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ABSTRACT
Tournaments are commonly used to identify winners, for example

in sports. We study the computational complexity of problems re-

lated to scheduling the matches in a tournament and predicting the

outcome with a special focus on round-robin tournaments, which

is the most prominent tournament type used in sports. Besides the

general financial and intrinsically motivated interest of various

agents in tournament prediction, the recently very relevant winner

determination for suddenly discontinued tournaments is a strong

motivation. We show the immense theoretical complexity of pre-

dicting the winners in round-robin tournaments even under the

assumption that only three matchdays remain to be played. On the

other hand, we present an FPT algorithm and analyze its practical

complexity using experiments on real-world and generated data,

showing the applicability of the algorithm in praxis. To the best

of our knowledge, this is the first exact and not purely brute-force

oriented approach for predicting round-robin tournaments.
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1 INTRODUCTION
Throughout almost the entire written history of humanity, sport has

always played a special role. From children playing in the school-

yard all the way to amateur and professional sports, this special

form of entertainment and recreation continues to attract immense

interest around the world. In this work, we examine the computa-

tional complexity of the so-called evaluation problem, which asks

how likely it is for a certain team to win a given tournament in

which teams score points according to the outcomes of a match. We

assume that some of the matches may already have been played, i.e.,

that we are in the course of a season, and that we are given a prob-

ability distribution over the outcomes of the remaining matches.

Here we focus especially on round-robin tournaments, the most

prominent form of sports tournaments followed by knockout tour-

naments. The study of this problem predates the emergence of
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modern complexity theory. In 1929, Zermelo [31] already stud-

ied the problem regarding round-robin tournaments in chess. In a

round-robin tournament each team plays a fixed number of matches

against each other team. Round-robin tournaments are used for

many different championships in various sports, such as baseball,

bridge, chess, hockey, and football. In addition, round-robin tour-

naments are also used as an intermediate stage in other types of

tournaments such as the group stage of the FIFAWorld Cup and the

UEFA Champions League. One reason for the frequent use of this

tournament format is fairness, since it does not rely as heavily on

the initial seeding as knockout tournaments, and that the final table

tends to reflect the true ability levels of the participants (see, e.g.,

Ryvkin and Ortmann [26]). However, round-robin tournaments

also have certain drawbacks, such as a high number of matches,

as well as the fact that the champion and relegated teams could

be determined several matchdays before the end of the tourna-

ment, which reduces the attractiveness. The latter brings us back

to our original motivation for the evaluation problem. As we will

discuss later, there is a large number of agents who have various

financial, competitive, and/or intrinsically motivated reasons to

be interested in predicting the outcome of a tournament. Beside

sports, round-robin tournaments are also used in other areas. The

most prominent example for this is the Copeland voting rule used

in decision making, applicable in many types of applications, with

possibly a high number of alternatives, such as planning (Ephrati

and Rosenschein [13]), rank aggregation in web search (Dwork

et al. [12]), recommender systems (Ghosh et al. [16]), and email

classification (Cohen et al. [7]). For these applications, the problem

can be used, for example, to include uncertainties about pairwise

comparisons due to perturbations or to allow the evaluation of

incomplete data. The evaluation problem in decision making was

most prominently examined by Hazon et al. [18] and subsequently

by Baumeister and Hogrebe [2], among others.

To the best of our knowledge, the computational complexity of

the evaluation problem with respect to different types of tourna-

ments was first and almost solely studied by Mattei et al. [22], with

Saarinen et al. [27] later adding the hardness result for round-robin

tournaments. We will discuss these results later in comparison to

our results. For the elimination problem, the special case of the

evaluation problem where we only ask if a team can win, there

are a lot of exact approaches which offer an efficient solution in

practice, e.g., ILP formulations (Robinson [24]), FPT algorithms

(Cechlárová et al. [5]), and in some cases even polynomial-time

algorithms (Kern and Paulusma [20], Schwartz [29]). However, to

the best of our knowledge, for the evaluation problem itself there is

so far only the possibility of an efficient but approximate solution

using Monte Carlo simulations or the exact calculation using a
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brute-force approach, i.e., the consideration of every possible com-

bination of outcomes, which is far too time-consuming, even for

very restricted real-world instances. A major problem regarding

Monte Carlo simulations is that, by their very nature, they can

easily overlook scenarios with low probability. This means that for

teams with a very low probability of ending up as the champion,

the relative error can easily become infinite.

Therefore, our main contribution is the development of an exact

algorithm with an execution time suitable for practical application.

Furthermore, we provide theoretical results for the completion of

partial schedules, show that evaluation is computationally difficult

even assuming strong constraints on the number of remaining

matchdays, and analyze the practical relevance of our algorithm by

experiments on real-world and generated data.

2 PRELIMINARIES
In the following, we present the basic definitions for the types of

tournaments considered here. A tournament T = (T ,M) consists

of a set of teams T = {t1, . . . , tn } with n ≥ 2 and a set of matches

M = {m1, . . . ,mд} with д ≥ 1 over T . If not further specified, n
corresponds to the given number of teams. Each matchmh , 1 ≤

h ≤ д, is associated with a tuple of competing teams (ti , tj ) ∈

T × T with ti , tj and will be denoted by mh : (ti , tj ). Further,
a set of possible outcomes O = {(α1, β1), . . . , (αℓ, βℓ)} with ℓ ≥

1 and αs , βs ∈ N0 for 1 ≤ s ≤ ℓ is given, with at least one (αs , βs ) ∈
O with αs , βs . We call a set of possible outcomes symmetric, if
it holds that (βs ,αs ) ∈ O for all (αs , βs ) ∈ O . To determine the

winners of a tournament, each match is assigned to an outcome.

