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ABSTRACT
Navigating amongst pedestrians is a very complex task for an au-
tonomous agent. Not only must the agent understand traffic rules
and navigate safely, but it must also act in a way that obeys so-
cial norms and does not interfere with other pedestrians. Here,
we focus on obtaining a model that portrays pedestrian behavior
from real-life demonstrations using imitation learning. We create a
reinforcement learning environment that allows an agent to learn
to navigate using the obtained behavior model. The work is still
in progress, but we illustrate how we generate demonstrations of
pedestrian behavior from video captured by smart glasses and we
incorporate them into a reinforcement learning environment.
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1 INTRODUCTION
Deep reinforcement learning (DRL) [1] combines reinforcement
learning and deep neural networks (DNNs), allowing computational
agents to learn to execute highly complex tasks. Researchers have
mainly explored DRL methods in virtual environments; however,
DRL applications are emerging in real-life scenarios. Our study
focuses on the particular scenario of pedestrian navigation, where
an autonomous agent navigates as a pedestrian amongst other
pedestrians and vehicles.

Pedestrian navigation is a straightforward task that many people
execute in their daily routines. Still, it requires understanding traffic
signs, such as pedestrian signals and crosswalks, social norms,
such as the proper distancing between people, and traffic rules.
Therefore, understanding pedestrian behavior is crucial for teaching
an agent to navigate without impeding or interfering with other
pedestrians’ circulation and blending in with the crowd. Above all,
the navigation should be performed in a safe manner, both to the
agent executing the task and to others in the vicinity.

Imitation learning techniques [7] rely on experts’ task demon-
strations to allow a reinforcement learning agent to learn a policy
similar to the experts’. We hypothesize that by using pedestrian
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navigation demonstrations and imitation learning, we can teach an
agent to navigate as a pedestrian would.

The SIMUSAFE project 1 aims at collecting road users’ behavioral
data in naturalistic and realistic scenarios so as to produce more
accurate decision-making models. Using video captured from a
monocular camera worn by pedestrians, we employ machine learn-
ing and computer vision techniques to generate demonstrations
that we can utilize in a custom reinforcement learning environment
to teach an agent how to navigate in an urban scenario.

2 GENERATING DEMONSTRATIONS
We asked subject pedestrians to record their daily commutes using
smart glasses. Collecting data in a natural setting has the advantage
of describing behavior more accurately than data collected in a
controlled environment. The smart glasses’ camera captures images
at 30 Hz with 1920×1080 pixel resolution. While the camera neither
records sound nor captures the same field of view as the human
eye, it portrays the surroundings that the pedestrian is paying more
attention to.

We frame the problem of pedestrian navigation as a Markov
decision process (MDP), where at a given time 𝑡 the pedestrian
agent observes a state of the environment 𝑠𝑡 ∈ 𝑆 . The pedestrian
takes action 𝑎𝑡 𝑖𝑛𝐴 and receives a reward 𝑟𝑡+1 based on the new state
𝑠𝑡+1. We consider the trajectory 𝜏 of an episode with 𝑇 time steps
the sequence of states visited, actions taken, and rewards received
during the episode: 𝜏 = {𝑠0, 𝑎0, 𝑟1, 𝑠1, 𝑎1, 𝑟2, . . . , 𝑠𝑇−1, 𝑎𝑇−1, 𝑟𝑇 , 𝑠𝑇 }.
We consider a demonstration as a set of trajectories of an expert
agent, i.e., an agent that performs the optimal policy for the MDP.
We consider an optimal policy to be a policy that portrays human
behavior.

Because it is not trivial to write a reward function for human
behavior, we cannot train an agent to perform similar actions to
actual pedestrians using only an objective function. Instead, we
assume that pedestrians are experts in pedestrian navigation. Thus,
we utilize information collected through behavior elicitation to con-
struct demonstrations that enable agents to learn a policy similar
to real pedestrian behavior. More specifically, we attempt to extract
trajectories for the pedestrian navigation task from the videos col-
lected by the smart glasses using machine learning and computer
vision techniques.

2.1 Pedestrian Observation
For each frame of a video recorded by the smart glasses, we detect
objects in the frame using a neural network trained with YOLO [9]
on the KITTI datase [2]. The neural network can identify three

1http://simusafe.eu/

Doctoral Consortium AAMAS 2021, May 3-7, 2021, Online

1805

http://simusafe.eu/


classes of entities: cars, people, and traffic signs. For each frame, it
outputs the type and the bounding box of the identified entities.

