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ABSTRACT

When agents independently learn knowledge, such as ontologies,
about their environment, it may be diverse, incorrect or incomplete.
This knowledge heterogeneity could lead agents to disagree, thus
hindering their cooperation. Existing approaches usually deal with
this interaction problem by relating ontologies, without modifying
them, or, on the contrary, by focusing on building common knowl-
edge. Here, we consider agents adapting ontologies learned from
the environment in order to agree with each other when cooperat-
ing. In this scenario, fundamental questions arise: Do they achieve
successful interaction? Can this process improve knowledge cor-
rectness? Do all agents end up with the same ontology? To answer
these questions, we design a two-stage experiment. First, agents
learn to take decisions about the environment by classifying objects
and the learned classifiers are turned into ontologies. In the second
stage, agents interact with each other to agree on the decisions to
take and modify their ontologies accordingly. We show that agents
indeed reduce interaction failure, most of the time they improve
the accuracy of their knowledge about the environment, and they
do not necessarily opt for the same ontology.
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1 INTRODUCTION

In multi-agent systems, agents can rely on ontologies to understand
their environment and to interact with each other [22]. When on-
tologies are learned by agents independently, they may be diverse,
incorrect or incomplete. This can cause agent interactions to fail
[28]. The origin of these failures differs depending on the interact-
ing agents. Agents may be satisfied by understanding what others
mean without necessarily agreeing with them. This may be the
case of negotiating agents [15]. For example, a seller agent may
consider an object, e.g. a tomato, to be a “vegetable” while a buyer
agent would consider it a “fruit”. The agents do not agree on what
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the object is, but they can still negotiate to reach a price that would
satisfy both parties. In contrast, agents may need that others agree
with them to carry out tasks together. For example, in a multi-agent
cooperation scenario [14], agents that carry goods together will
need to agree on what the targeted objects are to achieve their tasks.
For that purpose, agents may have to change what they learned
from the environment.

However, it is unclear how such changes influence agent knowl-
edge. This raises three fundamental but different questions: Can
agents adapt to reach a state with only successful interactions?
Is it possible for agents to improve the accuracy of their knowl-
edge about the environment in the process? Do agents preserve the
diversity of their knowledge?

To answer these questions, we introduce an experimental frame-
work. It reflects the considered scenarios by two key features. First,
agents have to agree with each other about the environment to act
successfully. Second, their payoffs depend on the accuracy of their
knowledge about the environment. From this we can monitor the
evolution of agent performance in their tasks and their knowledge
about the environment as they adapt it to agree with each other.

Based on this, a two-stage experiment is designed in which
agents first learn to take decisions about objects in the environment
and then interact with each other about the decisions to take. In the
first stage, from sample objects, agents learn decision classifiers that
are converted into ontologies. In the second stage, agents perform
tasks which consist in taking decisions in face of various objects.
They also interact in random pairs by disclosing the decisions they
would take about an object. When agents do not agree on a decision,
they adapt their knowledge to correct the cause of the disagreement:
the agent considered less skilled, measured through its immediate
past ability to accomplish tasks, integrates some of the other’s
knowledge.

Results show that agents reach a state in which interactions are
always successful. Most of the time, they improve their knowledge
about the environment but, under specific conditions, knowledge
may be forgotten. In addition, they reach this state not necessarily
having the same knowledge.

We also applied the same experiment to a real classification
dataset and compared its results with a state-of-the-art coordinated
learning approach.

The remainder of the paper is organised as follows: in Section 2
we review the related work. Section 3 informally describes the
targeted scenario before Section 4 fully specifies the environment,
agent abilities and how they interact with each other and perform
their tasks. Section 5 presents how the experiments are carried out,
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introducing hypotheses, factors and measures. Finally, Section 6
reports and discusses the obtained results.

2 RELATED WORK

Approaches exist that tackle knowledge heterogeneity by finding
relationships between different ontologies’ entities through on-
tology matching [13]. These relationships could be precomputed
from ontologies or they could be generated dynamically by pairs of
agents [20, 26, 29]. In these approaches, agents find relationships
between their classes without altering them. This means that agents
are only interested in understanding concepts of others through
the ones that already exist in their ontologies.