If a matchm : (ti , tj ) is assigned the outcome (αs , βs ), this means

that team ti receives αs points and team tj receives βs points. The
winners are the teams with the maximum number of points. We

refer to the undirected multigraph consisting of the teams in T as

nodes and the edges representing the matches in M as the match
graph. A round-robin tournament with k rounds is a concatenation

of k single-round round-robin tournaments in which each team

plays exactly once against every other team. In accordance with

the majority of real-world instances, we assume that the number

of teams n is even in the context of round-robin tournaments.

There are many examples for round-robin tournaments in prac-

tice. In football (soccer), usually k = 2 rounds are played using

the 3-point rule with O = {(3, 0), (1, 1), (0, 3)}. Other examples in-

clude baseball with O = {(1, 0), (0, 1)}, basketball with O = {(2, 0),

(1, 1), (0, 2)}, chess with O = {(1, 0), (1/2, 1/2), (0, 1)}, and volleyball

with O = {(3, 0), (2, 1), (1, 2), (0, 3)}, with the number of rounds k
usually depending on the number of teams. The Copeland

α
vot-

ing rule with α ∈ Q, 0 ≤ α ≤ 1 is equivalent to a round-robin

tournament with k = 1 and O = {(1, 0), (α,α), (0, 1)}. While some

of the sets of possible outcomes presented above include rational

numbers, all of them can be scaled up to equivalent sets over N0.

Computational Complexity. We assume that the reader is familiar

with the basic concepts of computational complexity, such as P and

NP, their counting/function problem counterparts FP and #P, fixed-

parameter tractability (FPT), and polynomial-time many-one and

Turing reducibility. For more information, we refer to the textbooks

by Arora and Barak [1] and Papadimitriou [23].

t1

t2 t3

t4

t5 t6

Figure 1: Example of a premature partial schedule for a
round-robin tournament with six teams.

2.1 Scheduling
In a real-world tournament, the matches are usually organized into

clearly separated matchdays with each team playing at most once

on every matchday. We refer to such a partition of a tournament as

a schedule, which is formally given by an edge coloring S : M → D
of the match graph with S(m) , S(m′) for any adjacent matches

m,m′ ∈ M , where D = {1, . . . ,d} denotes the set of available

matchdays. For a tournament T we call a schedule S optimal if it
uses only the minimum number of matchdays required.

Constructing an optimal match schedule can be hard for general

tournaments, as the problem of checking if a graph with maximum

degree ∆ is edge-colorable with ∆ colors, which is the minimum

number necessary, or only with ∆+1 colors, which is the maximum

number necessary, is already NP-complete as shown by Holyer [19].

The problem of creating an optimal match schedule for a round

of a round-robin tournament, as considered here, can be solved

efficiently, since the complete graph can be colored with ∆ = n − 1

colors for even n (see Behzad et al. [3]). However, we will encounter

the problem of embedding a partial schedule, i.e., a schedule covering
only a certain number of matchdays, in a complete schedule for a

round-robin tournament. Rosa and Wallis [25] studied this problem

and refer to the property of a partial schedule not being extendable

to a complete schedule as premature. We refer to the respective

decision problem of whether a partial schedule can be extended to

an optimal schedule as Non-Premature.

Motivation. One motivation to study the problem of premature

partial schedules is the observation by Rosa and Wallis [25] that

scheduling a round-robin tournament by consecutively planning

the matchdays by random or even intentional can lead to a non-

optimal number of matchdays. Figure 1 shows for example a partial

schedule with r = 3 prescheduled matchdays for n = 6 teams which

cannot be completed using ∆ = 5 colors. The problem is particularly

interesting for the organizing associations which have to create the

schedules based on various criteria such as fairness, attractiveness,

and feasibility with respect to various restrictions.

2.2 Evaluation
In the following, we will define the evaluation problem for tourna-

ments. Assume we are given a set of possible outcomes O . Given
a tournament T = (T ,M), we refer to a collection of probability

functions ρ = (ρm )m∈M over O , one probability function for each

match inM , as an outcome probability profile. We assume by default
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that those functions are given as simple lists, associating each out-

come with the respective probability given as a rational number.

The evaluation problem is defined as follows.

O -Evaluation

Given: A tournament T = (T ,M ), an outcome probability profile

ρ regarding T over O , and a team p ∈ T .
Question: What is the probability that p ends up as the unique win-

ner of the tournament?

We refer to the evaluation problem restricted to round-robin

tournaments with a given optimal schedule as part of the input

as O-RRTS-Evaluation. While we consider the evaluation prob-

lem here with respect to being the unique winner, and therefore

regarding the championship, it can of course be extended to other

events such as qualification and relegation. For a given instance

of O-Evaluation, a matchm ∈ M is referred to as open if the out-

come probability function ρm assigns a positive probability to two

or more outcomes. Assuming that the tournament is a round-robin

tournament and given an additional schedule, we call a matchday

open if it contains at least one open match. Referring back to our

real-world setting, if we assume that we are at a certain point in

the course of a tournament, none of the matches that have already

been played can still be open, since their outcomes have already

been determined. On the other hand, we allow matches with a

certain outcome to take place on open matchdays. The reductions

presented here can easily be adjusted to ensure that all matches

on the open matchdays have ambiguous outcomes by choosing a

probability, depending on the instance, very close to one instead of

one and distributing the remaining probability to another outcome.

