incentives to users.
The incentive values are determined by the number of users and the
budget amount. ¢ DGIA-IPE. DGIA-IPE is an adaptive incentive
allocation approach which estimates influential relationship among
users and then determines the incentive values based on the obser-
vation of users’ behaviors [16]. ¢ DBP-UCB. This is a bandit-based
dynamic pricing algorithm, which models each price option as a
discrete option [12]. In the experiments, the default metric used
to evaluate the performance of approaches is the number of users
who take z*.

In this experiment, as we can observe from Figure 1(a), the pro-
posed GAC is able to incentivize more users than the other baseline
approaches in all three networks. Meanwhile, the performance of
DGIA-IPE is slightly better than Uniform allocation and DBP-UCB
in Dolphins network, while outperforms these two approaches sig-
nificantly in both Twitter and Wiki-Vote networks. The reason is
that 1) the IPE algorithm would estimate the influential relation-
ships among users while Uniform allocation and DBP-UCB cannot,
and 2) the size and density of Dolphins network is much smaller
than the other two networks. We also notice that the performance of
DGIA-IPE appears not very stable in Wiki-Vote network. A possible
reason is that the average degree of Wiki-Vote is much lower than
that of the Twitter network, and the IPE algorithm fails to estimate
influence strength well in such a sparse social network. On the
other hand, DBP-UCB slightly outperforms the Uniform allocation
in Wiki-Vote network, but performs worse in Twitter network. This
might also be caused by the different sparsity of two networks, as
DBP-UCB does not take social influence into consideration when
generating incentives.
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