
Scalable Anytime Planning for Multi-Agent MDPs
Shushman Choudhury

∗
,

Jayesh K. Gupta
∗

Stanford University

{shushman,jkg}@cs.stanford.edu

Peter Morales

Microsoft

pmorales@microsoft.com

Mykel J. Kochenderfer

Stanford University

mykel@stanford.edu

ABSTRACT
We present a scalable tree search planning algorithm for large

multi-agent sequential decision problems that require dynamic col-

laboration. Teams of agents need to coordinate decisions in many

domains, but naive approaches fail due to the exponential growth

of the joint action space with the number of agents. We circumvent

this complexity through an anytime approach that allows us to

trade computation for approximation quality and also dynamically

coordinate actions. Our algorithm comprises three elements: online

planning with Monte Carlo Tree Search (MCTS), factored represen-

tations of local agent interactions with coordination graphs, and the

iterative Max-Plus method for joint action selection. We evaluate

our approach on the benchmark SysAdmin domain with static co-

ordination graphs and achieve comparable performance with much

lower computation cost than ourMCTS baselines.We also introduce

a multi-drone delivery domain with dynamic, i.e., state-dependent

coordination graphs, and demonstrate how our approach scales to

large problems on this domain that are intractable for other MCTS

methods. We provide an open-source implementation of our algo-

rithm at https://github.com/JuliaPOMDP/FactoredValueMCTS.jl.

ACM Reference Format:
Shushman Choudhury

∗
, Jayesh K. Gupta

∗
, Peter Morales, and Mykel J.

Kochenderfer. 2021. Scalable Anytime Planning for Multi-Agent MDPs. In

Proc. of the 20th International Conference on Autonomous Agents and Multia-
gent Systems (AAMAS 2021), Online., May 3–7, 2021, IFAAMAS, 9 pages.

1 INTRODUCTION
Coordination is crucial for effective decision-making in cooperative

multi-agent systems with a shared objective. Various real-world

problems like formation control [31], package delivery [12], and

firefighting [32] require a team of autonomous agents to perform a

common task. Such cooperative sequential decision-making prob-

lems can be modeled as a multi-agent Markov decision process

(MMDP) [7], an extension of the Markov decision process (MDP)

[20]. MMDPs can be reduced to centralized single-agent MDPs with

a joint action space for all agents. Such reductions often make large

problems intractable because the action space grows exponentially

with the number of agents. Solving independent MDPs for all agents

yields suboptimal behavior in problems where reasoning about the

effects of joint actions is necessary for better performance [28].

Many previous MMDP approaches have tried to balance these

extremes of optimality and efficiency. In the offline setting, these
include ad hoc function decomposition approaches, such as Value

∗
Equal contribution.

Proc. of the 20th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2021), U. Endriss, A. Nowé, F. Dignum, A. Lomuscio (eds.), May 3–7, 2021, Online..
© 2021 International Foundation for Autonomous Agents and Multiagent Systems

(www.ifaamas.org). All rights reserved.

Decomposition Networks [39] and QMIX [36], or parameter shar-

ing in decentralized policy optimization [19]. Guestrin et al. [17]

introduced the concept of a coordination graph to reason about

joint value estimates from a factored representation, while Kok and

Vlassis [23] used approximations to scale these ideas to larger prob-

lems. Monte Carlo Tree Search (MCTS) [8], a common approach

to online planning, has been combined with coordination graphs

in Factored Value MCTS [1]. However, Factored Value MCTS co-

ordinates actions with an exact Variable Elimination (Var-El) step,

which negates the anytime nature of MCTS planning.

The key idea of this paper is to recover the anytime nature of
MCTS planning for MMDPs requiring coordination and also scale to
larger teams of agents. To that end, we propose combining Max-Plus

action selection, introduced by Vlassis et al. [41], with the factored

value MCTS of Amato and Oliehoek [1]. We do so for many reasons.

Unlike Var-El, which is exact, Max-Plus is an iterative procedure

and allows for truly anytime behavior that can trade computation

for approximation quality. The representation of Max-Plus is much

more efficient than that of Var-El for using dynamic, i.e., state-

dependent, coordination graphs (state-dependent data-structures

are a key benefit of online planning for MDPs). Finally, Max-Plus

can scale to much larger and denser coordination graphs than Var-

El, and it can be distributed for additional scalability [24].

We present a scalable anytime MMDP planning algorithm called

Factored Value MCTS with Max-Plus. On the standard SysAdmin

benchmark domain [17], with static coordination graphs, we demon-

strate that our approach performs as well as or better than Factored

Value MCTS with Var-El [1] and is much faster for the same tree

search hyperparameters. We also introduce a new MMDP domain,

Multi-Drone Delivery, with dynamic coordination graphs. On the

second domain, we show how our approach scales to problem sizes

that are entirely intractable for other MCTS variants, while also

achieving better performance on smaller problem sizes.

2 BACKGROUND AND RELATEDWORK
We first review MDPs and their multi-agent formulation. We then

describe how coordination graphs can efficiently exploit locality

of interactions in multi-agent problems. Finally, we discuss how to

use coordination graphs to solve multi-agent MDPs.

2.1 Multi-Agent Markov Decision Processes
An MDP is defined by the tuple (S,A,𝑇 , 𝑅), where S is the state

space,A is the action space,𝑇 : S×A×S → [0, 1] is the transition
function, and 𝑅 : S ×A → R is the reward function. The objective

for solving an MDP is to obtain a policy, 𝜋 : S × A → [0, 1] that
specifies a probability distribution over actions for the agent to

take from its current state to maximize its value, i.e. its expected
cumulative reward. An action-value function 𝑄 (𝑠, 𝑎) defines the

Main Track AAMAS 2021, May 3-7, 2021, Online

341

https://github.com/JuliaPOMDP/FactoredValueMCTS.jl

expected cumulative reward after taking action 𝑎 in state 𝑠 before

following the specified policy.

We focus on decision-making settings where multiple agents

cooperate to achieve a shared objective [7]. Such problems are multi-

agent Markov decision processes (MMDPs), where each agent takes

an individual action and the controller policy observes the states of

all agents. In principle, we can solve an MMDP as a standard MDP

with a joint action space A =
∏

𝑖 A𝑖 [35]. There exist both offline

and online methods for computing such MDP policies [3].

Offline methods pre-compute a policy over the entire state space

(exactly or approximately) and query the policy during execution.

Various exact offline methods exist, but reinforcement learning has

emerged as an attractive solution technique due to the complexity of

planning in large MMDPs [40]. Reinforcement Learning approaches

attempt to compute an effective value function 𝑄 (𝑠, 𝑎) or a policy
𝜋 (𝑎 | 𝑠) through repeated interaction with the environment model.

They still have difficulty with the size of the joint action space,

which is exponential in the number of agents. A common strategy

is to decentralize the policy or value function, such that each only

depends on the actions of a single agent [19, 36, 39]. Unfortunately,

such decentralization approaches are often suboptimal for coordi-

nation and encounter exploration bottlenecks due to uncooperative

random actions from the agents [6].

Online methods use an alternative strategy to deal with the

complexity of multi-agent planning; they interleave planning and

execution by focusing only on states that are reachable for the

current state, while computing the next action to take. Monte Carlo

Tree Search (MCTS) is the predominant framework for online plan-

ning and has succeeded in a variety of domains [8], including in

multi-player contexts [30, 44]. The anytime nature of MCTS (search

depth and number of simulations) allows us to trade computation

time for approximation quality. However, the exponentially large

action space of MMDPs can still be a bottleneck for the naive ap-

plication of MCTS techniques [9]. Dec-MCTS tries to work around

this bottleneck but does not apply to action-dependent stochastic

transitions of an MDP, as it directly chooses the next state [4].

2.2 Coordination Graphs and Variable
Elimination

Several real-world multi-agent systems demonstrate locality of in-
teraction, i.e. the outcome of an agent’s action depends only on the

actions of a subset of other agents. The coordination graph (CG)

structure is often used to encode such interactions [17, 18]. A CG

for a multi-agent system has one node per agent, and edges connect

agents if their payoffs depend on each other. For now, we assume

a stateless or single-shot decision setting (rather than sequential).

The CG structure induces a set of payoff components, where each
component is associated with a clique, i.e., a subset of agents that are
all mutually connected.