However, an agent’s ontology may not include the required con-
cepts to understand another agent’s concepts. In this case, agents
can extend both their ontologies by negotiating to understand each
other’s concepts [17]. ANEMONE [28] proposes a communication
protocol that allows agents to gradually share parts of their ontolo-
gies as they communicate. Agents in ANEMONE can send sample
instances in order to help others learn a concept if no satisfac-
tory definition of it could be given. This allows agents to enhance
their ontologies and understand the concepts of others. However,
ANEMONE does not address the problem when two agents have
different understanding of a supposedly same concept. This could
be crucial if agents need to agree on a concept to achieve tasks to-
gether. This is the case considered here in which agent interactions
fail if there is a disagreement about a concept.

Interactions have been exploited as a means for agents to adapt.
In interaction-situated semantic alignment [5], agents find align-
ments between their ontologies based on the success of their in-
teractions. Cultural language evolution [24] showed how agents
are able to evolve their language through interaction games. This
was also applied to knowledge used to communicate, in the form
of ontology alignments [4, 12, 27]. We apply this type of approach
to evolve agent ontologies, used to represent the environment, by
adapting their classes following interaction failures.

Through such adaptations, agents change what they know about
the environment which affects how they perform their classification
tasks. A-MAIL [19] is a tool for agents to align learned classifiers, in
which agents also can change the classes of objects. Agents aim to
coordinate what they learned to be consistent with each other using
argumentation, resulting in decentralised inductive learning. Other
approaches also rely on argumentation similarly to A-MAIL as a
means for agents to reach an agreement on concept meaning [2, 3].
In these approaches, agents deliberately engage in argumentation
on what they learned. They are able to generate arguments from the
datasets they learned from. In the present paper, agents adapt their
knowledge after the learning step and they do not use anymore the
data from which they learned but eventually exchange knowledge
pieces.

By going through this process, agents end up improving their
classifiers and agree on the decisions they take. This is also explored
in classifier fusion [10, 23] where multiple classifiers are merged
into one model to improve classification performance. This was
applied to merging classifiers trained from one data stream [25]
as well as from multiple data streams [16, 18]. This is done in a
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centralised way and results in one classifier while in our case each
agent keeps its classifier and adapts it in a decentralised way.

3 INFORMAL SCENARIO DESCRIPTION

To answer the questions raised in the introduction, we consider
the following scenario. Agents live in an environment containing
various objects. Objects are described by several boolean proper-
ties. For example, canMove, hasSharpNails and hasEyes can be
the properties describing the objects of an environment. An ob-
ject cow in that environment would have the properties {canMove,
—hasSharpNails, hasEyes} meaning that it can move, it does not
have sharp nails and it has eyes.

Agents take decisions when they encounter objects of the envi-
ronment. We consider only one type of agent for which each object
has one correct decision. For instance, if we consider the decisions
Hunt, Leave and Collect, the decision for the object apple could
be Collect, the decision for a rock is Leave and the decision for
rabbit is Hunt. However, agents do not initially know the correct
decisions. Instead, each agent is given a set of sample objects and
the corresponding correct decision and learns to take decisions.

When an agent is presented the initial set of samples, it gener-
ates a decision tree. For example, two agents a and b learn from
two different sets of objects S; and Sy, respectively, where S; =
{rock, tiger, rabbit} and Sy = {rabbit,tree}. Agent a may learn
that objects that cannot move or can move but have sharp nails are
to be left and objects that can move and do not have sharp nails are
to be hunted. Figure 2 illustrates the corresponding decision tree.
Agent b may simply learn that objects that have eyes are hunted
and those who do not are left.

After this initial learning phase, agents perform tasks in the envi-
ronment and interact with each other. Their task is to take decisions
about objects of the environment. Taking the right decision pro-
vides agents with a payoff correlated to how good its performance
was. The payoff could be seen as having food, not being injured,
etc.

Each interaction between agents is focused on one object in the
environment. Figure 1 illustrates two interactions in which agents
a and b interact about the objects “rock” and “lion”. The agents
disclose the decisions they would take when they encounter the ob-
ject. Agent a classifies the object “rock” in the decision class Leave
which is the same class in which agent b classifies it. Since the
agents agree on the decisions they take, the interaction is consid-
ered successful. However, if the object is a “lion”, agent b classifies
it in Hunt while agent a classifies it in Leave, which causes this
interaction to fail. This could be seen as two agents who are hunting
together but do not agree on whether an object is “huntable” or not.
Thus, the hunt will not proceed effectively.