Motivation. It is straightforward to see that the tournament eval-

uation problem is of great interest to many different types of agents

in various sports. For the media and fans, there is a general in-

trinsically motivated interest in predicting who might become the

champion, for fans especially when it comes to their own team.

For the teams, their managements, and sponsors, there is both a

competitive and financial interest. Predictions about the outcome

of a season can be used to develop crossmatch strategies such as

sparing certain players, making personnel decisions such as trans-

fers, and planning travels and investments. Another huge area of

agents with a particularly high financial interest in the outcomes of

seasons is sports gambling, including both the bidders themselves

as well as the bookmakers. The evaluation problem also provides

the computational framework for calculating the so-called match
importance as introduced by Scarf and Shi [28], which measures the

importance of a single match for the outcome of a season. Again,

the motivations vary from the allocation of referees to the decision

of broadcasters which matches they will show. Related to impor-

tance is the study of match relevance (see Faella and Sauro [14]),

which is focused on the design of tournaments in which as many

matches as possible still have relevance for the final standing in

the course of the tournament. The aforementioned motivations

are reinforced by the fact that a large amount of data is publicly

available. Schedules for the current season are usually published

by the associations before the start of the season, as well as the

current results. Schedules and results from previous seasons are

publicly offered on various pages. An easy to aggregate source for

probability profiles are betting odds, which have a good predictive

quality, as demonstrated by Spann and Skiera [30]. Another more

complex but not necessarily better approach is the use of statistical

models based on historical data and current factors.

An additional motivation for the evaluation problem, which has

recently become very relevant, is the discontinuation of seasons

due to certain circumstances. In practice, the championship and

qualifications were often decided by using the scores normalized

according to the number of matches. However, this method can

be highly problematic and unfair. Imagine, for example, that the

team currently in the lead by a narrow margin would only have

had matches against strong teams, while the team in second place

would only have had matches against weak teams. In these cases,

the evaluation problem can be used to justify or criticize decisions.

3 RESULTS
First, we consider the scheduling of round-robin tournaments.

3.1 Scheduling
Colbourn [8] showed that Non-Premature is NP-complete. How-

ever, this hardness does not extend to the case where the problem

is parameterized by the number of already scheduled matchdays.

Theorem 3.1. Non-Premature is FPT when parameterized by
the number of prescheduled matchdays.

The theorem can be shown using the result of Chetwynd and

Hilton [6, Corollary 1], that a regular graph with an even number

of nodes n and degree ∆ ≥ 6n/7 can be edge colored with ∆ colors.

It follows that a partial schedule with r prescheduled matchdays

cannot be premature for n > 7(r + 1) teams. Thus, parameter r
limits the number of teams up to where one can use a brute-force

approach and where the answer to the problem becomes trivial.

While this result is positive in that we can embed any combina-

tion of r prescheduled matchdays into a complete optimal schedule

for sufficiently largen compared to r , this only holds if the presched-
uled matchdays are complete. For example, consider the schedule

S with S(m) = 1 form : (t2j+1, t2j+2) for j ∈ {1, . . . , n/2 − 1} and

S(m) = 2 form : (t1, t2) over a round-robin tournament T = (T ,M)

with T = {t1, . . . , tn } and even n. We refer to a partial schedule

with possibly incomplete matchdays as sparse. Sparse schedules are
of particular interest if the organizers are interested in spreading

certain matches, like top matches, over several matchdays. In the

following, we show that sparse schedules with a certain number of

fixings per matchday can always be extended to partial schedules.

Theorem 3.2. Every sparse schedule over r matchdays with at
most n/2 − r matches each can be extended to a partial schedule

Proof. Assume we are given a round-robin tournament T =

(T ,M) with n teams and a sparse schedule over r matchdays. With-

out loss of generality, we assume that the r partially prescheduled

matchdays are {1, . . . , r }. We denote by д1, . . . ,дr the number of

prescheduled matches on the respective matchday with дj ≤ n/2−r
for 1 ≤ j ≤ r . Now, we provide a scheme to construct a partial

schedule for r complete matchdays for the given sparse schedule.