For CGs in multi-agent settings, we assume that we can factor

the global payoff for a joint action as the sum of local component

payoffs, i.e. 𝑄 (𝑎) = ∑
𝑐 𝑄𝑐 (𝑎𝑐), where 𝑎 is the global joint action,

and 𝑎𝑐 is the local component action (the projection of 𝑎 corre-

sponding to component 𝑐). Given this factored representation and

the local component payoffs, we can compute exactly the best joint

2

1 3

4

�12
<latexit sha1_base64="V9xDmRzNyaEp4jW0BSWxH0XURs8=">AAACJHicbVDNSsNAGNytfzX+tXr0EiyCp5JUQY8FETy2YH+gDWWz3bRrN5uw+0Uooe/gVR/Ap/EmHrz4LG7TILZ1YGGY+QZmx48F1+A4X7iwsbm1vVPctfb2Dw6PSuXjto4SRVmLRiJSXZ9oJrhkLeAgWDdWjIS+YB1/cjv3O09MaR7JB5jGzAvJSPKAUwJGajcHqVubDUoVp+pksNeJm5MKytEYlHGxP4xoEjIJVBCte64Tg5cSBZwKNrP6iWYxoRMyYj1DJQmZ9tKs7sw+N8rQDiJlngQ7U/8mUhJqPQ19cxkSGOtVby7+6wnuM9NALhf4lRMNbpZdrgfBjZdyGSfAJF20CxJhQ2TPB7OHXDEKYmoIoYqbD9p0TBShYGa1LLOdu7rUOmnXqu5ltda8qtTv8hWL6BSdoQvkomtUR/eogVqIokf0jF7QK37D7/gDfy5OCzjPnKAl4O8fucWkWQ==</latexit>

�23
<latexit sha1_base64="S4shAgEJTNsQ7Goov5OH9klTXbU=">AAACJHicbVDNSsNAGPzib41/rR69LBbBU0laQY8FETy2YH+gDWWz3bRrN5uwuxFK6Dt41QfwabyJBy8+i9s0iG0dWBhmvoHZ8WPOlHacL2tjc2t7Z7ewZ+8fHB4dF0snbRUlktAWiXgkuz5WlDNBW5ppTruxpDj0Oe34k9u533miUrFIPOhpTL0QjwQLGMHaSO3mIK3WZoNi2ak4GdA6cXNShhyNQckq9IcRSUIqNOFYqZ7rxNpLsdSMcDqz+4miMSYTPKI9QwUOqfLSrO4MXRhliIJImic0ytS/iRSHSk1D31yGWI/VqjcX//U486lpIJYL/MqJ0m6WXa6ngxsvZSJONBVk0S5IONIRmg+GhkxSovnUEEwkMx9EZIwlJtrMattmO3d1qXXSrlbcWqXavCrX7/IVC3AG53AJLlxDHe6hAS0g8AjP8AKv1pv1bn1Yn4vTDSvPnMISrO8fvT6kWw==</latexit>

�34
<latexit sha1_base64="uXKcyg2oFqaVZ1+r8n92vTgMXV4=">AAACJHicbVDNSgMxGEzqX13/Wj16WSyCp7LbFvRYEMFjC/YH2qVk02wbm80uybdCWfoOXvUBfBpv4sGLz2LaLmJbBwLDzDcwGT8WXIPjfOHc1vbO7l5+3zo4PDo+KRRP2zpKFGUtGolIdX2imeCStYCDYN1YMRL6gnX8ye3c7zwxpXkkH2AaMy8kI8kDTgkYqd0cpNXabFAoOWVnAXuTuBkpoQyNQRHn+8OIJiGTQAXRuuc6MXgpUcCpYDOrn2gWEzohI9YzVJKQaS9d1J3Zl0YZ2kGkzJNgL9S/iZSEWk9D31yGBMZ63ZuL/3qC+8w0kKsFfuVEg7vIrtaD4MZLuYwTYJIu2wWJsCGy54PZQ64YBTE1hFDFzQdtOiaKUDCzWpbZzl1fapO0K2W3Wq40a6X6XbZiHp2jC3SFXHSN6ugeNVALUfSIntELesVv+B1/4M/laQ5nmTO0Avz9A8C3pF0=</latexit>

�2(�1, �3)
<latexit sha1_base64="Kr1nJSAVOedJC8DgP+DME2g0Mc4=">AAACKnicbVDNSsNAGNzUvxr/Wj16CRahgpSkFfRYEMFjBfsDbQib7Zd26WYTdjdCCX0Nr/oAPo234tUHcZsGsa0DC8PMNzA7fsyoVLY9Nwpb2zu7e8V98+Dw6PikVD7tyCgRBNokYpHo+VgCoxzaiioGvVgADn0GXX9yv/C7LyAkjfizmsbghnjEaUAJVloagFevYs+5xl7jyitV7JqdwdokTk4qKEfLKxvFwTAiSQhcEYal7Dt2rNwUC0UJg5k5SCTEmEzwCPqachyCdNOs9My61MrQCiKhH1dWpv5NpDiUchr6+jLEaizXvYX4r8eoD7oBXy3wKydSOVl2tZ4K7tyU8jhRwMmyXZAwS0XWYjZrSAUQxaaaYCKo/qBFxlhgovS4pqm3c9aX2iSdes1p1OpPN5XmQ75iEZ2jC1RFDrpFTfSIWqiNCIrRK3pD78aH8WnMja/lacHIM2doBcb3D+YFpeE=</latexit>

(a)

1

2

3

4

�21(�1)
<latexit sha1_base64="e4XNNwID/zWnWcab268Ej/Lhd7g=">AAACK3icbVDNSgMxGEz8rfWv1aOXxSLUS9lUQY8FETxWsD/QLks2zbahSXZNskJZ+hxe9QF8Gk+KV9/DdLuIbR0IDDPfwGSCmDNtXPcDrq1vbG5tF3aKu3v7B4el8lFbR4kitEUiHqlugDXlTNKWYYbTbqwoFgGnnWB8M/M7T1RpFskHM4mpJ/BQspARbKzk9UXip3U0rWIfnfuliltzMzirBOWkAnI0/TIs9AcRSQSVhnCsdQ+5sfFSrAwjnE6L/UTTGJMxHtKepRILqr00az11zqwycMJI2SeNk6l/EykWWk9EYC8FNiO97M3Efz3OAmobyMUCv3KiDcqyi/VMeO2lTMaJoZLM24UJd0zkzHZzBkxRYvjEEkwUsx90yAgrTIxdt1i026HlpVZJu15DF7X6/WWlcZuvWAAn4BRUAQJXoAHuQBO0AAGP4Bm8gFf4Bt/hJ/yan67BPHMMFgC/fwCc46bO</latexit>

�12(�2)
<latexit sha1_base64="W3Txq3TVWU9imTcIj8gx5UKEB9s=">AAACK3icbVDNSgMxGEz8retfq0cvi0Wol7K7CnosiOCxgv2BdlmyabYNTbJrkhXK0ufwqg/g03hSvPoepttFbOtAYJj5BiYTJowq7TgfcG19Y3Nru7Rj7e7tHxyWK0dtFacSkxaOWSy7IVKEUUFammpGuokkiIeMdMLxzczvPBGpaCwe9CQhPkdDQSOKkTaS3+dpkLnetIYC7zwoV526k8NeJW5BqqBAM6jAUn8Q45QToTFDSvVcJ9F+hqSmmJGp1U8VSRAeoyHpGSoQJ8rP8tZT+8woAzuKpXlC27n6N5EhrtSEh+aSIz1Sy95M/NdjNCSmgVgs8CunSrt5drGejq79jIok1UTgebsoZbaO7dlu9oBKgjWbGIKwpOaDNh4hibA261qW2c5dXmqVtL26e1H37i+rjdtixRI4AaegBlxwBRrgDjRBC2DwCJ7BC3iFb/AdfsKv+ekaLDLHYAHw+weenqbP</latexit> �23(�3)

<latexit sha1_base64="70K0ddxM2j9i0dj5KO4lvvxeDyE=">AAACK3icbVDNSgMxGEzqX13/Wj16WSxCvZTdVtBjQQSPFewPtMuSTbNtaJJdk6xQlj6HV30An8aT4tX3MN0uYlsHAsPMNzCZIGZUacf5gIWNza3tneKutbd/cHhUKh93VJRITNo4YpHsBUgRRgVpa6oZ6cWSIB4w0g0mN3O/+0SkopF40NOYeByNBA0pRtpI3oAnflpvzKrIb1z4pYpTczLY68TNSQXkaPllWBwMI5xwIjRmSKm+68TaS5HUFDMyswaJIjHCEzQifUMF4kR5adZ6Zp8bZWiHkTRPaDtT/yZSxJWa8sBccqTHatWbi/96jAbENBDLBX7lRGk3yy7X0+G1l1IRJ5oIvGgXJszWkT3fzR5SSbBmU0MQltR80MZjJBHWZl3LMtu5q0utk0695jZq9fvLSvM2X7EITsEZqAIXXIEmuAMt0AYYPIJn8AJe4Rt8h5/wa3FagHnmBCwBfv8Ao92m0g==</latexit>

