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ABSTRACT

Modeling vessel movement in a maritime environment is an ex-
tremely challenging task given the complex nature of vessel behav-
ior. Several existing multiagent maritime decision making frame-
works require access to an accurate traffic simulator. We develop
a system using electronic navigation charts to generate realistic
and high fidelity vessel traffic data using Generative Adversar-
ial Networks (GANs). Our proposed Ship-GAN uses a conditional
Wasserstein GAN to model a vessel’s behavior. The generator can
simulate the travel time of vessels across different maritime zones
conditioned on vessels’ speeds and traffic intensity. Furthermore, it
can be used as an accurate simulator for prior decision making ap-
proaches for maritime traffic coordination, which used less accurate
model than our approach. Experiments performed on the historical
data from heavily trafficked Singapore strait show that our Ship-
GAN system generates data whose statistical distribution is close
to the real data distribution, and better fit than prior methods.

KEYWORDS
Generative Adversarial Networks; Maritime Traffic Simulation

ACM Reference Format:

Chaithanya Basrur, Arambam James Singh, Arunesh Sinha, and Akshat
Kumar. 2021. Ship-GAN: Generative Modeling Based Maritime Traffic Sim-
ulator: Demonstration Track. In Proc. of the 20th International Conference
on Autonomous Agents and Multiagent Systems (AAMAS 2021), Online, May
3-7, 2021, IFAAMAS, 3 pages.

1 INTRODUCTION

Maritime traffic management in busy port waters such as Singapore
strait and Tokyo bay is critical for improving safety of navigation.
Given the increased traffic in geographically constrained ports such
as Singapore’s [6], safety of navigation gets adversely affected, en-
dangering human lives and creating environmental issues such
as oil and gas spills [9, 13]. To address vessel traffic coordination
and improve navigation safety, several multiagent decision making
approaches have been developed [1, 3, 10, 11, 14]. Of particular
relevance to our work are reinforcement learning (RL) [12] based
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approaches [10, 11] that use a simulator to learn traffic control poli-
cies to reduce congestion and improve navigation safety. To learn
effective traffic control policies that will work in a real world setting,
it is crucial to develop a high fidelity maritime traffic simulator that
can provide realistic feedback to RL algorithms about the impact
of their proposed actions. Our Ship-GAN model addresses this im-
portant gap as the link between the RL algorithm and accurately
simulating decision’s impact in the real world. We show that our
proposed data generator is more accurate than the estimation by
simulators used in such previous RL methods for maritime traffic
management [10, 11].

Our key contribution is to create a simulator of key aspects of
maritime traffic that can model the vessel movements in a given
area. This simulator is apt for training the policy of multiple agents
which learn via reinforcement learning in order to optimize for
congestion, collision risk and time to destination. Specifically, the
simulation models the travel time distribution to cross a given
zone in the sea conditioned on different aspects of the traffic such
as vessels’ current speeds and traffic intensity. The zones used in
modeling have a correspondence to the real world in that these
zones are also used by the Port Operations to manage the vessel
traffic. The ship movements are a function of the type of these zones
which will be captured by our simulator. Previous traffic simulation
models, such as used in [10, 11], are unable to take into account
various factors such as the speed and traffic intensity, and are thus
less accurate than our proposed model (also validated empirically).

2 MARITIME TRAFFIC DOMAIN

Figure 1 shows the electronic navigation chart (ENC) of Singapore
strait. The waterway is divided into multiple zones, which can be
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Figure 1: ENC Chart of Singapore strait. Different types of zones
are denoted as polygons.
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Figure 2: A screenshot from our simulator based on ENC.

of different types such as TSS, Anchorages among others, as color
coded in Figure 1. A zone is a polygon, not necessarily convex,
with its typical length around 5 km. The traffic separation scheme
(TSS) zones are the maritime highways which allow traffic to enter
Singapore port, or transit through. The anchorage zones are regions
reserved for vessels that require anchoring for receiving services
such as refueling, or maintenance. Fairway zones are regions which
lead vessels to berths at the port terminal from TSS and vice-versa.
By far, the bulk of the traffic is in TSS zones, and this is where dan-
gerous traffic conditions can arise, sometimes leading to collisions.
Therefore, our goal is to learn movement pattern of vessel in TSS
zones. These are also the zones which have been used to regulate
traffic in previous works [10]. Our traffic simulator (in Figure 2) is
based on such geographical features present in the ENC.