When a failure happens, one of the agents adapts its knowledge
to agree with the other agent on the decision to take. This cor-
responds to learning by communicating. Agents first determine
which one of them will change its decision. To do this, they rely on
the payoffs received from the environment. The agent having less
payoff adapts its knowledge in order to adopt the decision of the
other. The intuition behind this is that the payoff denotes success,
if not wisdom, and agents tend to imitate the successful ones in an
attempt to reach a similar situation.
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Figure 1: Agents a and b share their decisions for objects
“rock” and “lion”. For “rock”, the decisions are the same so
the interaction is successful. For “lion”, the decisions are dif-
ferent, hence the interaction is considered a failure. cm =
canMove, hsn = hasSharpNails, he = hasEyes.

The initial questions may then be informally reformulated as
(1) can agents achieve better communication through these adapta-
tions? (2) Do they improve their knowledge? (3) Do they need to
end up with the same ontologies to interact successfully?

4 EXPERIMENTAL FRAMEWORK

To address these questions, we design an experimental framework
allowing to deal with scenarios like the previous one. We more
precisely introduce the environments and agents before defining
the actions that agents perform: ontology learning, interacting and
adaptating knowledge.

4.1 Environment

The environment is composed of a set of objects I described by
properties from a set $. For the sake of simplicity, the properties
are considered binary, i.e. an object either has a property p € P
or it does not (which is represented by —p). P determines the set I
containing one object per possible combination of properties. This
means that the size of Tis 21%|. To each of these objects, corresponds
only one correct decision in D = {dj, ..., dy } given by the function
h*:TUl - D.

4.2 Agents

We consider a set A of agents situated in the environment. When
an agent encounters an object, it takes a decision about it. Agents
know about the possible decisions they can take but not the correct
decision about an object. They are also able to see the properties of
the objects in the environment: this is shared knowledge between
them.

The knowledge of agents is represented as ontologies. Ontologies
allow agents to identify objects based on their properties. We use
the description logic ALC [6] to express ontologies. We denote
that a class C is subsumed by another class D by C E D, equivalent
to D by C = D or disjoint from D by C ® D. T and L are the top
and bottom classes representing the class containing all individuals
and the empty class, respectively. From the classes C and D, the
union (C U D), the intersection (C M D) and the negation (=C) can
be formed. Constraint on properties may be Jp.C (objects having
at least a value of property p in class C) or Vp.C (objects having all
values of property p in class C). We restrict the use of ALC such
that agents only use 3p.T (objects having a value for property p)
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and Vp.L (objects having no value for property p) that we note as
p and —p, respectively. The right-hand side of Figure 2 shows the
ontology corresponding to the decision tree of agent a in Figure 1.

4.3 Ontology Learning

Initially, each agent is provided with a possibly different training
set. This training set contains a subset of objects of I, each with a
different property combination, associated with the corresponding
correct decision (labelled samples). The proportion r of objects in
the sample with respect to I is called the training ratio. From the
training set each agent learns a decision tree classifier, using the
ID3 algorithm [21].

In a decision tree, each node corresponds to a test on a property.
Each sub-branch of a node corresponds to one outcome of the test.
Leaf nodes are associated to decisions. Each object satisfies the tests
leading to only one leaf node from the root. It is classified in the
decision associated to that leaf node.

Nodes can be viewed as classes of objects and each child node
corresponds to a subclass restricting one property to a value. Based
on this principle [9], the decision tree is transformed into an ontol-
ogy in ALC (see Figure 2). The ontologies obtained from decision
trees are private to each agent.

Agents know about the possible decisions. This can be thought
of as if they had access to a common external ontology O* of the
possible decisions without knowing their definitions. This ontology
contains for each decision d; a class D;, and every two different
decision classes D; and Dj; are disjoint. Agents can express that
objects of class C in its own ontology correspond to a decision d;
by adding the correspondence (C, C, D;) as shown in Figure 2.

This defines, for each agent a, a function % : TUT — D which
assigns a decision to each object. The decision d; for object o is
found using the correspondence (C{,C, D;) attached to the most
specific class C{ to which o belongs to ontology O“.