�34(�4)
<latexit sha1_base64="uuvh+VrFuvtKIo3Xw8mv7RL6fjk=">AAACK3icbVDNSgMxGMz6W9e/Vo9egkWol7LbFvRYEMFjBfsD7bJk02wbmmTXJCuUpc/hVR/Ap/GkePU9TLeL2NaBwDDzDUwmiBlV2nE+rI3Nre2d3cKevX9weHRcLJ10VJRITNo4YpHsBUgRRgVpa6oZ6cWSIB4w0g0mN3O/+0SkopF40NOYeByNBA0pRtpI3oAnflpvzCrIb1z6xbJTdTLAdeLmpAxytPySVRgMI5xwIjRmSKm+68TaS5HUFDMysweJIjHCEzQifUMF4kR5adZ6Bi+MMoRhJM0TGmbq30SKuFJTHphLjvRYrXpz8V+P0YCYBmK5wK+cKO1m2eV6Orz2UiriRBOBF+3ChEEdwflucEglwZpNDUFYUvNBiMdIIqzNurZttnNXl1onnVrVrVdr941y8zZfsQDOwDmoABdcgSa4Ay3QBhg8gmfwAl6tN+vd+rS+FqcbVp45BUuwvn8AqRym1Q==</latexit>

�1
<latexit sha1_base64="hpsxzkog2vpBpbUGuSqZI2/lHGA=">AAACIXicbVDNSsNAGNytfzX+tXr0EiyCp5JUQY8FETy2aH+gDWWz3bRLN5uw+0UooY/gVR/Ap/Em3sSXcZsGsa0DC8PMNzA7fiy4Bsf5woWNza3tneKutbd/cHhUKh+3dZQoylo0EpHq+kQzwSVrAQfBurFiJPQF6/iT27nfeWJK80g+wjRmXkhGkgecEjDSQ3PgDkoVp+pksNeJm5MKytEYlHGxP4xoEjIJVBCte64Tg5cSBZwKNrP6iWYxoRMyYj1DJQmZ9tKs68w+N8rQDiJlngQ7U/8mUhJqPQ19cxkSGOtVby7+6wnuM9NALhf4lRMNbpZdrgfBjZdyGSfAJF20CxJhQ2TP17KHXDEKYmoIoYqbD9p0TBShYDa1LLOdu7rUOmnXqu5ltda8qtTv8hWL6BSdoQvkomtUR/eogVqIohF6Ri/oFb/hd/yBPxenBZxnTtAS8PcPQoGjEQ==</latexit>

�2
<latexit sha1_base64="sdy0qrifQX7Uw1owncseIQ9zzmI=">AAACIXicbVDNSsNAGPy2/tX41+rRS7AInkpSBT0WRPDYov2BNpTNdtMu3WzC7kYooY/gVR/Ap/Em3sSXcZsGsa0DC8PMNzA7fsyZ0o7zhQobm1vbO8Vda2//4PCoVD5uqyiRhLZIxCPZ9bGinAna0kxz2o0lxaHPacef3M79zhOVikXiUU9j6oV4JFjACNZGemgOaoNSxak6Gex14uakAjkagzIq9ocRSUIqNOFYqZ7rxNpLsdSMcDqz+omiMSYTPKI9QwUOqfLSrOvMPjfK0A4iaZ7Qdqb+TaQ4VGoa+uYyxHqsVr25+K/HmU9NA7Fc4FdOlHaz7HI9Hdx4KRNxoqkgi3ZBwm0d2fO17CGTlGg+NQQTycwHbTLGEhNtNrUss527utQ6adeq7mW11ryq1O/yFYtwCmdwAS5cQx3uoQEtIDCCZ3iBV/SG3tEH+lycFlCeOYEloO8fRDyjEg==</latexit>

�3
<latexit sha1_base64="Z29/cphQtyl38RJrL2As15Yml7o=">AAACIXicbVDNSsNAGPzW3xr/Wj16CRbBU0laQY8FETy2aH+gDWWz3bRLN5uwuxFK6CN41QfwabyJN/Fl3KZBbOvAwjDzDcyOH3OmtON8oY3Nre2d3cKetX9weHRcLJ20VZRIQlsk4pHs+lhRzgRtaaY57caS4tDntONPbud+54lKxSLxqKcx9UI8EixgBGsjPTQHtUGx7FScDPY6cXNShhyNQQkV+sOIJCEVmnCsVM91Yu2lWGpGOJ1Z/UTRGJMJHtGeoQKHVHlp1nVmXxhlaAeRNE9oO1P/JlIcKjUNfXMZYj1Wq95c/NfjzKemgVgu8CsnSrtZdrmeDm68lIk40VSQRbsg4baO7Pla9pBJSjSfGoKJZOaDNhljiYk2m1qW2c5dXWqdtKsVt1apNq/K9bt8xQKcwTlcggvXUId7aEALCIzgGV7gFb2hd/SBPhenGyjPnMIS0PcPRfejEw==</latexit>

�4
<latexit sha1_base64="+RhhdOw0Zn0xrB9Wt2D3EcRj6EE=">AAACIXicbVDNSsNAGNz1t8a/Vo9egkXwVJJa0GNBBI8t2h9oQ9lsv7RLN5uwuxFK6CN41QfwabyJN/Fl3KZBbOvAwjDzDcyOH3OmtON84Y3Nre2d3cKetX9weHRcLJ20VZRICi0a8Uh2faKAMwEtzTSHbiyBhD6Hjj+5nfudJ5CKReJRT2PwQjISLGCUaCM9NAe1QbHsVJwM9jpxc1JGORqDEi70hxFNQhCacqJUz3Vi7aVEakY5zKx+oiAmdEJG0DNUkBCUl2ZdZ/aFUYZ2EEnzhLYz9W8iJaFS09A3lyHRY7XqzcV/Pc58MA3EcoFfOVHazbLL9XRw46VMxIkGQRftgoTbOrLna9lDJoFqPjWEUMnMB206JpJQbTa1LLOdu7rUOmlXK+5Vpdqslet3+YoFdIbO0SVy0TWqo3vUQC1E0Qg9oxf0it/wO/7An4vTDZxnTtES8PcPR7KjFA==</latexit>

(b)

Figure 1: A coordination graph for an MMDP with 4 agents.
(a) Eliminating agent 2 in Var-El introduces an edge between
nodes (agents) 1 and 3 and a new payoff function 𝑒2 (b) In
Max-Plus, agents passesmessages along the graph edges; the
messages are functions of the actions of the receiving agent,
e.g., agent 1 sends 𝜇12 (𝑎2) to agent 2.

action, argmax𝑎 𝑄 (𝑎), with the Variable Elimination (Var-El) algo-

rithm originating from the probabilistic inference literature [18].

Computing the optimal joint action in a CG is equivalent to ob-

taining the maximum a posteriori configuration in an undirected

probabilistic graphical model [41].

Consider the 4-agent CG in Figure 1a. Here,𝑄 (𝑎) = 𝑄12 (𝑎1, 𝑎2)+
𝑄23 (𝑎2, 𝑎3) +𝑄34 (𝑎3, 𝑎4), where 𝑎𝑖 is the action variable for agent 𝑖 .

In Var-El, we eliminate, i.e., maximize over variables one at a time

by collecting the local payoffs that depend on them. For instance, if

we start with agent 2, then

max

𝑎1,𝑎3,𝑎4
𝑄34 (𝑎3, 𝑎4) +max

𝑎2
[𝑄12 (𝑎1, 𝑎2) +𝑄23 (𝑎2, 𝑎3)] (1)

is the first elimination. The optimal choice for agent 4 depends

on 𝑎2 and 𝑎3. The internal max expression is summarized by a

new intermediate payoff function 𝑒2 (𝑎1, 𝑎3) = max𝑎2 [𝑄12 (𝑎1, 𝑎2) +
𝑄23 (𝑎2, 𝑎3)] and a new edge between 1 and 3, after which the

algorithm continues with 𝑄34 and 𝑒2. After all eliminations, we

recover the action for each agent by maximizing the conditional

functions in reverse, finally obtaining the optimal joint action. Var-

El is exponential in the induced width of the CG, which depends

on the elimination order [13].

Althoughmostworks in the literature assume a domain-dependent

static coordination graph structure, some incorporate state-dependent

or dynamic CGs [43], including learning the CG structures [22, 27].

2.3 Scalable MMDP Methods with
Coordination Graphs

In the offline context of tabular RL methods, Kok and Vlassis [23] ex-

plored action inference with predefined static coordination graphs

over factorized value functions; Böhmer et al. [6] extended these

ideas to the neural network function approximation regime. We

focus on anytime online planning approaches to solving MMDPs.

