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ABSTRACT
Sampling-based approaches in Reinforcement Learning (RL) typ-
ically involve learning or maintaining distributions. While many
elegant algorithms were proposed in literature, most methods in-
volve prior assumptions of the underlying distributions (eg. being
Natural Exponential Family), or the number of modality for either
simplicity or tractability reasons. A method to effectively apply
complex or non-parametric distributions, for example, distributions
approximated using neural network, is still lacking. One exam-
ple is the limitation of using of reparameterized Gaussian policy,
rather than any arbitrary non-parametric policy in Soft Actor-Critic
(SAC) amenable to the necessary entropy estimation. The thesis
would be focusing on proposing and evaluating methods to en-
able better approximation of complex distributions, and methods
to estimate measurements of non-parametric distributions. The
motivation is to allow better connections and applications of many
deep learning and information theory techniques to the sampling-
based approaches in RL, by alleviating limitations and difficulties
of complex non-parametric distributions.
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1 INTRODUCTION
Sampling can be applied in different parts of an RL algorithm. First,
it can be applied in sampling from past experiences by maintaining
a replay buffer. This application is commonly used in off-policy
reinforcement learning (RL) through temporal difference learning
to provide better sample efficiency and lower variance. Second, it
can be used in population-based search or optimization algorithm
of direct policy search methods, where a distribution is maintained
for candidate solutions of the policy parameters. This involves
learning the distribution based on an objective function. Monte
Carlo approximation and importance sampling are proven to be
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viable strategies to approximate very complicated and analytically
intractable functions. An extension to RL framework is through
Markov Chain Monte Carlo (MCMC) or Cross-Entropy Method
(CEM). Third, sampling could be used when a distribution is learned
tomodel uncertainty. Some examples includemodelling uncertainty
during learning in Bayesian RL and modelling uncertainty in Q-
value returned by the environment in distributional RL [1].

Particularly, the second and third applications mentioned in-
volves maintaining and approximating distributions. For simplicity
or tractability reasons, many related works involve prior assump-
tions of the underlying distributions. The representation capability
and accuracy of the approximated distributions are thus inherently
limited by parametric distributions. In addition, many information
theory concepts or measurements such as entropy are theorized
based on parametric distributions. Such statistical measurements
are used for regularization in state-of-the-art RL algorithms to
improve exploration and generalization. We propose the use of
non-parametric distributions, replacing parametric distributions
to address the restrictive representation capability and reduce im-
posed assumptions on the underlying distributions, with promising
preliminary results. Additionally, a limitation in SAC [5] exists
where policy with closed-form entropy like a uni-modal Gaussian
is typically chosen. Future work could involve introducing an effec-
tive estimation method for the entropy of a non-parametric policy
to enhance SAC’s exploration behaviour in multi-modal problems.

2 PRELIMINARIES
The goal in RL is to learn a policy, which can be defined as the
distribution over actions conditioned on states, 𝜋 (𝑎𝑡 | 𝑠𝑡 ). Another
commonway to define a policy is through Q-learning, where a state-
action function is learned and implicitly used through an 𝜖-greedy
strategy. RL often uses a standard Markov Decision Process (MDP),
modeled by the tuple (S,A, 𝑅,𝑇 ,𝛾), whereS is a set of states 𝑠 ∈ S,
A is a set of actions 𝑎 ∈ A, 𝑇 defines transition distribution in the
form 𝑇 (𝑠𝑡+1 | 𝑠𝑡 , 𝑎𝑡 ) which describes the dynamics of the system,
𝑅 : S × A → R defines the state- and action-dependent reward
function, and 𝛾 ∈ (0, 1] is a scalar discount factor. The aim of RL is
to maximize the expectation of the sum of discounted returns:

𝐽 (𝜋) = E𝜋

[ ∞∑
𝑡=0

𝛾𝑡𝑅 (𝑠𝑡 , 𝑎𝑡 )
]
| 𝑎𝑡 ∼ 𝜋 (·|𝑠𝑡 ) , 𝑠𝑡+1 ∼ 𝑇 (·|𝑠𝑡 , 𝑎𝑡 ) (1)

2.1 Direct Policy Search
For approaches where only action distribution is learned as the
policy, policy gradient method (such as REINFORCE) or a direct
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policy search (non-gradient based) method could be used (such as
CEM). In CEM [7], the policy parameters 𝝓 are generally sampled
from a multivariate Gaussian distribution, 𝝓 i.i.d.∼ N (𝜇, Σ), where
𝜇 and Σ represent the mean and covariance. Each policy 𝜋𝝓 is
evaluated based on the rewards obtained from episodes sampled
following the policy. After ranking the policies based on the episodic
rewards, the elite policies 𝜋𝝓 [elite] are identified by choosing the top
𝜌 percentile of the sorted list of policies. The multivariate Gaussian
policy distributionN (𝜇, Σ) is then updated towards the distribution
of the rare elite policies.