We complete matchday j = 1, . . . , r one after the other by consid-
ering the match graphG j of T restricted to teams without presched-

uled matches on matchday j and to matches not appearing on any
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other prescheduled matchday with respect to the current state of

the schedule. Thus, G j contains nj = n − 2 · дj teams and the mini-

mum degree is ∆j = nj−1−(r−1) = nj−r . Asдj ≤ n/2−r , it follows
that ∆j ≥ nj/2. Ifnj = 0, the matchday is already complete. Ifnj = 2,

we can simply add the remaining match to complete matchday j . If
nj ≥ 4, we can apply Dirac’s Theorem on Hamiltonian cycles (Dirac

[11]) to find a Hamiltonian cycle in G j as ∆j ≥ nj/2, which can be

decomposed into a perfect matching. Thereby, we can complete

matchday j by adding the matches contained in the matching. After

completing each matchday, we receive a partial schedule extending

the sparse schedule. □

The partial schedule created in this way, and thus also the origi-

nal sparse schedule, cannot be premature if the number of presched-

uled matchdays r is not too large compared to n. For example, for

n > 7(r + 1) following from the previously mentioned result by

Chetwynd and Hilton [6] orn ≥ 2r for sufficiently large n following

from the results by Csaba et al. [9]. Bernholt et al. [4] showed that

the elimination problem for the 3-point rule is NP-complete for

round-robin tournaments in which each team has at most three

open matches. Using Theorem 3.2, the previously mentioned re-

sults regarding prematurity, and additional teams, this result can

be extended to the case where we also require the existence of an

optimal schedule with at most three open matchdays.

3.2 Evaluation
In this section, we will elaborate the following central dichotomy re-

sult regarding the complexity of the evaluation problem: For a fixed

symmetric set of outcomesO , it holds thatO-RRTS-Evaluation is

in FP for at most two open matchdays and #P-hard otherwise. We

start by showing the hardness result.

Theorem 3.3. Given a fixed symmetric set of outcomes O and a
fixed integer r ≥ 3. O-RRTS-Evaluation is #P-hard, even assuming
that there are only r open matchdays and all outcome probabilities
are from {0, 1/2, 1}.

Previous results in the literature regarding the hardness of pre-

dicting round-robin tournaments (see Saarinen et al. [27]) do not

take into account the existence of schedules and require a variable

number of open matches for certain teams. This greatly limits the

possible points of observation in the course of a tournament and

makes it even theoretically impossible to encounter the given or a

similar situation in the course of a real-world tournament.

Proof. Dagum and Luby [10] showed that #Perfect-Bipartite-

Matching, the problem of counting perfect matchings in a bipartite

graph, is #P-complete for r -regular bipartite graphs with fixed r ≥ 3.

Assume, we are given a fixed symmetric set of outcomes O and

a fixed integer r ≥ 3. We reduce the problem of counting perfect

matchings in an r -regular bipartite graph to O-RRTS-Evaluation
requiring r open matchdays using a polynomial-time Turing reduc-

tion, proving the #P-hardness of the respective evaluation problem.

Given an instance of #Perfect-Bipartite-Matching consisting

of an r -regular bipartite graphG = (U ,V , E)withU = {u1, . . . ,un },
V = {v1, . . . ,vn }, and edges E ⊆ U ×V . The reduction is as follows.

From the symmetrical set of outcomes O we choose an arbitrary

symmetrical pair of outcomes (α, β) and (β,α) with α , β . Since

these two outcomes will be the only outcomes that will receive a

positive probability in the constructed instance, we will assume for

the sake of simplicity and without loss of generality that (α, β) =
(1, 0) holds. We say that a team wins a match if it receives the

point. The constructed evaluation instance consists of a round-robin

tournament T = (T ,M) with the set of teamsT = U ∪V ∪C ∪D ∪

{h,p} with C = {c1, . . . , cr }, D = {d1, . . . ,dr−2}, and additionally

{д1,д2} if n + r is odd, and M as the respective set of matches of

a single-round round-robin tournament over T , and an outcome

probability profile ρ regarding T . Later, we will explain how to

extend the proof to round-robin tournaments with an arbitrary

number of rounds. For the sake of readability, we assume that n + r
is even. When n + r is odd the reduction has to be adapted such

that all teams win against д1 and д2 and the construction of the

schedule requires a slight adjustment to include д1 and д2.

In the following, we will construct the outcome probability pro-

file ρ. First, we will fix all matches inMĒ ⊂ M , the set of matches

that do not correspond to edges of G. Here, fixing a match means

that we assign an outcome to a match with probability 1. First,

we consider all matches in MĒ between two teams in U ∪V and

additionally the matches between a team in U ∪ V and a team

in C ∪ {p}. In this set of matches, each team appears exactly 2n
times. Therefore, we can use an arbitrary Eulerian orientation of

the match graph regarding those matches to fix the matches in

a way that each team wins exactly n matches. There are several

polynomial-time algorithms to construct such an orientation of a

graph, for an overview see Fleischner [15]. Second, the matches in

MĒ between two teams in C ∪ D are fixed in a similar fashion. We

use an arbitrary Eulerian orientation of the match graph regarding

the matches between the teams in {c2, . . . , cr } ∪ D (each team ap-

pears 2r − 4 times) together with an alternating orientation of the

matches between team c1 and the teams in {c2, . . . , cr } ∪ D to fix

the matches in a way that each team wins at most r − 1 matches.

Finally, the remaining matches in MĒ are fixed as follows. Team p
wins all matches against teams in C and loses all matches against

teams in D. All teams in V win their matches against teams in D.
All teams in U lose their matches against teams in D. All teams in

T \ {h,d1, . . . ,dr−2} win their matches against team h and all teams

in D lose their matches against team h. We complete ρ by setting

the outcome probabilities of all matches inME ⊂ M , the matches

corresponding to edges of the graph G. For each match inME we

set the two probabilities for one of the teams to win to 1/2.