Data Description: We have obtained the vessel data from the
company Marinetraffic thus gaining access to the AIS (Automatic
Identification System) data from vessel AIS calls. The data captures
2.5 million AIS calls from about 9000 vessels in the Singapore Straits
for one month. A typical vessel broadcasts AIS information every
2 minutes when in transit. The data provides information about
position of vessels, time stamp, speed, course, heading, and other
features (e.g., destination, vessel size).

Problem Statement: We aim to simulate travel times of ships
across zones. The travel time is stochastic and depends on many
factors that are unknown. The goal is to learn this travel time
distribution for each zone (marginalized over unknown factors)
using deep generative models conditioned on the vessel’s speed
and the traffic ahead when entering a zone. The processed data
is of the form (z,, (vy, n;(z))) where 7, is the time taken to travel
across the zone, v, is the speed of vessel while entering the zone
and n; (z) the number of ships in zone z at the time of entry which
denotes the traffic intensity.

3 GENERATIVE MODELING OF TRAVEL TIME

For each zone, we learn both unconditional and conditional travel
time distribution using generative models. There are two popular
techniques in deep generative models: generative adversarial net-
works (GANSs) [5] and variational auto-encoders (VAEs) [8]; GANs
performed best for us. We used Wasserstein GAN [2], an improved
variant of the original GAN.

Evaluation Metric: GANSs are notoriously challenging to evalu-
ate quantitatively [4]. The The Kolmogorov-Smirnov (KS) distance
provides a measure of difference between two univariate distri-
butions [7]. Table 1 shows the average KS distance for the GAN,
VAE and other baselines based on distributions such as Binomial
and Gaussian (used in previous works [10, 11]). These results are
also averaged over all the 19 zones we consider. Lower KS values
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Model KS Distance (avg)
Gaussian 0.154 + 0.036
Binomial 0.148 + 0.037

VAE 0.155 + 0.042
Ship-GAN 0.141 + 0.045

Table 1: Average KS distance between the real and fake distribu-
tions for unconditional modeling of travel times; lower is better

Model Bucketed KS Distance
Conditional VAE 0.224 + 0.023
Conditional Ship-GAN 0.189 + 0.021

Table 2: Average KS distance between the real and fake distribu-
tions for conditional modeling of travel times (lower is better)
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Figure 3: Unconditional fitting qualitative results

indicate a better fit to the real data. These results clearly show that
GAN:Ss are a better fit than other baselines.

In Table 2, we extend the KS measure for the conditional genera-
tion of the data. The GAN and VAE take as input a vessel’s speed as
it enters a zone, and the current traffic conditions (count of vessels
in the selected zone), and generates a travel time. Such capabilities
are not considered in previous simulation models [10, 11] which
can only simulate travel time without taking into account such
conditions. These results also show that GANs provide a better fit
for conditional modeling of the data than VAE.

Figure 3 provides a qualitative comparison of the distributions
learned for the unconditional case for two zones for each of the
four methods in the unconditional distribution fitting. The x-axis
is the travel time, and y-axis shows how many vessels had the
travel time within a particular interval on the x-axis. The results
are shown using 1000 samples each for real and fake distribution.
The results reveal visually that GAN matches the real distributions
much better than fitting known distributions. Also, between GAN
and VAE, GANs fits much better than VAE.

Conclusion: We demonstrated the superior performance of deep
generative model based simulation of key aspects of ship traffic in
a given area via quantitative KS metric and qualitative results. Our
approach enables more realistic simulations for decision making
models for maritime traffic management. Our demo video is at:
https://youtu.be/xZVzroWcefU
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