4.4 Tasks and Interactions

Agents perform tasks in the environment by classifying objects
according to their decisions. Following this, the agent receives a
payoff that reflects the correctness of its decisions at the classi-
fication task. An agent a performs a task by going through the
following steps:

(1) A subset S of objects with different properties from I is
presented to agent a. The proportion ¢ of S over I is called
the task ratio.

(2) Agent a labels the objects o € S of the set with the decisions
h%(0).

(3) Agent a receives the payoff rs , reflecting how well it per-
formed the task. We choose to take the number of objects
labelled correctly, ie. rs, = [{0 € S;h%(0) = h*(0)}], as
payoft.

Two agents a and b are able to interact with each other about an

object o by going through the following steps:

(1) agents a and b disclose their decisions h*(0) and h® (o) .
(2) if h%(0) = h®(0) then they agree (success),
(3) otherwise they do not agree (failure).
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Figure 2: Example of how an agent learns a decision tree-like ontology from a set of samples.
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Figure 3: Example of agent b adaptation with C,, = (cmMhsn)
by adding two classes: he M (cm M hsn) and he M —(cm M hsn). It
also removes (he,C, Hunt) and adds (he—(cmMhsn),C, Hunt)
and (he M (cm M hsn), C, Leave).

4.5 Adaptation

After a failure in communication, agents first compare their respec-
tive payoffs to determine which agent should adapt its ontology.
Let agent w be the one having the higher payoff and agent I the
one with the lower one (if they have an equal payoff, one of them
will be selected randomly as agent w).

Then, agent [ adapts its ontology. Let C,, (resp. Cy) be the leaf
class to which object o belongs in O (resp. O'). The effect of the
adaptation operator is to split the objects of class C; into two sets.
The set of objects that belong to C,, will have their decision class
changed to the one of C,,, and those which do not, will keep the
same decision, as shown in Figure 3.

The adaptation happens as follows:

(1) Agent [ asks agent w for the definition of its class C,,.

2)fC;n=Cy % L (or C; Z Cy, i.e. some objects classified
as Cj are not classified as C,,), agent [ creates the classes
Cll = C;NCyy and C12 = C; M =C,,. Otherwise, it sets Cl1 =C.

(3) Let Dj be the decision class for C; and D,, be the decision
class for Cy,. Agent [ replaces (C;,C, D;) by (C},C, Dy, ). If
C12 has been created, it also adds (Cz, C,Dy).
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5 EXPERIMENTS

To answer the raised questions, we run experiments based on the
presented framework. The questions are reformulated as hypothe-
ses tested through a systematic experiment plan whose output is
measured.

5.1 Hypotheses

We test three hypotheses corresponding to the raised questions
from Section 3.

e Hypothesis 1: The success rate converges to 1. This cor-
responds to the fact that, after a while, communication is
always successful.

e Hypothesis 2: The average accuracy of the population im-
proves at the end of the experiment.

e Hypothesis 3: Agents do not necessarily converge to the
same ontologies, i.e. the average ontology distance of the
experiments is not necessarily 0.

5.2 Experiment Plan

In one run of the experiment, agents initially learn from the envi-
ronment how to take decisions. Then, they go through n iterations
of the following:
(1) A pair of agents is selected randomly.
(2) The two agents perform a task in the environment for which
they receive payoff.
(3) They interact to take a decision about one object selected
randomly from the environment.
(4) Agents adapt their ontologies if the interaction failed.
Since the experiment depends on different factors, mentioned in
Section 4, we define an experiment plan to vary these parameters as
presented in Table 1 and run each combination 10 times. This means
that we processed g = 5X3X3%x3x4x10 = 5400 simulations of 40000
iterations. At each iteration, the measures defined in Section 5.3
are recorded.

5.3

To assess the three presented hypotheses, we define: (1) the inter-
action success rate which indicates how often agents have agreed
on their decision, (2) the accuracy of agents’ classifiers on I and
(3) a distance measure between ontologies. An experiment E? is
identified by its identifier p and characterised by the tuple of param-

eters (Ap, Pp, Dps1ps tp, np) as defined in Table 1. The state Ei’j

Measures



Main Track

Meaning Variable Range
Number of agents |A] {2,5,10,20,40}
Number of properties |P| {3,4,5}
Number of decision classes |D| {2,3,4}
Training ratio r {0.1,0.3,0.5}
Task ratio t {0.2,0.4,0.6, 0.8}
Number of iterations n 40000

Table 1: Independent variable ranges

of agent k at iteration j in experiment p is described by its ontology
Of’j at that iteration. We define the following measures computed
at each iteration for each agent:

. accuracy(E‘z’j ) is the accuracy of agent k’s ontology with
respect to the set [, i.e. the ratio of objects in I that are well
classified by agent k’s ontology to all objects of I.

