
A Knowledge Compilation Map for Conditional Preference
Statements-based Languages

Hélène Fargier

IRIT-CNRS, Université de Toulouse

Toulouse, France

helene.fargier@irit.fr

Jérôme Mengin

IRIT-CNRS, Université de Toulouse

Toulouse, France

jerome.mengin@irit.fr

ABSTRACT
Conditional preference statements have been used to compactly

represent preferences over combinatorial domains. They are at the

core of CP-nets and their generalizations, and lexicographic prefer-

ence trees. Several works have addressed the complexity of some

queries (optimization, dominance in particular). We extend in this

paper some of these results, and study other queries which have

not been addressed so far, like equivalence, thereby contributing to

a knowledge compilation map for languages based on conditional

preference statements. We also introduce a new parameterised fam-

ily of languages, which enables to balance expressiveness against

the complexity of some queries.

KEYWORDS
Preferences; Knowledge Compilation; CP-nets

ACM Reference Format:
Hélène Fargier and Jérôme Mengin. 2021. A Knowledge Compilation Map

for Conditional Preference Statements-based Languages. In Proc. of the 20th

International Conference on Autonomous Agents and Multiagent Systems

(AAMAS 2021), Online, May 3–7, 2021, IFAAMAS, 9 pages.

1 INTRODUCTION
Preference handling is a key component in several areas of Artificial

Intelligence, notably for decision-aid systems. Research in Artifi-

cial Intelligence has led to the development of several languages

that enable compact representation of preferences over complex,

combinatorial domains. Some preference models rank alternatives

according to their values given by some multivariate function; this

is the case for instance with valued constraints [30], additive utili-

ties and their generalizations [9, 25]. Ordinal models like CP nets

and their generalisations [4, 8, 33], or lexicographic preferences

and their generalisations [3, 10, 18, 22, 31, 34] use sets of condi-

tional preference statements to represent a pre-order over the set

of alternatives.

Many problems of interest, like comparing alternatives or find-

ing optimal alternatives, are NP-hard for many of these models,

even PSPACE hard for some models, which makes these represen-

tations difficult to use in some decision-aid systems like configura-

tors, where real-time interaction with a decision maker is needed.

One approach to tackle this problem is Knowledge Compilation,

whereby a model, or a part of it, is compiled, off-line, into another

representation which enables fast query answering, even if the

compiled representation has a much bigger size. This approach

Proc. of the 20th International Conference on Autonomous Agents and Multiagent Systems

(AAMAS 2021), U. Endriss, A. Nowé, F. Dignum, A. Lomuscio (eds.), May 3–7, 2021, Online.

© 2021 International Foundation for Autonomous Agents and Multiagent Systems

(www.ifaamas.org). All rights reserved.

has first been studied in propositional logic: [13, 14] compare how

various subsets of propositional logic can succinctly, or not, express

some propositional knowledge bases, and the complexity of queries

of interest. [12] follow a similar approach to compare extensions

of propositional logic which associate real values to models of a

knowledge base; [19] provide such a map for value function-based

models.

The aim of this paper is to initiate such a compilation map for

models of preferences based on the language of conditional prefer-

ence statements. We compare the expressiveness and succinctness

of various languages on these conditional preference statements,

and the complexity of several queries of interest for these languages.

The next section recalls some basic definitions about combinato-

rial domains and pre-orders, and introduces notations that will be

used throughout. Section 3 gives an overview of various languages

based on conditional preference statements that have been studied

in the literature. We also introduce a new parameterised family

of languages, which enables to balance expressiveness against the

complexity of some queries. Section 4 and 5 respectively study ex-

pressiveness and succinctness for languages based on conditional

preference statements. Sections 6 study the complexity of queries

for these languages. Proofs can be found in [20].

2 PRELIMINARIES
2.1 Combinatorial Domain
We consider languages that can be used to represent the preferences

of a decision maker over a combinatorial space X: here X is a set of

attributes that characterise the possible alternatives, each attribute

X ∈ X having a finite set of possible values X ; we assume that

|X | ≥ 2 for every X ∈ X; then X denotes the cartesian product of

the domains of the attributes in X, its elements are called alterna-

tives. For a binary attribute X , we will often denote by x , x̄ its two

possible values. In the sequel, n is the number of attributes in X.