Amato and Oliehoek [1] provide an online planning solution by

combining the idea of coordination graphs and factored values with

MCTS. Although they apply their algorithm to partially observed

MDPs, the key ideas are the same for the fully observed case. Monte

Carlo planning estimates quantities by exploring from the current

Main Track AAMAS 2021, May 3-7, 2021, Online

342

state and gathering relevant statistics through interactions with a

simulated generative model of the environment [38]. These statis-

tics typically track the average simulated reward obtained for trying

an individual or joint action, the frequency of action attempts for

Upper Confidence Bound or UCB exploration [21], and the number

of occurences of the individual or joint state.

Amato and Oliehoek [1] maintain local component statistics, i.e.
the mean payoff of a local component action 𝑎𝑒 and the number of

times it was attempted in that component; they call this mixture
of experts optimization, albeit with a simple maximum likelihood

estimator expert. For instance, during tree search from the current

joint state 𝑠 ≡ {𝑠𝑖 } (where 𝑠𝑖 is the state of agent 𝑖), suppose the sys-
tem simulates a joint action 𝑎 and obtains a reward vector 𝑟 . Then,

in a particular CG component 𝑒 and the corresponding local subset

of the joint action 𝑎𝑒 , they augment the local component action

frequency statistic 𝑁 (𝑠, 𝑎𝑒) by 1 and update the local component

payoff statistic 𝑄𝑒 (𝑠, 𝑎𝑒) as

𝑄𝑒 (𝑠, 𝑎𝑒) � 𝑄𝑒 (𝑠, 𝑎𝑒) +
𝑟𝑒 −𝑄𝑒 (𝑠, 𝑎𝑒)

𝑁 (𝑠, 𝑎𝑒)
, (2)

which is a standard running average update. The UCB exploration

step uses the current statistics to select joint actions, i.e.,

max

𝑎

∑
𝑒

𝑈𝑒 (𝑠, 𝑎𝑒) = max

𝑎

∑
𝑒

𝑄𝑒 (𝑠, 𝑎𝑒) + 𝑐 ·

√
log𝑁 (𝑠)
𝑁 (𝑠, 𝑎𝑒)

, (3)

where 𝑁 (𝑠) is the visit frequency for state 𝑠 . Given these local

component payoffs, i.e., the 𝑄𝑒 functions, their method computes

the best joint action at the next time-step through Variable Elim-

ination over the CG, as in Section 2.2. Consequently, it loses the
anytime property of MCTS because exact variable elimination can-
not be stopped at an intermediate step. Although Vlassis et al. [41]

explored various anytime algorithms for action selection with co-

ordination graphs, they did not investigate their interaction with

online planning algorithms like MCTS.

3 ANYTIME FACTORED-VALUE MONTE
CARLO TREE SEARCH

We now discuss our method for anytime multi-agent MDP planning

with coordination graphs, Factored-Value Monte Carlo Tree Search
with Max-Plus. To apply the mixture of experts optimization to

each node of the search tree, we must define the factored statistics

to maintain for each node. Given a potentially state-dependent

undirected coordination graph (CG), G = ⟨V, E⟩, we factor the

CG-induced global payoff at the current state, 𝑠 , as follows:

𝑄 (𝑎) =
∑
𝑖∈V

𝑄𝑖 (𝑎𝑖) +
∑
(𝑖, 𝑗) ∈E

𝑄𝑖 𝑗 (𝑎𝑖 , 𝑎 𝑗). (4)

Here, 𝑄𝑖 𝑗 is a local payoff function for agents 𝑖 and 𝑗 connected

by edge (𝑖, 𝑗), while 𝑄𝑖 is an individual utility function for agent

𝑖 , if applicable to the domain. All state-dependent quantities in this
section’s equations are implicitly for the current joint state 𝑠 .

Exploiting the duality between computing the maximum a pos-

teriori configuration in a probabilistic graphical model and the

optimal joint action in a CG, Vlassis et al. [41] introduced the Max-

Plus algorithm for computing the joint action via message passing.

Each node, i.e., agent, iteratively dispatches messages to its neigh-

bours 𝑗 ∈ Γ(𝑖) in the CG (Figure 1b). A message from agent 𝑖 is a

scalar-valued function of the action space of receiving agent 𝑗 , i.e.,

𝜇𝑖 𝑗 (𝑎 𝑗) = max

𝑎𝑖

{
𝑄𝑖 (𝑎𝑖) +𝑄𝑖 𝑗 (𝑎𝑖 , 𝑎 𝑗) +

∑
𝑘∈Γ (𝑖)\{ 𝑗 }

𝜇𝑘𝑖 (𝑎𝑖)
}
, (5)

where Γ(𝑖) is the set of neighbors of 𝑖 . Agents exchange messages

until convergence or for a maximum number of rounds. Finally,

each agent computes its optimal action individually, i.e.,

𝑎∗𝑖 = argmax

𝑎𝑖

{
𝑄𝑖 (𝑎𝑖) +

∑
𝑗 ∈Γ (𝑖)

𝜇 𝑗𝑖 (𝑎𝑖)
}

(6)

Max-Plus is equivalent to belief propagation in graphical models

[33] and its time complexity scales linearly with the CG size (the

number of edges); it is more suitable for real-time systems and more

tractable for large numbers of agents than Var-El.

Similar to Factored Value MCTS with Var-El, our method with

Max-Plus (that we illustrate in Figure 2) is more efficient than a

naive application of MCTS with the joint action space, since it

retains fewer statistics and performs efficient action selection. For

the rest of this section, we will discuss the key differences from the

prior work of Amato and Oliehoek [1], which underscore how our

approach is more suitable than it for large MMDPs.

3.1 UCB Exploration with Max-Plus
The key implementation issue for extendingMCTS to factored value

functions and coordination graphs is that of action exploration as

per the Upper Confidence Bound (UCB) strategy. In the Var-El

case, Amato and Oliehoek [1] added the exploration bonus using

component-wise statistics during each elimination step in Equa-

tion (3). We cannot apply this strategy with Max-Plus as it does not

use components. In contrast, it has two distinct phases of computa-

tion. The first is message passing per edge in Equation (5), followed

by action selection per node in Equation (4). We use these two

phases to define how our algorithm explores.

Edge Exploration: Analogous to the edge payoff statistics 𝑄𝑖 𝑗 ,

we keep track of corresponding frequency statistics 𝑁𝑎𝑖 ,𝑎 𝑗
(for

pairwise actions). The natural exploration strategy over edges is to

add the bonus to Equation (5) as follows:

𝜇𝑖 𝑗 (𝑎 𝑗) = max

𝑎𝑖

{
𝑄𝑖 (𝑎𝑖) +𝑄𝑖 𝑗 (𝑎𝑖 , 𝑎 𝑗)+

∑
𝑘∈Γ (𝑖)\{ 𝑗 }

𝜇𝑘𝑖 (𝑎𝑖) + 𝑐
√

log(𝑁 + 1)
𝑁𝑎𝑖 ,𝑎 𝑗

}
. (7)

Adding this bonus during the message passing rounds can cause

divergence for cyclic graphs with any cycle of length less than the

number of rounds. Figure 3 illustrates intuition for this divergent

behavior with a simple triangle graph. The bonuses accumulate in

successive rounds for messages in either direction along the cycle,

making the effective bonus proportional to the total number of

rounds (divided by cycle length). Therefore, we only augment each

message once after the final round of message passing.
Node Exploration: We maintain individual action frequency

statistics 𝑁𝑎𝑖 and modify Equation (4) to add a node exploration

Main Track AAMAS 2021, May 3-7, 2021, Online

343

Figure 2: Our anytime MMDP planning algorithm, Factored Value MCTS with Max-Plus, computes the best joint action 𝑎∗ for
the current joint state 𝑠. The tree search uses an Upper Confidence Bound (UCB) exploration bonus during action selection,
while the final action coordination does not.

bonus during the action selection:

𝑎∗𝑖 = argmax

𝑎𝑖

{
𝑄𝑖 (𝑎𝑖) +

∑
𝑗 ∈Γ (𝑖)

𝜇 𝑗𝑖 (𝑎𝑖) + 𝑐

√
log(𝑁 + 1)

𝑁𝑎𝑖

}
(8)

Note that the joint-action payoff𝑄 (𝑎) can be factorized over the CG
nodes and edges as in Equation (4), but the joint-action exploration

bonus 𝑐

√
log𝑁 (𝑠)
𝑁 (𝑠,𝑎) cannot. Therefore, the node and edge exploration

strategies we have defined here are heuristic choices that we make

and will evaluate empirically through an ablation. Our exploration

strategies differ from the component-wise exploration of Equa-

tion (3) in the previous work that uses Var-El, because we do not

consider cliques/components in the CG, only nodes and edges.