{0 € 17 (0) = h*(0)}]
i

accuracy(E‘Z’j) =

such that hi’j (0) is the decision of agent k for object o in
state EP-J.

o the distance between two ontologies O, and Oy, is
eq(Oq, Op)

max(|Oal, |Op)

eq(Oq, Op) is the number of equivalent classes between on-

tologies O, and Oy, i.e. the number of classes that are defined
equivalently in terms of property values:

€q(0a, Op) = {(Ca, Cp) € Oa X Op|04, O |= Ca = Cp}|

8(0a,0p) =1~

For each experiment state EP»/, we measure the success rate
(srate(EPJ)) as the ratio of successful interactions until j, the acu-
racy (accuracy(EPJ)) as the average accuracy for all agents, and
the distance (distance(EP>/)) as the average distance between each
pair of distinct agent ontologies.

5.4 Comparison with an Alternative Approach

To determine how agents perform on realistic data compared to
a coordinated learning approach, we repeated the experiment by
generating the environment from an existing classification dataset.
We used the Zoology dataset from the UCI machine learning repos-
itory [11] because its attributes are easily converted to binary. The
obtained results were compared with those of A-MAIL [19].

The only differences with the settings of the main experiment
are: (a) The environment objects and their decisions are taken from
the dataset instead of generated randomly. We performed 10-fold
cross-validation, thus using only 90% of the dataset as environment
objects. (b) The task ratio is fixed to 0.2, the lowest value from the
previous experiment. The training ratio is also set to 0.2 which
corresponds to the ratio agents in A-MAIL use for training.

As mentioned in Section 2, A-MAIL is a coordinated inductive
learning approach where agents engage in an explicit argumenta-
tion process on what they learned to reach a common classification.
Agents do not have access to the same information in the two ap-
proaches. In A-MAIL agents keep the datasets they learned from

246

AAMAS 2021, May 3-7, 2021, Online

in memory and are able to use them in argumentation. However,
in our setting, agents do not keep their datasets but receive an
evaluation from the environment, i.e. the payoff corresponding to
their performances on achieving tasks. This is why the comparison
is merely indicative.

We measure, in addition to the accuracy, the precision and recall
of experiment p at iteration j. The precision (resp. recall) of agent
k with respect to decision d is the ratio of objects of decision d that
agent k correctly classifies to the objects that agent k classifies in
decision d (resp. to the objects for which decision d is correct):

e N 1al

Via Nl
g

precision(EZ’j, d)= recall(EZ’j, d)=

D]
Ik,d'
such that I?*), = {0 € [|h?/(0) = d} and Iz = {o € I|h*(0) = d}.
The precision and recall are averaged per decision class and then

per agents. As usual, the F-measure is the harmonic mean of these
precision and recall.

6 RESULTS AND DISCUSSION

Table 2 contains the average of success rate, accuracy and ontology
distance, grouped by factor values, at the first, intermediate and final
iterations for all the experiments. The table includes the measures
after the first interaction because some factors influence them from
the start. For example, a larger training ratio corresponds to a
higher success rate because agents have higher chances of getting
overlapping training sets with larger training ratios and thus agree
more on their decisions. It also includes some of the intermediate
results which show that for some parameters, agents converge
much faster to a stable state with successful communication. For
instance, it can be observed that the success rate converges to 1
faster with fewer agents.

In what follows, we show how these results answer the three
hypotheses. We also analyze the effects of different factors on the
obtained results and discuss the main ones. Finally, the results of
the experiment presented in Section 5.4 are provided.

6.1 Success Rate

Figure 4 shows the average success rate at each iteration.

3 1%
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w
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@
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= 0 : : : |

0 10000 20000 30000 40000
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Figure 4: Average success rate over 40000 iterations. The
shaded part boundaries represent the standard deviation
from the average.