We will now show how to construct an optimal schedule for the

tournament in such a way that all open matches take place on the

(last) r matchdays. Therefore, we will construct an edge coloring

of the match graph in which all edges corresponding to the open

matches are colored using the same r colors. The complete coloring

consists of three partial colorings. We start by coloring the edges

corresponding to the matches in ME and the matches between the

teams in C and D ∪ {p,h}. Since the considered subgraph is an

r -regular bipartite graph, it can be colored using r colors according
to König’s Line Coloring Theorem (see König [21]). Finding such a

coloring is possible in polynomial time using the respective proof. In

the second step, we consider thematches between the teams inU∪C
andV ∪D ∪ {p,h} which were not considered in the previous step.

Therefore, the considered subgraph is an n-regular bipartite graph
which can be colored efficiently using n colors (see the previous
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step). Finally, we consider the matches between the teams inU ∪C
and the matches between the teams inV ∪D ∪ {p,h}. Since the two
groups have no common nodes and the number of nodes in both

groups with n + r teams is even, the subgraph consisting of the two

cliques can be efficiently colored with n + r − 1 colors (see Behzad

et al. [3]). Combining the three partial colorings using separate sets

of colors for each of them, we receive a complete edge coloring

of the graph requiring 2 · (n + r ) − 1 colors which is optimal for

2 · (n + r ) nodes. As desired, the set of edges corresponding to the

set of open matchesME was colored using exactly r colors.

Finally, we return Φ · 2
|E |

as the number of perfect matchings

in the bipartite graph G = (U ,V , E) with Φ as the answer of the

evaluation oracle regarding the previously constructed instance.

To prove the validity of the reduction, we now show that the

returned number Φ · 2
|E |

is the number of perfect matchings in the

bipartite graphG = (U ,V , E). For this, we first consider the scores of
the teams which result from the fixed matches. By sMĒ

(t)we denote
this given score for a team t ∈ T . The scores are given as follows:

sMĒ
(p) = n + r + 1, sMĒ

(ui ) = n + 1 for ui ∈ U , sMĒ
(vj ) = n + r − 1

for vj ∈ V , sMĒ
(ci ) ≤ n + r for ci ∈ C , sMĒ

(dj ) ≤ n + r for dj ∈ D,
and sMĒ

(h) = r − 2. For all teams except the teams in U and V ,
the given scores are already the final scores. We will now show

that there is a one-to-one mapping between the combinations of

outcomes over the set of open matchesME in which p is the unique

winner and the perfect matchings in G.
Given a perfect matching E∗ ⊂ E in G. We construct the cor-

responding combination of outcomes regarding the set of open

matchesME in T in which p is the unique winner as follows. For

each edge (ui ,vj ) ∈ E with (ui ,vj ) ∈ E∗,vj wins the corresponding
match in T against ui . For each edge (ui ,vj ) ∈ E with (ui ,vj ) < E

∗
,

ui wins the corresponding match in T against vj . Therefore, each
vj ∈ V wins exactly one additional match and ends up with exactly

n + r points. Each ui ∈ U wins exactly r − 1 additional matches and

ends up with exactly n + r points. Thereby p is the unique winner

of the tournament with respect to the constructed combination of

outcomes for the set of open matches ME . Assume we are given

a combination of outcomes with positive probability for the set

of open matches ME in which p is the unique winner. As p is the

unique winner of the tournament, each ui ∈ U won at most r − 1

additional matches and eachvj ∈ V won at most 1 additional match.

As the teams inU have to lose a total of at least n matches while the

teams inV have to win a total of at most n matches, the teams inV
win exactly t matches in total. As each vj ∈ V can only win exactly

one match without beating p, there exists a unique teamw(vj ) ∈ U
for each vj ∈ V which is beaten by vj . As the open matches inME
correspond to the edges in G, the corresponding perfect matching

in G is given by E∗ = {(w(vj ),vj ) | vj ∈ V }. This concludes the

construction of the one-to-one mapping.

As each combination of outcomes has probability (1/2) |E | , the

returned number Φ · 2
|E |

corresponds to the number of perfect

matchings in G. Since the reduction steps can be performed in

polynomial time the #P-hardness of the problem follows. □

We now describe how the reduction can be extended to round-

robin tournaments with an arbitrary number of rounds k . We fix the

matches of the first k − 1 rounds as follows. The matches between

the teams in T \ {h} are fixed according to an Eulerian orientation

whileh loses all matches. Thereby, the score differences of the teams

excluding h after the first k − 1 rounds remain 0. The k-th round is

then constructed as given in the reduction.

Complementary to the previous result we now consider cases

in which we can achieve a certain degree of efficiency. In many

cases, to determine the probability of team p being the unique

winner, we do not need to examine all open matches. The outcome

of an open match is only relevant to the probability if one of the

two participating teams could beat team p in the end. Thus, we

introduce the following concepts. Given a fixed set of outcomes

O and an instance of O-Evaluation consisting of tournament

T = (T ,M), an outcome probability profile ρ regarding T over

O , and a team p ∈ T . We call a team t ∈ T \ {p} critical (for p) if
there is a positive probability according to ρ that team t ends up
with at least as much points as team p. Additionally, we say that

p is critical by default. To check if a team t ∈ T \ {p} is critical,
we can check if team t has at least as much points as p in the

case where we decide all remaining matches of p and t so that

the difference in scores of the two teams is maximized in favor

of t . For some cases we assume that we are additionally given a

target score i for p and, in this case, a team t is critical as soon
as it can reach a score of at least i . We refer to the restriction of

the match graph to open matches with the participation of at least

one critical team as the critical match graph. Furthermore, we refer

to the restriction of the match graph to critical teams and open

matches with the participation of exactly two critical teams as the

inner critical match graph. A minimum feedback arc set (FAS) of
a component of a match graph is a minimum set of edges to be

removed from the multigraph of the component to make it acyclic.