3.2 Other differences from FV-MCTS with
Variable Elimination

Convergence: For graphs without cycles, Max-Plus converges to a

fixed point in finitely many iterations [33]. For cyclic graphs, there

are no such guarantees in general [42]. However, cyclic message

passing can work well in practice [29].

Agent Utilities: The Max-Plus global payoff in Equation (4) in-

cludes a utility function𝑄𝑖 for each individual agent. The FV-MCTS

with Var-El has no such individual utility (unless a node has degree

0 in the CG). If such agent utilities were known or learned inde-
pendent of the payoffs, we would naturally use them during action

coordination. However, in FV-MCTS we estimate all statistics from

the rewards obtained during tree search with a simulated environ-

ment model; the environment model returns precisely one reward

vector for each joint state-action pair.

We already account for the simulated rewards in tree search

through the𝑄𝑖 𝑗 local payoff statistics in Equation (2). We do not re-

ceive independent per-agent rewards, so utility statistics would be

derived from the same information we use for the payoff statistics.

Figure 3: For coordination graphs with cycles, adding an
edge exploration bonus to the messages at every round can
lead to divergent behavior. The exploration bonuses accu-
mulate over rounds from one node to the next (clockwise or
anti-clockwise along the cycle). If the number of rounds is
greater than the length of a cycle (usually true), the effective
relevant exploration bonus for each edge gets compounded
each time the messages loop back around. We abuse some
notation for convenience, i.e., 𝑁𝑖 𝑗 is a counting function for
the pairwise actions of agents 𝑖 and 𝑗 .

Our experiments compare the benefit of these derived individual

agent (node) utilities, in addition to local edge payoffs. We maintain

separate statistics 𝑁𝑖 and 𝑄𝑖 for the per-agent frequencies and util-

ities respectively and estimate them from the joint rewards during

tree search; the corresponding updates are 𝑁𝑖 (𝑠, 𝑎𝑖) = 𝑁𝑖 (𝑠, 𝑎𝑖) + 1
and 𝑄𝑖 (𝑠, 𝑎𝑖) = 𝑄𝑖 (𝑠, 𝑎𝑖) + 𝑟 𝑖−𝑄𝑖 (𝑠,𝑎𝑖)

𝑁𝑎𝑖

for an agent 𝑖 . The results

in Section 4.1 demonstrate how including derived node utilities en-
ables better empirical performance.

Main Track AAMAS 2021, May 3-7, 2021, Online

344

Algorithm 1 Factored Value MCTS with Max-Plus

Require: time limit, depth, exploration constant 𝑐 , state 𝑠

1: Initialize 𝑁𝑖 , 𝑄𝑖 ⊲ Node statistics

2: Initialize 𝑁𝑖 𝑗 , 𝑄𝑖 𝑗 ⊲ Edge statistics

3:

4: function FV-MCTS-MP(𝑠 , depth)

5: while time limit not reached

6: Simulate(𝑠 , depth)

7: 𝑎∗ ←MaxPlus(0) ⊲ No exploration here

8: return 𝑎∗ ⊲ Best joint action

9: function Simulate(𝑠 , depth)

10: if depth = 0

11: return 0

12: 𝑎 ←MaxPlus(𝑐)

13: 𝑠 ′, 𝑟 ∼ 𝑇 (𝑠, 𝑎), 𝑅(𝑠, 𝑎) ⊲ Generative model

14: 𝑞 ← 𝑟 + 𝛾 · Simulate(𝑠 ′, depth − 1)
15: UpdateStats(𝑠, 𝑎, 𝑞)

16: function UpdateStats(𝑠, 𝑎, 𝑞)

17: for every agent 𝑖

18: 𝑁𝑖 (𝑠, 𝑎𝑖) += 1

19: 𝑄𝑖 (𝑠, 𝑎𝑖) += 𝑞𝑖−𝑄𝑖 (𝑠,𝑎𝑖)
𝑁𝑖 (𝑠,𝑎𝑖)

20: for every edge (𝑖, 𝑗) ∈ G(𝑠)
21: 𝑁𝑖 𝑗 (𝑠, 𝑎𝑖 , 𝑎 𝑗) += 1

22: 𝑞𝑒 ← 𝑞𝑖 + 𝑞 𝑗
23: 𝑄𝑖 𝑗 (𝑠, 𝑎𝑖 , 𝑎 𝑗) +=

𝑞𝑒−𝑄𝑖 𝑗 (𝑠,𝑎𝑖 ,𝑎 𝑗)
𝑁𝑖 𝑗 (𝑠,𝑎𝑖 ,𝑎 𝑗)

Dynamic Coordination Graphs: Recall that MCTS (and online

MDP planning in general) can use computational structures that

varywith the current state. For FV-MCTSwith Var-El, state-dependent
or dynamic CGs are not feasible because eliminating an agent can

change the intermediate CG topology during action coordination

(by adding edges). It is not tractable to maintain statistics for the

set of all possible CG components, the size of which is exponential

in the number of agents [45]. On the other hand, Max-Plus only

maintains statistics for at most all CG edges, over which the mes-

sages are sent. Therefore, dynamic CGs can be used seamlessly [43].

Memory Complexity of Statistics: Factored Value MCTS col-

lects frequency and payoff statistics for each unique joint state

encountered during tree search. Assume the same action set A
for each agent, and a CG with |V| nodes (agents), |E | edges, and
𝐶 local components or cliques. Then, the memory complexity of

per-state statistics for Max-Plus is O(|V||A| + |E||A|2) (the first
term only applies if we track per-node utilities). In contrast, the per-

state memory for Var-El statistics is O(∑𝑐∈𝐶 |A| |V |𝑐 · |V|𝑐), where
|V|𝑐 is the size of local component 𝑐 . For a CG that is connected

(typically the case), the memory complexity for Var-El is at least

O(|E||A|2), which is the dominant term for Max-Plus, and more

generally is exponential in the largest clique. Therefore, Max-Plus is
more memory-efficient than Var-El. The experiments in Section 4.2

empirically support this claim by showing how our algorithm solves

problems that cause out-of-memory issues for the Var-El baseline.

Algorithm 2 MaxPlus Action Selection

Require: Coordination Graph G(𝑠) = ⟨V, E⟩; state node statistics
𝑁,𝑄 ; max iterations𝑀 ; flags (exploration; normalization)

1: function MaxPlus(c)

2: for 𝑡 ← 1 to𝑀

3: 𝜇𝑖 𝑗 (𝑎 𝑗) = 𝜇 𝑗𝑖 = 0 for (𝑖, 𝑗) ∈ E, 𝑎𝑖 ∈ A𝑖 , 𝑎 𝑗 ∈ A 𝑗

4: for every agent 𝑖

5: for all neighbors 𝑗 ∈ Γ(𝑖)
6: Compute 𝜇𝑖 𝑗 (𝑎 𝑗) via Equation (5)

7: if message normalization

8: 𝜇𝑖 𝑗 (𝑎 𝑗) −= 1

|A 𝑗 |
∑
𝑎 𝑗 ∈A | 𝜇𝑖 𝑗 (𝑎 𝑗)

9: send message 𝜇𝑖 𝑗 (𝑎 𝑗) to agent 𝑗

10: if 𝜇𝑖 𝑗 (𝑎 𝑗) close to previous message

11: break

12: for every agent 𝑖

13: if edge exploration
14: for all neighbors 𝑗 ∈ Γ(𝑖)
15: Compute 𝜇𝑖 𝑗 (𝑎 𝑗) via Equation (7)

16: 𝑞𝑖 (𝑎𝑖) = 𝑄𝑖 (𝑎𝑖) +
∑

𝑗 ∈Γ (𝑖) 𝜇 𝑗𝑖 (𝑎𝑖)
17: if node exploration

18: 𝑞𝑖 (𝑎𝑖) += 𝑐

√
log(𝑁+1)
𝑁𝑖 (𝑎𝑖)

19: 𝑎′
𝑖
= argmax𝑎𝑖 𝑞𝑖 (𝑎𝑖)

20: if time limit reached

21: break

22: return 𝑎′

Distributed Implementation: Unlike with Var-El, we can execute
Max-Plus in a distributed manner by sending messages in parallel,

albeit incurring additional communication complexity. Such an im-

plementation can allow further scalability with available compute.

Note that this is distinct from full decentralization wherein the

agent actions can be computed independently.

We outline our approach in Algorithm 1 as well as the Max-Plus

routine in Algorithm 2.