The success rate converges to 1, which supports the first hypoth-
esis. The standard deviation gradually decreases as the number of
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number of agents number of properties | number of classes | training ratio task ratio
2 5 10 20 40 3 4 5 2 3 4 01 03 05|02 04 06 08
1047 048 051 046 0.47|0.50 0.47 0.47 0.58 0.48 0.37 | 043 047 054|047 047 048 0.50
srate 2000 | 1.00 0.98 091 0.81 0.71 | 0.94 0.89 0.81 092 0.88 0.85 | 090 0.86 0.88 | 0.86 0.88 0.89 0.90
10000 | 1.00 1.00 0.98 0.94 0.87 | 0.99 0.97 0.92 097 096 094 | 096 0.95 096|094 0.96 096 0.97
40000 | 1.00 1.00 1.00 0.99 0.96 | 1.00 0.99 0.98 0.99 0.99 098 [0.99 0.99 0.99| 098 0.99 0.99 0.99
11057 056 056 0.56 0.56|0.58 0.56 0.56 0.66 054 049 | 045 0.56 0.68 | 056 0.56 0.56 0.57
Ipp— 2000 | 0.61 0.70 0.79 0.82 0.79 | 0.78 0.75 0.70 0.81 0.73 0.69 | 0.59 0.77 0.86|0.70 0.74 0.75 0.78
10000 | 0.61 0.70 0.80 0.88 0.92 |0.79 0.78 0.77 084 0.77 0.74 | 0.63 0.82 0.90| 0.75 0.78 0.79 0.81
40000 | 0.61 0.70 0.80 0.88 0.94|0.79 0.78 0.79 084 0.77 0.74 | 0.64 0.82 0.90| 0.76 0.78 0.79 0.81
1|0.56 0.61 0.62 0.62 0.61| 043 0.61 0.77 0.58 0.61 0.62 | 0.39 0.69 0.73|0.61 0.60 0.60 0.60
distance 2000 | 0.47 0.47 0.47 049 0.57 | 033 0.50 0.65 0.52 049 047 | 038 0.55 055|049 049 0.50 0.50
10000 | 0.47 0.47 047 047 0.48|0.33 0.49 0.60 0.50 0.47 044 | 035 052 054|046 047 048 0.48
40000 | 0.47 0.47 0.47 047 0.48 | 0.33 0.49 0.60 0.50 0.47 044 | 035 0.52 054|046 0.47 0.48 048

Table 2: Average of success

rate, accuracy and ontology distance at the first (1), last (40000) and intermediate (2000, 10000)

iterations of all experiments grouped by factor values. In bold, the highest values of the cell.

iterations increases. This indicates that the success rate of different
simulation runs are converging similarly even though they start at
different levels due to randomness in initial ontologies or different
simulation factors.

6.2 Accuracy

Figure 5 shows the difference in distributions of average agent
accuracies at the start of the simulations and at their end. The
distribution at the end of the simulations shifts towards 1 which
indicates an overall improvement of agent accuracies. Table 2 shows
that this happens for all factor values. This corroborates a weak
version of the second hypothesis, i.e. on average on all the runs
accuracy improves.

To show that the difference in average accuracy is significant, we
conducted a paired Student ¢-test between the average accuracy at
the beginning of the simulation (Mean= 0.56, Standard Deviation=
0.14) and at the end (Mean= 0.79, Standard Deviation= 0.2). There
is a significant difference with t = 100.06 and p < 0.01.

0125 0.63 1
end } 0.81
0.17 0.46 0.67 0.93
start }70.57 4{
0 0.2 0.4 0.6 0.8 1

ontology accuracy

Figure 5: Distribution of accuracies at the start of the simu-
lation (blue) and at the end of the simulation (red).

However, the left-hand extremity of Figure 5 tells us that there
are cases in which accuracy actually decreases. This rebuts a strong
version of the hypothesis, i.e. that accuracy increases at each run.
In 3.5% of the runs the final average accuracy is lower than the
initial one. This is explained by agents having a rare correct decision
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which is lost because they disagree with others which have gathered
more payoff. Consider two agents a and b that classify all objects
correctly except that a classifies o incorrectly and b classifies o’
incorrectly. It may happen that agent a performs better than agent
b in the task because S contains o’ but not o; a would then gather
more payoff than b. If o is the selected object, then as a result b will
change its (correct) decision about o to the (incorrect) one held by a.
If these are the only two agents, they now have ontologies whose
average accuracy is lower. Section 6.4.3 discusses this further.