Note that a feedback arc set consequently contains all but one edge

of each multi-edge between two team nodes. Its size is referred to

as the minimum feedback arc set size. For undirected multigraphs

it corresponds to the difference between the number of edges and

the number of edges in a minimum spanning tree (MST) which is

n − 1 for n nodes. A MST, and thus its complement a FAS, itself

can be determined in polynomial time for undirected graphs using

breadth-first search (BFS). We refer to the maximum minimum

feedback arc set size over all components of the inner critical match

graph as the maximum fixing number denoted by γ .

Theorem 3.4. O-Evaluation for a fixed set of outcomesO is FPT

when parameterized by the maximum fixing number.

Note that here we do not require the set of outcomesO to be sym-

metrical, that the given tournament is a round-robin tournament, or

that a schedule is given. The basic idea of the algorithm is to decom-

pose the match graph so that a dynamic programming approach

can be applied to the remaining tree structure. Figure 2 sketches

the decomposition using an exemplary critical match graph.

Proof. Given a fixed set of outcomes O and an instance of O-
Evaluation consisting of a tournament T = (T ,M), an outcome

probability profile ρ regarding T over O , and a team p ∈ T . Our
algorithm for determining the probability of team p ending up as

the unique winner of the tournament is given as follows.

In the first step, we calculate the teams’ current scores by identi-

fying the matches with a fixed outcome. Alternatively, one could

assume that only the current scores and open matches are given
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Figure 2: Illustration of the decomposition of the match graph in the proof of Theorem 3.4.

regarding the tournament and not the entire previous history. At

this point we can check if another team already has more points

than p could obtain in its remaining matches. If this is the case, we

can already return a probability of 0 and terminate. On the other

hand, we can also check if p has already more points than any other

team could obtain, in which case we could return a probability of 1.

For each possible score i ∈ {imin, . . . , imax } of p, with imin
denoting the maximum fixed score over all candidates including

p and imax denoting the maximum score p can obtain with its

remaining matches, we perform the following steps. Note that imin
and imax are the minimum and maximum score of p for which p
can have a positive probability of ending up as the unique winner.

We start by determining the critical match graph (see Figure 2 (i))

and the inner critical match graph of T assuming thatp will achieve
score i and subsequently determine the components G1, . . . ,Gh of

the latter one (see Figure 2 (ii)). Since p is the unique winner if all

open matches with the participation of a critical team are decided

in such a way that no team has at least as many points as p, we will
calculate the probability for this for each component individually.

Given a component Gc of the inner critical match graph. We

start by determining a minimum feedback arc set M̃c of Gc using

breadth-first search to determine a minimum spanning tree and

selecting the matches not contained in it.

For each combination of outputs with positive probability π ∈

ΠM̃c
with π : M̃c → O regarding the matches in M̃c we run the fol-

lowing procedure over the remaining MST of Gc (see Figure 2 (iii)).

First, update the scores according to π . Here, we can check

whether a team gets i or more points by fixing the matches, and if

so, ignore this combination. In bottom-up order, we traverse the

teams in the tree and determine the probability θi ,t (j) that team
t and all teams in the underlying subtree, after deciding all open

matches of those teams which are contained in the underlying sub-

tree, will receive less than i points, the score of p, and t receives
exactly j points. We can restrict j to j ∈ {jmin, . . . , jmax } with jmin
being the current score of t with respect to π and jmax being the

minimum of i and the maximum score t can obtain in its remaining

matches. If t is not p, we can also exclude i as a value for j. If j is
not contained in this interval, θi ,t (j) is 0 by default. If p itself is

contained in Gc we assume that p is chosen as the root.

We calculate θi ,t (j) using a dynamic programming approach. By

t1, . . . , tq we denote the critical teams which are children of t in

the tree and uncritical teams against which t has open matches. We

denote those open matches bym1, . . . ,mq respectively.

The dynamic programming table consists of the values θi ,t (j,k)
denoting the probability θi ,t (j) restricted to the subtree only cover-

ing t1, . . . , tk with 0 ≤ k ≤ q. For k = 0 team t has only one score

j0 with positive probability which is t ’s score regarding the already
fixed matches. Therefore, it holds that θi ,t (j, 0) = 1 for j = j0 with

j0 < i and 0 otherwise for t , p and θi ,t (j, 0) = 1 for j = j0 and 0

for t = p. For k > 0 we use the following relationship to fill out the

table. Formk : (t, tk ) it holds that θi ,t (j,k) =∑
(αs ,βs )∈O

[
ρmk ((αs , βs )) · θi ,t (j − αs ,k − 1) · θi ,tk (< i − βs )

]
and, on the other hand, formk : (tk , t) it holds that θi ,t (j,k) =∑

(αs ,βs )∈O

[
ρmk ((αs , βs )) · θi ,t (j − βs ,k − 1) · θi ,tk (< i − αs )