4 EXPERIMENTS AND RESULTS
We used cumulative discounted return as the primary metric to eval-

uate our approach, Factored Value MCTS with Max-Plus (FV-MCTS-

MP). Our most relevant baseline is Factored Value MCTS with Vari-

able Elimination (FV-MCTS-Var-El). We also compared against stan-

dard MCTS (with no factorization), independent Q-learning (IQL),

and a random policy. Besides measuring performance, we examined

the effect of different exploration schemes on the performance of FV-

MCTS-MP (as we discussed in Section 3.2) and the problem size on

MCTS computation time. The appendix of the extended version[10]

provides performance results for FV-MCTS (both variants) with

different hyperparameters. Both of our experimental domains rep-

resent a range of MMDP problems and underlying coordination

graphs (CGs). The extended version and source-code for experi-

ments are available at https://sites.google.com/stanford.edu/fvmcts/.

All implementations and simulations are in Julia [5, 15].

Main Track AAMAS 2021, May 3-7, 2021, Online

345

https://sites.google.com/stanford.edu/fvmcts/

0

12

3

4 5

6

Figure 4: Our two experimental domains: on the left, SysAdmin with the star topology and on the right, Multi-Drone Delivery,
where dotted lines illustrate a subset of the Coordination Graph edges for the current state (for clarity, we omit some edges
between drones of the same color, i.e., assigned to the same goal).

We will show qualitatively how our approach recovers the true

anytime nature of MCTS by using Max-Plus rather than Var-El.

However, there are many confounds for quantitatively evaluating the
anytime property. Our metric is the average discounted return over

the episode, where the Max-Plus routine is called several times;

typical anytime evaluation reports improving solution quality with

more compute time for a single call to a method. MCTS itself has

several parameters that affect the computation-vs-quality tradeoff,

such as tree depth, exploration constant, and number of trials. With

dynamic CGs as in our multi-drone delivery domain, the same Max-

Plus parameters leads to different computation times. Note that

our reference for Max-Plus does evaluate its anytime property in

a one-shot decision-making domain that does not have any of the

above confounds [41].

4.1 SysAdmin Domain
Our first domain is a standard MMDP benchmark: SysAdmin [18].

Each agent 𝑖 represents a machine in a network with two state

variables: Status 𝑆𝑖 ∈ {good, faulty, dead}, and Load 𝐿𝑖 ∈ {idle,
loaded, success}. A dead machine increases the probability that

its neighbor also dies. The system gets a reward of 1 if a process ter-

minates successfully, processes take longer when status is faulty,

and a dead machine loses the process. Each agent must decide

whether to reboot its machine, in which case the Status becomes

good and any running process is lost. The discount factor, 𝛾 used

in all the experiments is 0.9. All evaluations have been averaged

over 40 runs. Error bars indicate standard deviations. Figure 4 il-

lustrates the star network topology for SysAdmin; we also use the

ring topology as well as the ring-of-rings topology.

Exploration Schemes for FV-MCTS-MP: The three knobs af-

fecting exploration in FV-MCTS-MP are per-agent utility, node

bonus, and edge bonus. We compared the discounted return of

variants that either use or ignore per-agent utilities, and use either

or both bonuses. Figure 5 demonstrates that the combination of

agent utilities and only node exploration (TTF) is enough; including
the edge bonus as well (TTT) does not have much effect. All other

schemes are significantly poorer. Therefore, we used the TTF vari-

ant of FV-MCTS-MP to compare against the other baselines. Lack

of significant difference between some of the exploration strategies

has more to do with the small action space of the SysAdmin domain.

FV-MCTS-MP compared to baselines: For all three SysAdmin

topologies (and corresponding fixed CGs), we varied the number of

machines (agents) and compared the performance of all methods

in Figure 6. With fewer agents, all MCTS methods perform simi-

larly to each other and better than Q-Learning. However, with more

agents, standard MCTS runs out of memory even on our 128GB

RAM machine, as expected for large joint action spaces. Both Fac-

tored Value MCTS variants perform comparably on larger problems

(on ring-of-rings our Max-Plus variant was better). However, as

we discuss subsequently, FV-MCTS-Var-El is much slower than

FV-MCTS-MP, e.g., taking approximately 35 s versus 16 s for 32

agents on a single-threaded implementation in the Ring topology.

Therefore our approach strictly dominates the Var-El baseline on the
performance-time tradeoff.

Effect of Hyperparameters: We performed ablation experiments,

varying one of exploration constant 𝑐 , tree search exploration depth

𝑑 and number of Monte Carlo rollouts 𝑛, while keeping the rest

of the hyperparameters constant. Low values of 𝑛 adversely ef-

fected the performance a little for both FV-MCTS-Var-El and FV-

MCTS-MP, while low values of 𝑐 vastly degraded the performance
of FV-MCTS-Var-El only. The difference in performance was not

significant over a range of values of𝑑 . The appendix of the extended

version[10], shows results for 32 agents. Similar results hold for the

other domains as well as different numbers of agents.

Computation Time: For the same tree search hyperparameters

with number of iterations fixed as 16000, exploration constant as 20

and tree search depth as 20, we compared the average time taken

for each action for different number of agents in the coordination

graphs. For a fair comparison, we used a single threaded imple-

mentation. As demonstrated in Figure 7, we found FV-MCTS-MP

to be consistently faster than FV-MCTS-Var-El. Although MCTS

Main Track AAMAS 2021, May 3-7, 2021, Online

346

TTT TTF TFT FTT FTF FFT

0

2

4

6

8

D
i
s
c
o
u
n
t
e
d
r
e
t
u
r
n

TTT TTF TFT FTT FTF FFT

0

2

4

6

8

D
i
s
c
o
u
n
t
e
d
r
e
t
u
r
n

Figure 5: The performance of FV-MCTS-MP varies with different combinations of exploration strategies for the 4-agent Sysad-
min on Ring (left) and Star (right) topologies. The True/False (T/F) labels correspond to Agent Utilities, Node Exploration and
Edge Exploration in order, e.g. TTF implies agent utilities and only node (but not edge) exploration.

Figure 6: On SysAdmin topologies: Ring (left), Star (middle), and Ring-of-Rings (right), FV-MCTS with MaxPlus performs as
well as or slightly better than Var-El, while being much more efficient for larger problems as in Figure 7. NaN indicates that
the algorithm ran out of memory.

was faster when there were small number of agents, it ran out of

memory as the number of agents increased.

4.2 Multi-Drone Delivery Domain
Besides the SysAdmin domain, previousmulti-agent decision-making

work has also used the Firefighter [1] and Traffic Control [25] do-

mains for benchmarking. Underneath the differing high-level de-

scriptions, however, the MMDP details of all three domains are very
similar : a small state space and binary action space, the degrees of

most nodes in the coordination graph are independent of the total

number of agents (except the hub node for Star SysAdmin), and

there is no scope in any of them for dynamic CGs.

We introduce and use a truly distinct domain for our second set

of experiments. It simulates a team of delivery drones navigating a
shared operation space to reach their assigned goal regions. We are

motivated by recent advances in drone delivery technology, from

high-level routing to low-level control [14, 26]; in particular, drones

using ground vehicles as temporary modes of transit to save energy

and increase effective travel range [11, 12]. Our domain models a

key component of such drone-transit coordination: multiple drones

assigned to board transit vehicles in close proximity to each other

(within the same time window).

Domain details: Figure 4 illustrates our Multi-Drone Delivery

domain; for convenience and consistency with MMDP benchmarks

we discretize everything, but MCTS could accommodate a continu-

ous state space. Each drone starts in a randomly sampled unique

cell in a grid (we use larger grids for more drones in our simula-

tions). There are four circular goal regions, one in each quadrant,

that represent a transit vehicle; each goal region has a radius and

maximum capacity of drones it can accommodate, since no two

drones can occupy the same grid cell (we also vary goal radius with

grid size). We allocate the drones to the goal regions at random

such that at least two drones target every region.

Each drone has 10 actions in total: one for moving to each of

the 8-connected grid neighbors, a no-op action for staying in place,

and a board action that is only valid when the drone is inside its

assigned goal region. The MMDP is episodic and terminates only

when all drones have reached their goals and executed Board inside

them, thus boarding the transit vehicle and receiving a reward of

1000. Drones also receive an intermediate positive reward if they

get closer to their assigned goals. Besides drone movement, the

other sources of negative reward, i.e., cost, are penalties for two or

more drones being too close to each other, attempting to enter the

same cell (which makes them both stay in place), and attempting

to board in the same goal region at the same time.