2.2 Q-learning & Actor-Critic
Instead of learning the distribution of actions, Q-learning aims to
learn the state-action function, defined as 𝑄𝜋 (𝑠, 𝑎) = E [𝑍𝜋 (𝑠, 𝑎)],
where random variable 𝑍𝜋 (𝑠, 𝑎) =

∑∞
𝑡=0 𝛾

𝑡𝑅 (𝑠𝑡 , 𝑎𝑡 ) is the sum
of discounted returns. When 𝜃 represents the parameters of 𝑄-
function, the estimate could be improved by repeatedly applying
the Bellman update:

𝑄𝜃 (𝑠𝑡 , 𝑎𝑡 ) ← E[𝑅(𝑠𝑡 , 𝑎𝑡 )] + 𝛾E𝑇
[
max
𝑎𝑡+1

𝑄𝜃 (𝑠𝑡+1, 𝑎𝑡+1)
]

(2)

The 𝑄-function is approximated by minimizing the temporal
difference error, and 𝜃 is updated accordingly,

𝛿𝑡 = 𝑟𝑡 + 𝛾 max
𝑎𝑡+1∈A

𝑄𝜃 (𝑠𝑡+1, 𝑎𝑡+1) −𝑄𝜃 (𝑠𝑡 , 𝑎𝑡 ) (3)

𝜃 ← 𝜃 + 𝛼𝜃𝛿𝑡∇𝜃𝑄𝜃 (𝑠𝑡 , 𝑎𝑡 ) (4)
In actor-critic framework, a separate policy (or actor) is learned

in conjunction with the 𝑄-function (critic). The policy is updated
in the direction suggested by the critic using policy gradients,

𝜙 ← 𝜙 + 𝛼𝜙𝑄𝜃 (𝑠𝑡 , 𝑎𝑡 )∇𝜙 log𝜋𝜙 (𝑎𝑡 | 𝑠𝑡 ) (5)

3 DIFFERENT ROLES OF DISTRIBUTION
The thesis will explore applying non-parametric distributions to
facilitate search, exploration, uncertainty and improve learning
generalisation in RL. We could categorize the incorporation of
learning distributions in the following RL components:

3.1 Distributions of Policy Parameters

Figure 1: Architecture of learning distribution of policy pa-
rameters through hypernetwork

In CEM, policy parameters 𝝓 are sampled from parametric mul-
tivariate Gaussian distribution as discussed in Sec 2.1. The para-
metric distribution approach is known to perform undesirably in
high-dimensional problems, due to the severe constraints on the

distributions that can be represented. The current limitation lies in
the difficulty in learning non-parametric distributions. However,
recent advancements in deep learning and generative neural net-
works [3, 6] have opened up possibility to apply non-parametric
distributions in CEM to boost its performance. We propose an
adversarially-trained hypernetwork [4] to generate weights for
a separate main policy network, representing a more expressive
distribution of policy parameters.

The architecture of our proposal is as shown in Fig. 1, analo-
gous to as Generative Adversarial Network (GAN). It consists of a
generator 𝐺 and a discriminator 𝐷 . A guiding policy is required as
an auxiliary learning target. The generator consists of two neural
networks, the hypernetwork and the main policy network. The
hypernetwork ℎ(𝜙 |𝑧;𝛼) is conditioned by the Gaussian input noise
𝑧 along with network parameters 𝛼 and represents the distribution
of policy parameters. ℎ(𝜙 |𝑧;𝛼) generates the network weights 𝜙 for
the policy network 𝜋 (𝑎 |𝑠 ;𝜙), which in turn predicts the action prob-
abilities for a given state 𝑠 . Experiments show that our proposed
approach outperforms its parametric counterpart, with significant
difference especially in early training stages.

3.2 Distributions of Returns
Distributional RL [1] is an example of applying distribution concept
to the returns component of RL. It is an extension to Q-learning,
which the goal is to model the distribution of returns instead of the
expectation of returns. The distributional Bellman equation could
be expressed analogously to the original Bellman equation:

𝑍𝜋 (𝑠, 𝑎) dist.:= 𝑅(𝑠, 𝑎) + 𝛾𝑍𝜋 (𝑆𝑡+1, 𝐴𝑡+1) (6)

Distributional RL has empirically shown strong evidence of
good performance compared to its expectation counterpart. It also
showed complementary benefit of combining with risk-sensitive
applications. One plausible direction is extending its concept to
multi-agent scenarios and combine multiple risk-adverse or risk-
seeking policies to improve generalization in unseen circumstances.

3.3 Distributions of Actions
SAC is a state-of-the-art method which incorporates an entropy
regularization term in the RL objective (compare with Eqn 1):

𝐽 (𝜋) = E𝜋

[ ∞∑
𝑡=0

𝛾𝑡 [𝑅 (𝑠𝑡 , 𝑎𝑡 ) + 𝛼H (𝜋 (· | 𝑠𝑡 ))]
]

(7)

The entropy is defined as H = −𝛼 log𝜋 (𝑎𝑡+1 | 𝑠𝑡+1) for a
tractable parametric distribution. This has been the limiting fac-
tor in SAC, for its policy (or distribution of actions) employing a
reparameterized Gaussian distribution. Specifically, a neural net-
work is used to generate the mean and variance of a Gaussian, so
that the entropy of the policy has a closed-form solution. To use
a non-parametric distribution, an effective method to estimate its
entropy without excessive sampling is required. Inspired by the
works of Quantile Value Network [2, 8] in Distributional RL, the
approach could be explored and extended to learn a quantile func-
tion of the action distributions. With a proper entropy estimation,
complex multi-modal actor could be used in SAC and its exploration
behaviour could be improved in multi-modal problems.
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