Because the videos are from a single monocular camera, we can-
not determine the depth of pixels in video frames using techniques
for stereo settings. Knowing each pixel’s depth lets us map the
pixel’s two-dimensional position in the image plane to a three-
dimensional position in the camera reference frame. The camera
reference frame, in this case, is also the pedestrian’s reference frame,
so it is advantageous to interpret surroundings from this point of
view. To estimate pixel depth, we trained a neural network using
the MonoDepth [5] algorithm on the Karlsruhe dataset [3, 4]. The
network estimates the disparity map of an input frame, which we
use to calculate the respective pixel depth map. We calculate every
pixel’s 3D position in an image from the depth map and their 2D
position on the image plane, which lets us place detected objects
relative to the pedestrian.

We further use the depth map to estimate the position of any
obstacles that have not been identified by the detection network or
that do not belong to any of the identifiable classes. We perform
ground estimation using the technique described by Kircali and
Tek [8]. We apply the method assuming fixed camera pitch and
roll. Video captured by the smart glasses is not stable, therefore to
reduce the error of the ground estimation method, we stabilize the
video’s roll angle using pointer feature matching. We denote the
estimate of the ground plane 𝑧𝑔 , and assume that pixels with depth
𝑧 < 𝑧𝑔 +𝜃 are above the ground and therefore should be considered
obstacles. 𝜃 is an arbitrary threshold we use to make sure we filter
out any noise in the estimation to be an obstacle.

To generate an observation from the obtained data, we describe
each pixel (𝑥,𝑦) of the frame with a tuple 𝑝𝑥,𝑦 = ⟨𝑐, 𝑧⟩, where 𝑐 is
the cost of the pixel and 𝑧 is the depth of the pixel. The cost 𝑐 of
the pixel is equal to 1 if it portrays an object detected by the neural
network or an obstacle detected using ground estimation, otherwise
𝑐 = 0. We consider an observation to be the two-dimensional matrix
where the element (𝑖, 𝑗) is the tuple 𝑝𝑖, 𝑗 . One possible improvement
to this observation structure is reducing the matrix size. As we are
dealing frameswith full HD resolution frames, thematrix dimension
can be too large for training. To reduce the size, we may average
the values for 𝑐 and 𝑧 in blocks of four elements. The value of 𝑐
is then rounded to the nearest integer, 0 or 1. If there is a need to
reduce the dimension further, we simply apply the same method to
the resulting matrix.

2.2 Pedestrian Action
We consider a pedestrian’s action to be its movement between two
consecutive frames. More specifically, we consider an action at time
step 𝑡 to be the transformation of the pedestrian’s pose between
time step 𝑡 and 𝑡 + 1. For these poses, we consider the frame of
reference the agent’s initial pose, that is, the pose at time step 𝑡 = 0.
To calculate the action, we must first estimate the pedestrian’s pose
for each time step. We achieve this by employing simultaneous
localization and mapping (SLAM) techniques. More specifically, we
employ visual RGBD SLAM using the OpenVSLAM framework [11].
The SLAM algorithm outputs the pose of the pedestrian for every
video frame.

3 REINFORCEMENT LEARNING
ENVIRONMENT

To train and test our imitation learning agents, we have built a 3D
environment using the Unity game engine.

Using mechanics provided by Unity, the agent can detect other
pedestrians, cars, and traffic signs. The agent then calculates the
bounding box of the detected objects from the current perspective.
In Figure 1, we show how the agent perceives the bounding boxes
from its current position. We do not need ground plane estimation
nor depth estimation, as we can get these values directly from the
environment.

Figure 1: An illustration of the agent observing the bound-
ing boxes of detected objects in the RL environment.

4 FUTUREWORK
We are currently in the phase of applying different techniques
to teach an agent to navigate. Our first approach uses the Maxi-
mum Entropy Deep Inverse Reinforcement Learning (MaxEnt Deep
IRL) [12] algorithm with the demonstrations we generated to get
the objective reward function. We then use this reward function
in our environment and let the agent learn using a reinforcement
learning algorithm such as Proximal Policy Optimization (PPO) [10].
Our second approach uses Generative Adversarial Imitation Learn-
ing (GAIL) [6], which intrinsically computes a policy from the
demonstrations.

After having a trained an agent, we test and validate its policy
by comparing executing it in our Unity environment against sce-
narios that have been recorded but have not been used to train the
agent. We hope to achieve behavior that is as natural as the real
pedestrian’s behavior.

A significant component for future work also involves making
sure that the policy learned by the agent is safe and robust. We
wish the agent to act naturally, but above all, it should not execute
potentially dangerous maneuvers, such as bumping other pedes-
trians or crossing a road unsafely. Therefore, we will explore safe
reinforcement learning techniques that ensure the agent obeys all
safety constraints while demonstrating realistic behavior.
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