]
with θi ,tk (< i − x) denoting the respective probability for tk to

receive less than i−x points which is
∑i−x−1

y=0
θi ,tk (y) if tk is a critical

team and 1 if tk is a non-critical team. Finally, it holds by definition

that θi ,t (j) = θi ,t (j,q) for t , p and θi ,p (j) = θi ,p (j,q) for i = j and
0 otherwise. Finally, assuming that team t is the root of the tree, we
set Φi ,c ,π , the probability that assuming π the open matches of the

teams in Gc are decided in a way that the teams in the component

end up with less than i points while p receives exactly i points, to∑i
x=0

θi ,t (x). Subsequently, including all possible combinations of

outcomes for the component with their respective probabilities, we

set Φi ,c to

∑
π ∈ΠM̃c

ρ(π ) · Φi ,c ,π with ρ(π ) =
∏

m∈M̃c
ρm (π (m)).

Finally, the probability that p ends up as the unique winner of the

tournament is given by

∑imax
i=imin

∏h
c=1

Φi ,c .

All steps of the algorithm are possible in polynomial time, except

the iteration over the ℓγ different combinations with constant ℓ =

|O |. Thus, the problem is fixed-parameter tractable with respect to

the maximum fixing number γ for a fixed set of outcomes O . □

A further optimization for the above algorithm, which we cannot

discuss in detail here, is the following. Consider a bottom-up MST

for a component as described in the algorithm above. Suppose we

are given the root and its children, where each child together with

its subtree represents a subgraph which has been separated from

the other subgraphs and the root (except for the incoming edge) by

removing edges contained in the FAS. This separation allows the
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Figure 3: Average execution time on the real-world data
(black) and the generated data with respect to the number
of remaining matchdays.

combinations of FAS match fixations to be viewed separately for

each sub-graph in each step of the recursion. Thus, the maximum

number of combinations depends on the maximum number of

removed edges from the original root to a leaf of the MST. We refer

to the resulting new parameter as the FAS depth, which in the best

case depends only logarithmically on the FAS size.

Consider an instance of O-RRTS-Evaluation for which only

two matchdays remain open. Since each team has at most two

open matches, the components of the inner critical match graph

are either circles or paths. Thus, the maximum fixing number is at

most one, whereby the following corollary follows by Theorem 3.4.

Corollary 3.5. O-RRTS-Evaluation for a fixed set of outcomes
O is in FP if there are at most two open matchdays.

Combining Theorem 3.3 and Corollary 3.5, we obtain the di-

chotomy result which we announced at the beginning.

Theorem 3.6. Given a fixed symmetric set of outcomesO , it holds
thatO-RRTS-Evaluation is in FP assuming at most two open match-
days and #P-hard otherwise.

3.3 Experiments
We examine the practical relevance of the algorithm presented in the

proof of Theorem 3.4 using real-world data as well as generated data.

We determine the maximum execution time over the participating

teams, assuming that the last r matchdays are still open. While

considering the maximum over the teams instead of the average

increases the times significantly, this choice is appropriate, since in

most cases many teams are trivially not able to win and including

them distorts the overall picture. Since it has no direct impact

on the execution time, we use arbitrary probability profiles, for

both the real-world and generated data, where all outcomes for all

matches have a positive probability. We consider a straightforward

implementation of the algorithm in Python using the networkx
package. The experiments were performed on an Intel i5-4570t

(2.90 GHz) machine with 8GB of RAM.

Real-World Data. While for many problems it is difficult to con-

duct comprehensive experimental analysis due to the lack of pub-

licly available data, especially in computational social choice due

to the anonymous nature of the problems, for round-robin tour-

naments there are vast amounts of publicly available data from

different sports, countries, and leagues. We consider a total of 140

seasons from European football leagues, consisting of the participat-

ing teams, the match results, and the schedules. In detail, our dataset

contains the following seasons: German Bundesliga and English

Premiere League from 1996 to 2019, Spanish Primera División, Ital-

ian Serie A, and French Ligue 1 from 1998 to 2019, Portuguese

Primeira Liga and Dutch Eredivisie from 2007 to 2019. From these

seasons, 8 include 16 teams, 54 include 18 teams, and 78 include

20 teams. Our selection is based on the availability and integrity

of the data and the use of a round-robin tournament with k = 2

rounds combined with the 3-point rule. We summarize the results

for the real-world data and r ∈ {3, 4, . . . , 12} in Figure 3.

Generated Data. In the following, we describe the data used for

the performance analysis with respect to the number of teams.

Note that the amount of comparable real-world data with respect

to a varying number of teams is not nearly enough to perform a

comprehensive analysis. We generate an instance for an arbitrary

even number of teams n with T = {t1, . . . , tn } as follows. As in
the real-world data, we consider seasons with k = 2 rounds and

O = {(3, 0), (1, 1), (0, 3)}. To determine the schedule of the first

round, we use the so-called circle method also known as the canon-

ical one-factorization, which, together with its many variations, is

the most prominent method used in practice (see Goossens and

Spieksma [17]). For the second round, the same schedule is used.