6.3 Ontology Distance

The boxplots in Figure 6 show the distribution of average ontology
distances at the start of the simulation and at the end of it. We
observe that the distribution slightly shifts towards 0 at the end
of the simulation. As expected, agents end up with more similar
ontologies. However, they do not necessarily share the same ontolo-
gies. Table 2 shows that for all factor values, the average distance
remains far from 0. In fact, 90.78% of the runs do not lead to the
same ontologies. The reason behind this is that agents may consider
different properties to take the same decision. Figure 7 shows the
ontologies of agents a and b who take the same decisions for all
objects. For example, both agents a and b would take decision D;
for object o that has the properties {—p1, p2, p3}. Agent a would take
it because o has p, and agent b because it has —p;. This supports
the third hypothesis.

6.4 Effects of Simulation Factors

To determine which factors (independent variables) significantly
affect which measures (dependent variables) we performed an anal-
ysis of variance (ANOVA) test on the final measured values of
success rate, distance and accuracy of each simulation run. The
following results are simplified as we study only the direct effect
of each factor on its own (contrary to N-way ANOVA). ANOVA
returns, for each pair of independent and dependent variables, the
probability that the independent variable has no effect on the de-
pendent variable (p-value). We consider a p-value that is lower than
0.01 as low enough to reject that the independent variable has no
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Figure 6: Distribution of average ontology distances at the
start of the simulation (blue) and at the end of the simula-
tion (red).
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Figure 7: Example of two ontologies O and O that take the
same decisions with only two equivalent classes.

effect on the dependent variable. ANOVA resulted in a significant
effect of all factors on all measures except for (a) the number of
agents on the distance and (b) the number of properties on the
accuracy. However, ANOVA only informs if there is an effect from
the independent variables. To know how an independent variable
affects a dependent variable we performed a post-hoc Tukey HSD
(honestly significant difference) test. In the following, we discuss
three of the main effects. The full analysis can be found in our
experiment logbook [8].

6.4.1 Effect of number of agents on accuracy. On the one hand,
Figure 8 shows that the number of agents does not significantly
affect the final ontology distance. On the other hand, it shows that
the more agents there are, the higher the final accuracy is. This
is because correct pieces of knowledge could be completely lost
if they are part of an overall bad agent knowledge. To illustrate
this, consider an object o of decision d; such that it is classified
correctly by agents with lower payoffs. If the object is picked up in
the early iterations, the agents may wrongly correct it, and since
there are only few agents, the information “o has the decision d;”
might completely disappear, as discussed in Section 6.2. However,
with more agents, the chances that this information survives for
later iterations are higher. Thus, agents with low payoffs get the
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Figure 8: Average ontology accuracy (dotted) and ontology
distance (plain) by number of agents |A|.

chance to correct their other errors to increase their payoffs and
start spreading the information that o is of decision d;.

6.4.2 Effect of number of properties on ontology distance. On the
one hand, Figure 9 shows that the final average accuracy is not sig-
nificantly affected by the number of properties. On the other hand,
the average ontology distances at the beginning of the simulation
are at different values, higher for the higher number of properties,
and they all drop by about the same amount. As the number of
properties increases, agents have more flexibility on which proper-
ties they consider to take decisions, which results in them having
different class definitions and still agree on the decisions. For exam-
ple, if all objects having the property p; are classified as d; and the
rest as dy, agent a might consider directly the property p; to take
the decision while agent b can first consider the property ps then
the property p;. As a result, the agents would have different class
definitions. If one of the properties is removed, both agents will
have to use the same property which would result in them having
equivalent class definitions.
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Figure 9: Average ontology accuracy (plain) and ontology
distance (dotted) by number of properties |P|.