Unlike the typical MMDP domains used in prior work, Multi-
Drone Delivery motivates dynamic or state-dependent coordination
graphs; any two drones benefit from coordination only when they

are close to each other. Therefore, at the current joint state, we

assign a CG edge between any two drones whose mutual distance is

Main Track AAMAS 2021, May 3-7, 2021, Online

347

8 16 24 32
Number of agents

0

5

10

15

20

25

30

35

40
Av

er
ag

e
tim

e
fo

r
ac

tio
n

(s
)

NaiveMCTS FV-MCTS-Var-El FV-MCTS-MP

8 16 24 32
Number of agents

0

5

10

15

20

25

30

35

40

Av
er

ag
e

tim
e

fo
r

ac
tio

n
(s

)

NaiveMCTS FV-MCTS-Var-El FV-MCTS-MP

Figure 7: Runtime comparisons (lower is better) for the same tree search hyperparameters on SysAdmin with Ring (left) and
Star (right) topologies. The NaiveMCTS baseline ran out of memory with more than 8 agents.

Figure 8: ForMulti-DroneDelivery, FV-MCTS-MP vastly out-
performs the baselines while effectively using dynamic CGs
without any memory issues. NaN indicates that the algo-
rithm ran out of memory.

Agents XY axis res. Noise Expl. const. Expl. depth Iter

8 0.20 0.10 5 10 4000

16 0.10 0.05 10 10 8000

32 0.08 0.05 20 10 16000

48 0.05 0.02 30 10 24000

Table 1: Multi-Drone Delivery hyperparameters.

lower than a resolution-dependent threshold (depicted in Figure 4).

We also add edges apriori between all drones assigned to the same

goal region, as they need to coordinate while boarding.

For all experiments, we set the discount factor 𝛾 to 1, the goal

reaching reward to 1000.0 units, and the collision penalty to 10.0

units. Table 1 describes the full set of varying problem resolutions

and MCTS hyperparameters. The average degree of the dynamic

coordination graphs ranged from 2.4 for 8 agents to 11.8 for 48

agents. We averaged all evaluations over 20 runs; error bars indi-

cate standard deviations.

Performance of FV-MCTS-MPagainst Baselines: Aswith SysAd-
min, we varied the number of drones (agents), discretizing the grid

appropriately, and compared against all baselines (except Random)

in Figure 8. We observed that FV-MCTS-Var-El and MCTS quickly

ran out of memory, which is expected given the large action space

per agent. Even on the problems where Var-El runs, its restriction

to static CGs leads to slightly worse performance. On the other

hand, FV-MCTS-MP can solve tasks even with 48 agents success-

fully. Moreover, even on the eight agent problem, FV-MCTS-MP

is much faster, taking on average approximately 1 s instead of 40 s

for FV-MCTS-Var-El for the same tree search hyperparameters.

FV-MCTS-MP scales to MMDP problem sizes that FV-MCTS-Var-El
cannot even accommodate.

5 CONCLUSION
We introduced a scalable online planning algorithm for multi-agent

MDPs with dynamic coordination graphs. Our approach, FV-MCTS-

MP, uses Max-Plus for action coordination, in contrast to the pre-

viously introduced FV-MCTS with Variable Elimination. Over the

standard SysAdmin and the custom Multi-Drone Delivery domains,

we demonstrated that FV-MCTS-MP performs as well as Var-El on

static CGs, outperforms it significantly on dynamic CGs, and is far

more computationally efficient (enabling online MMDP planning

on previously intractable problems).

In the appendix of the extended version [10], we discuss how

our approach can extend to multi-agent POMDPs. However, we

still require a domain expert to pre-define the coordination graph

for the problem. A predetermined CG can be particularly difficult

with dynamic domains where the CG depends on the state. More

work is required towards learning the dynamic coordination graph

itself via interaction with the model. Similarly, extending ideas from

Alpha-Zero [2, 37] would be particularly relevant for distilling the

coordinated individual actions for the agents into decentralized

policies [34] with FV-MCTS acting as a scalable policy improve-

ment operator [16]. Finally, a theoretical analysis of the exploration

strategies and their interaction with MaxPlus’ convergence would

improve our understanding of the performance.

ACKNOWLEDGMENTS
This research is supported by the Ford Motor Company and the

Under Secretary of Defense for Research and Engineering under

Air Force Contract No. FA8702-15-D-0001. Any opinions, findings,

conclusions or recommendations expressed in this material are

those of the authors and do not necessarily reflect the views of the

Under Secretary of Defense for Research and Engineering.

Main Track AAMAS 2021, May 3-7, 2021, Online

348

REFERENCES
[1] Christopher Amato and Frans A Oliehoek. 2014. Scalable Planning and Learning

for Multiagent POMDPs: Extended Version. arXiv preprint arXiv:1404.1140 (2014).
arXiv:1404.1140

[2] Thomas Anthony, Zheng Tian, and David Barber. 2017. Thinking Fast and Slow

with Deep Learning and Tree Search. InAdvances in Neural Information Processing
Systems (NeurIPS). 5360–5370.

[3] Dimitri P Bertsekas. 2005. Dynamic Programming and Optimal Control. Vol. 1.
Athena Scientific Belmont, MA.

[4] Graeme Best, Oliver M Cliff, Timothy Patten, Ramgopal RMettu, and Robert Fitch.

2019. Dec-MCTS: Decentralized Planning for Multi-Robot Active Perception.

International Journal of Robotics Research 38, 2-3 (March 2019), 316–337.

[5] Jeff Bezanson, Alan Edelman, Stefan Karpinski, and Viral B Shah. 2017. Julia: A

Fresh Approach to Numerical Computing. SIAM Rev. 59, 1 (2017), 65–98.
[6] Wendelin Böhmer, Vitaly Kurin, and Shimon Whiteson. 2019. Deep Coordination

Graphs. arXiv preprint arXiv:1910.00091 (2019).
[7] Craig Boutilier. 1996. Planning, Learning and Coordination in Multi-Agent

Decision Processes. In Proceedings of the Sixth Conference on Theoretical Aspects
of Rationality and Knowledge. Morgan Kaufmann Publishers Inc., 195–210.

[8] Cameron Browne, Edward Jack Powley, Daniel Whitehouse, Simon M. Lucas,

Peter I. Cowling, Philipp Rohlfshagen, Stephen Tavener, Diego Perez Liebana,

Spyridon Samothrakis, and Simon Colton. 2012. A Survey of Monte Carlo Tree

Search Methods. IEEE Transactions on Computational Intelligence and AI in games
4, 1 (2012), 1–43.

[9] Guillaume M J-B Chaslot, Mark HMWinands, H Jaap van den Herik, Jos WHM

Uiterwijk, and Bruno Bouzy. 2008. Progressive Strategies for Monte-Carlo Tree

Search. New Mathematics and Natural Computation 4, 3 (2008), 343–357.

[10] Shushman Choudhury, Jayesh K Gupta, Peter Morales, and Mykel J Kochender-

fer. 2021. Scalable Anytime Planning for Multi-Agent MDPs. arXiv preprint
arXiv:2101.04788 (2021).

[11] Shushman Choudhury, Jacob P. Knickerbocker, and Mykel J. Kochenderfer. 2019.

Dynamic Real-time Multimodal Routing with Hierarchical Hybrid Planning. In

IEEE Intelligent Vehicles Symposium (IV). 2397–2404.
[12] Shushman Choudhury, Kiril Solovey, Mykel J. Kochenderfer, and Marco Pavone.

2020. Efficient Large-Scale Multi-Drone Delivery Using Transit Networks. In

IEEE International Conference on Robotics and Automation (ICRA).
[13] Rina Dechter. 1999. Bucket Elimination: A Unifying Framework for Reason-

ing. Artificial Intelligence 113, 1-2 (1999), 41–85. https://doi.org/10.1016/S0004-

3702(99)00059-4

[14] Kevin Dorling, Jordan Heinrichs, Geoffrey G Messier, and Sebastian Magierowski.

2016. Vehicle Routing Problems for Drone Delivery. IEEE Transactions on Systems,
Man, and Cybernetics: Systems 47, 1 (2016), 70–85.

[15] Maxim Egorov, Zachary N Sunberg, Edward Balaban, Tim A Wheeler, Jayesh K

Gupta, and Mykel J Kochenderfer. 2017. POMDPs. jl: A Framework for Sequential

Decision Making under Uncertainty. The Journal of Machine Learning Research
18, 1 (2017), 831–835.

[16] Jean-Bastien Grill, Florent Altché, Yunhao Tang, Thomas Hubert, Michal Valko,

Ioannis Antonoglou, and Rémi Munos. 2020. Monte-Carlo Tree Search as Regu-

larized Policy Optimization. arXiv preprint arXiv:2007.12509 (2020).
[17] Carlos Guestrin, Daphne Koller, and Ronald Parr. 2002. Multiagent Planning

with Factored MDPs. In Advances in Neural Information Processing Systems, T G

Dietterich, S Becker, and Z Ghahramani (Eds.). MIT Press, 1523–1530.