We have also considered the variant of the circle method, where

the order of the matchdays is shuffled randomly. However, there

were no significant differences in the results. In order to gener-

ate plausible outcomes for the matches we use the Elo-like model

presented by Ryvkin and Ortmann [26]. First, we determine an

ability level profile ®x = (x1, . . . , xn ) where xi is the ability level of

team ti , by drawing them either from a normal distribution with

mean µ = 0 and standard deviation σ = 1/3 or 1/2, a continuous uni-

form distribution on

[
−
√

3/6,
√

3/6

]
resulting in a standard deviation

σ = 1/6 or on

[
−
√

3/3,
√

3/3

]
resulting in a standard deviation σ = 1/3,

or a constant distribution with mean 0. It is assumed that for a

given match the team with the higher ability level wins, whereas

the actual ability level for a match is perturbed by a normal dis-

tribution with mean 0 and standard deviation 1 with probability
density function ϕ and cumulative density function Φ. Thus, the prob-
ability that team ta beats team tb in a match (ta, tb ) is given by∫ ∞

−∞
ϕ(z − xa )Φ(z − xb )dz, which we evaluate numerically. Hence,

we decide each match by tossing a biased coin using the calcu-

lated winning probabilities. As noted by Ryvkin and Ortmann [26],

the probability for a tie in this model is 0. We also assume that

an appropriate inclusion of ties here has no significant effect on

the execution time. Using this method we generate a total of 500

seasons for each n ∈ {8, 12, . . . , 40, 50, . . . , 100}. We summarize our

results for the generated data and a varying number of teams with

r ∈ {3, 4, . . . , 8} in Figure 4. For comparison with the real-world

data in Figure 3 we generated 280 seasons with the same mixture

of numbers of teams as in the real-world data.
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Figure 4: Average execution time on the generated data depending on the ability level distribution.

Evaluation. As shown in Figure 3, the algorithm has suitable

execution times for the real-world data.While the average execution

time for r ≤ 7 remaining matchdays is still well below one second,

it increases to about 60 seconds for r = 12. We suppose that this

execution time is still well justifiable for an agent with strong

(financial) interest, especially if one takes into account that the

experiments were performed on a rather low-powered machine

and that the brute-force aspects of the algorithm can easily be

parallelized. In particular, one has to consider the immense number

of combinations the algorithm covers, which for n = 16, 18, or 20

teams and r = 12 open matchdays, around one-third of a season for

k = 2 rounds, lies between 3
96 ≈ 6.363 · 10

45
and 3

120 ≈ 1.797 · 10
57
,

which is impossible to handle using a pure brute-force approach.

However, it cannot be denied that the performance of the algo-

rithm develops poorly for an increasing number of open matchdays

r , both for the real-world and the artificial data. Note that in the

worst-case, the problem is already hard for r = 3. There are two

main reasons for the development of the execution time with in-

creasing r . First, the more open matchdays, the more teams have the

possibility to catch up with team p, which increases the number of

critical teams and second, the more open matchdays, the denser the

inner critical match graph becomes. Both developments increase

the maximum fixing number γ and thereby the execution time.

In the following, we will discuss the generated data in more

detail. In Figure 3 we compare the average execution time of the

generated data with the real-world data, where we see that all

models lead to a similar behavior as for the real-world data, except

for slight differences which are discussed later. Note, that we do not

state here that the generated data is realistic regarding any other

criteria. However, it seems to be appropriate for the analysis of the

expected execution time. Depending on the setting, for example,

the way the participants are selected and regulated, we can expect

different distributions of ability levels. As shown in Figure 3 and 4,

the distribution does have a significant effect on the complexity. The

average execution time is significantly higher when the probability

of top teams, with outstanding high ability levels, is lower, as for the

normal or uniform distribution with lower standard deviation, and,

of course, the constant distribution. This holds since the existence

of a small number of significantly better teams implies that for the

teams further down in the table the algorithm terminates almost

directly, and second, for the top teams only a small number of

critical teams exist, so the maximum fixing number γ is lower.

Theorem 3.3 suggests that, under the usual conjectures, the

worst-case complexity of the problem regarding any algorithm

should also increase drastically with the number of teams, even

for a constant number of remaining matchdays. However, we see

in Figure 4 that this is not the case in the experiments, more so,

the complexity seems to decrease by several orders of magnitude

after a local maximum for all three distributions. The reason for

this is that even though the number of critical teams can increase,

the higher the number of teams, the less likely it is that multiple

matches between a set of critical teams will take place on the re-

maining matchdays, decreasing the likelihood of large and dense

components in the inner critical match graph, and the more likely

it is that a team with significantly more points than the others will

emerge. The latter has already been discussed above and leads to a

much faster decrease in the case of distributions with high variance,

as a team with a higher ability level is more and more likely to be

separated from the mass for a higher number of matches.

4 CONCLUSIONS
We examined the parameterized complexity of scheduling and pre-

dicting round-robin tournaments regarding the number of presched-

uled and remaining matchdays. Beside the theoretical hardness of

predicting the outcomes of those tournaments, we presented, to

the best of our knowledge, the first exact algorithm with suitable

execution time for real-world application.

The possibilities for future work are numerous. In addition

to the consideration of related problems, approximation, and the

average-case complexity instead of the worst-case complexity, the

approaches presented here can be further developed. For example,

by extending and adapting the algorithm and the previous defini-

tions, it is possible to predict other events such as qualification and

relegation and to consider tie-breaking mechanisms.
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