6.4.3  Effect of task ratio and number of agents on accuracy difference.
Both a higher task ratio and a larger number of agents lead to higher
accuracy on average (Table 2). However, as noted in Section 6.2,
the accuracy difference between the final and initial iteration is
not always positive. We identified the task ratio and the number of
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agents as the main factors that influence this. As can be observed
from Table 3, a lower task ratio and fewer agents increase the
chances of this to happen.

tNIA] 2 5 10 20 40 | total
02 | 53 29 2 0 0| 84
04 | 43 9 0 0 0| 52
06 |32 6 2 0 0| 40
08 |13 0 o0 0 0| 13

total | 141 44 4 0 0 | 189

Table 3: Number of runs with negative accuracy difference
by number of agents and task ratio (each cell = 360 runs).

With a higher task ratio, the received payoff better assesses the
quality of the decisions taken by the agents. Thus agents have less
chances of changing their decisions to a wrong one. However, even
with a low task ratio, if the agent population is large, lost decisions

are more easily recovered. This is clearly illustrated by Table 3.

Obviously, if the problem illustrated in Section 6.2 occurs with 2
agents, the correct decision is definitively lost. When there are more
agents, it may be recovered.

6.5 Results on Real Data

Table 4 displays the results obtained in the additional experiment
of Section 5.4.

Method |A] | Precision | F-measure | Recall | Accuracy
2 0.88 0.87 0.86 0.951
5 0.91 0.89 0.88 0.964

Simulation | 10 0.94 0.92 0.91 0.977
20 0.96 0.94 0.93 0.984
40 0.95 0.94 0.93 0.983
2 0.97 0.85 0.75 0.950
3 0.98 0.89 0.81 0.968

A-MAIL 4 0.97 0.90 0.84 0.966
5 0.98 0.93 0.88 0.980

Table 4: Final precision, F-measure, recall and accuracy of
different methods on the test set.

When A-MAIL is used with 2, 3 and 4 agents, they only learn
from 40%, 60% and 80% of the training dataset respectively, which
explains the relatively low results compared to 5 agents in which
100% of the training set is used. A-MAIL results do not improve with
more agents [19]. In contrast, the performance of agents presented
here depends more on their number. With enough agents, they can
improve their knowledge significantly to reach results on par with
A-MAIL.

Agents perform better in a realistic dataset than on randomly
generated objects and decisions. With 2 agents, the accuracy on
a realistic dataset (16 binary properties and 7 decision classes) is
0.95 compared to an average of 0.61 in randomly generated datasets
(3 to 5 binary properties and 2 to 4 decision classes). A similar
improvement can be observed for the other numbers of agents.
This is due to feature patterns existing in the real classes and not
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in randomly generated ones making the generalisation easier for
agents.

7 CONCLUSION

A first contribution of this paper is the experimental framework in
which agents first learn the knowledge that they later adapt. This
shows that it is possible to have continuity between these two tasks.
This also provides an experimental setting in which it is possible
to independently experiment with different ontology learning and
adaptation methods.

Nonetheless, the main contribution is the experimental test of
the three hypotheses: (a) agents can adapt knowledge, improving
agreement and communication, (b) doing so they, most of the time,
develop more accurate knowledge, and (c) this does not constrain
them to have the same knowledge. Under specific conditions and
in 3.5% of the cases, knowledge may be forgotten. This is realistic
and it would be worth considering how agents could address this.

Finally, we tested this approach on a classification task with
realistic data and contrasted the obtained results with a coordi-
nated inductive learning approach. The achieved correctness and
completeness of both approaches were on par.

This work shows how agents can globally evolve their knowl-
edge by locally reacting to environment and society pressure. It
constitutes a step towards agents able to effectively adapt to other
individuals and their environment.

Several things were left aside in this paper. The payoff structure
used to assess agents is uniform. However, in reality this is not
always the case, e.g. the payoff received by running from a lion
should be higher than the one received from collecting an apple.
Such payoff structure may further constrain the evolution of agent
ontologies. In addition, agents had perfect shared knowledge about
the object properties and the possible decisions. In reality, there
might be differences on how agents perceive the environment and
what decisions they take. It would be worth exploring these issues.

This work is not exclusive of other means such as developing
alignments and adapting them. Future work may explore the impact
of different learning methods as well as different agent behaviours,
i.e. other adaptation operators or reinforcement learning, combined
with other assessment methods that can originate from the envi-
ronment, the society or both.

DATA AVAILABILITY

All experiments were performed in the Lazy lavender software
environment [1]. Settings, output and data analysis notebooks are
made available at [8] and [7].
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