[18] C. Guestrin, D. Koller, R. Parr, and S. Venkataraman. 2003. Efficient Solution

Algorithms for Factored MDPs. Journal of Artificial Intelligence Research 19 (Oct.

2003), 399–468. https://doi.org/10.1613/jair.1000

[19] Jayesh K Gupta, Maxim Egorov, and Mykel J. Kochenderfer. 2017. Coopera-

tive Multi-Agent Control using Deep Reinforcement Learning. In International
Conference on Autonomous Agents and Multiagent Systems (AAMAS). Springer,
66–83.

[20] Mykel J. Kochenderfer. 2015. Decision Making under Uncertainty: Theory and
Application. MIT Press.

[21] Levente Kocsis and Csaba Szepesvári. 2006. Bandit Based Monte-Carlo Planning.

In European Conference on Machine Learning (ECML), Vol. 4212. Springer, 282–293.
https://doi.org/10.1007/11871842_29

[22] Jelle R Kok, Eter Jan Hoen, Bram Bakker, and Nikos Vlassis. 2005. Utile Coordina-

tion: Learning Interdependencies Among Cooperative Agents. In EEE Symposium
on Computational Intelligence and Games, Colchester, Essex. 29–36.

[23] Jelle R Kok and Nikos Vlassis. 2004. Sparse Cooperative Q-Learning. In Interna-
tional Conference on Machine Learning (ICML). ACM, 61.

[24] Jelle R. Kok and Nikos A. Vlassis. 2005. Using the Max-Plus Algorithm for Multi-

Agent Decision Making in Coordination Graphs. In Proceedings of the Seventeenth

Belgium-Netherlands Conference on Artificial Intelligence (BNAIC). 359–360.
[25] Lior Kuyer, Shimon Whiteson, Bram Bakker, and Nikos Vlassis. 2008. Multiagent

Reinforcement Learning for Urban Traffic Control using Coordination Graphs.

In Joint European Conference on Machine Learning and Knowledge Discovery in
Databases. Springer, 656–671.

[26] Jaihyun Lee. 2017. Optimization of a Modular Drone Delivery System. In IEEE
International Systems Conference. 1–8. https://doi.org/10.1109/SYSCON.2017.

7934790

[27] Sheng Li, Jayesh K Gupta, Peter Morales, Ross Allen, and Mykel J. Kochenderfer.

2021. Deep Implicit Coordination Graphs for Multi-agent Reinforcement Learn-

ing. In International Conference on Autonomous Agents and Multiagent Systems
(AAMAS).

[28] Laetitia Matignon, Guillaume J. Laurent, and Nadine Le Fort-Piat. 2012. Indepen-

dent Reinforcement Learners in Cooperative Markov Games: a Survey Regarding

Coordination Problems. The Knowledge Engineering Review 27, 1 (2012), 1–31.

https://doi.org/10.1017/S0269888912000057

[29] Kevin P. Murphy, Yair Weiss, and Michael I. Jordan. 1999. Loopy Belief Propaga-

tion for Approximate Inference: An Empirical Study. In Conference on Uncertainty
in Artificial Intelligence (UAI). Morgan Kaufmann, 467–475.

[30] J. A. M. Nijssen and Mark H. M. Winands. 2011. Enhancements for Multi-Player

Monte-Carlo Tree Search. In Computers and Games.
[31] Kwang-Kyo Oh, Myoung-Chul Park, and Hyo-Sung Ahn. 2015. A Survey of

Multi-Agent Formation Control. Automatica 53 (2015), 424–440.
[32] Frans A. Oliehoek, Matthijs T. J. Spaan, Shimon Whiteson, and Nikos A. Vlassis.

2008. Exploiting Locality of Interaction in Factored Dec-POMDPs. In International
Conference on Autonomous Agents andMultiagent Systems (AAMAS). International
Foundation for Autonomous Agents and Multiagent Systems, 517–524.

[33] Judea Pearl. 1989. Probabilistic Reasoning in Intelligent Systems: Networks of
Plausible Inference. Morgan Kaufmann.

[34] Thomy Phan, Kyrill Schmid, Lenz Belzner, Thomas Gabor, Sebastian Feld, and

Claudia Linnhoff-Popien. 2019. Distributed Policy Iteration for Scalable Ap-

proximation of Cooperative Multi-Agent Policies. In International Conference on
Autonomous Agents and Multiagent Systems (AAMAS). 2162–2164.

[35] David V. Pynadath and Milind Tambe. 2002. The Communicative Multiagent

Team Decision Problem: Analyzing Teamwork Theories and Models. Journal of
Artificial Intelligence Research 16 (2002), 389–423. https://doi.org/10.1613/jair.1024

[36] Tabish Rashid, Mikayel Samvelyan, Christian Schroeder, Gregory Farquhar, Jakob

Foerster, and Shimon Whiteson. 2018. QMIX: Monotonic Value Function Factori-

sation for Deep Multi-Agent Reinforcement Learning. In International Conference
on Machine Learning (ICML). 4295–4304.

[37] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew

Lai, Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel,

et al. 2018. A General Reinforcement Learning Algorithm that Masters Chess,

Shogi, and Go through Self-Play. Science 362, 6419 (2018), 1140–1144.
[38] David Silver and Joel Veness. 2010. Monte-Carlo Planning in Large POMDPs. In

Advances in Neural Information Processing Systems (NeurIPS). Curran Associates,

Inc., 2164–2172.

[39] Peter Sunehag, Guy Lever, Audrunas Gruslys, Wojciech Marian Czarnecki, Vini-

cius Zambaldi, Max Jaderberg, Marc Lanctot, Nicolas Sonnerat, Joel Z Leibo, Karl

Tuyls, et al. 2018. Value-Decomposition Networks for Cooperative Multi-Agent

Learning based on Team Reward. In International Conference on Autonomous
Agents and Multiagent Systems (AAMAS). 2085–2087.

[40] Richard S. Sutton and Andrew G. Barto. 1998. Reinforcement Learning - An
Introduction. MIT Press.

[41] N Vlassis, R Elhorst, and J R Kok. 2004. Anytime Algorithms for Multiagent

Decision Making using Coordination Graphs. In IEEE International Conference on
Systems, Man and Cybernetics (IEEE Cat. No.04CH37583), Vol. 1. 953–957 vol.1.

[42] Martin J. Wainwright, Tommi S. Jaakkola, and Alan S. Willsky. 2004. Tree

Consistency and Bounds on the Performance of the Max-Product Algorithm

and its Generalizations. Statistical Computing 14, 2 (2004), 143–166. https:

//doi.org/10.1023/B:STCO.0000021412.33763.d5

[43] Chao Yu, Xin Wang, Xin Xu, Minjie Zhang, Hongwei Ge, Jiankang Ren, Liang

Sun, Bingcai Chen, and Guozhen Tan. 2020. Distributed Multiagent Coordinated

Learning for Autonomous Driving in Highways Based on Dynamic Coordination

Graphs. IEEE Trans. Intell. Transp. Syst. 21, 2 (2020), 735–748. https://doi.org/10.

1109/TITS.2019.2893683

[44] Nicholas Zerbel and Logan Yliniemi. 2019. MultiagentMonte Carlo Tree Search. In

International Conference on Autonomous Agents and Multiagent Systems (AAMAS).
2309–2311.

[45] Alexander Aleksandrovich Zykov. 1949. On Some Properties of Linear Complexes.

Matematicheskii Sbornik 66, 2 (1949), 163–188.

Main Track AAMAS 2021, May 3-7, 2021, Online

349

https://arxiv.org/abs/1404.1140
https://doi.org/10.1016/S0004-3702(99)00059-4
https://doi.org/10.1016/S0004-3702(99)00059-4
https://doi.org/10.1613/jair.1000
https://doi.org/10.1007/11871842_29
https://doi.org/10.1109/SYSCON.2017.7934790
https://doi.org/10.1109/SYSCON.2017.7934790
https://doi.org/10.1017/S0269888912000057
https://doi.org/10.1613/jair.1024
https://doi.org/10.1023/B:STCO.0000021412.33763.d5
https://doi.org/10.1023/B:STCO.0000021412.33763.d5
https://doi.org/10.1109/TITS.2019.2893683
https://doi.org/10.1109/TITS.2019.2893683

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Multi-Agent Markov Decision Processes
	2.2 Coordination Graphs and Variable Elimination
	2.3 Scalable MMDP Methods with Coordination Graphs

	3 Anytime Factored-Value Monte Carlo Tree Search
	3.1 UCB Exploration with Max-Plus
	3.2 Other differences from FV-MCTS with Variable Elimination

	4 Experiments and Results
	4.1 SysAdmin Domain
	4.2 Multi-Drone Delivery Domain

	5 Conclusion
	Acknowledgments
	References