For a subset U of X, we will denote by U the cartesian product

of the domains of the attributes in U , called instantiations of U , or

partial instantiations (of X). If v is an instantiation of some V ⊆ X,
v[U] denotes the restriction of v to the attributes in V ∩U ; we say

that instantiationu ∈ U andv are compatible ifv[U∩V] = u[U∩V];

ifU ⊆ V and v[U] = u, we say that v extends u.
Sets of partial instantiations can often be conveniently, and com-

pactly, specified with propositional formulas: the atoms are X = x
for every X ∈ X and x ∈ X , and we use the standard connectives

∧ (conjunction), ∨ (disjunction),→ (implication),↔ (equivalence)

and ¬ (negation); we denote by ⊤ (resp. ⊥) the formula always true

(resp. false). Implicitly, this propositional logic is equipped with a

theory that enforces that every attribute has precisely one value

Main Track AAMAS 2021, May 3-7, 2021, Online

492

from its domain; so, for two distinct values x ,x ′ of attribute X , the

formula X = x ∧ X = x ′ is a contradiction; also, the interpreta-

tions are thus in one-to-one correspondence with X. If α is such

a propositional formula over X and o ∈ X, we will write o |= α
when o satisfies α , that is when, assigning to every literal X = x
that appears in α the value true if o[X] = x , and the value false
otherwise, makes α true.

Given a formula α , or a partial instantiationu, Var(α) and Var(u)
denote the set of attributes, the values of which appear in α and u
respectively.

When it is not ambiguous, we will use x as a shorthand for the

literal X = x ; also, for a conjunction of such literals, we will omit

the ∧ symbol, thus X = x ∧ Y = ȳ for instance will be denoted xȳ.

2.2 Preference Relations
Depending on the knowledge that we have about a decision maker’s

preferences, given any pair of distinct alternatives o,o′ ∈ X, one of
the following situations must hold: one may be strictly preferred

over the other, or o and o′ may be equally preferred, or o and o′

may be incomparable.

Assuming that preferences are transitive, such a state of knowl-

edge about the DM’s preferences can be characterised by a preorder

⪰ over X: ⪰ is a binary, reflexive and transitive relation; for alter-

natives o,o′, we then write o ⪰ o′ when (o,o′) ∈ ⪰; o ≻ o′ when
(o,o′) ∈ ⪰ and (o′,o) < ⪰; o ∼ o′ when (o,o′) ∈ ⪰ and (o′,o) ∈ ⪰;
o ▷◁ o′ when (o,o′) < ⪰ and (o′,o) < ⪰. Note that for any pair of

alternatives o,o′ ∈ X either o ≻ o′, or o′ ≻ o, or o ∼ o′ or o ▷◁ o′.
The relation ∼ defined in this way is the symmetric part of ⪰, it

is reflexive and transitive, ▷◁ is irreflexive, they are both symmetric.

The relation ≻ is the irreflexive part of ⪰, it is what is usually called

a strict partial order: it is irreflexive and transitive.

Terminology and notations. We say that alternative o dominates

alternative o′ (w.r.t. ⪰) if and only if o ⪰ o′; if o ≻ o′, then we

say that o strictly dominates o′. We use standard notations for the

complements of ≻ and ⪰: we write o ⪰̸ o′ when it is not the case

that o ⪰ o′, and o ⊁ o′ when it is not the case that o ≻ o′.

3 LANGUAGES
3.1 Conditional Preference Statements
A conditional preference statement (aka., CP statement) over X is

an expression of the form α |V :w ≥w ′, where α is a propositional

formula over U ⊆ X, w,w ′ ∈W are such that w[X] , w ′[X] for

every X ∈W , andU ,V ,W are disjoint subsets ofX, not necessarily

forming a partition of X. Informally, such a statement represents

the piece of knowledge that, when comparing alternatives o,o′

that both satisfy α , the one that has valuesw forW is preferred to

the one that has valuesw ′ forW , irrespective of the values of the

attributes in V , every attribute in X \ (V ∪W) being fixed. We call

α the conditioning part of the statement; we callW the swapped

attributes, and V the free part.

Example 1 ((Example A in [35], slightly extended)). Consider plan-

ning a holiday, with three choices / attributes: wait til next month

(W = w) or leave now (W = w̄), going to city 1, 2 or 3 (C = c1,C = c2

or C = c3), travelling by plane (P = p) or by car (P = p̄). I would
rather go now, irrespective of the other attributes: ⊤ |{CP } : w̄ ≥w .

All else being equal, I prefer to go to city 3, city 1 being my sec-

ond best choice: ⊤ | ∅ : c3 ≥ c1 ≥ c2. Also, if I go now, I prefer to fly:

w̄ | ∅ :p ≥ p̄. Together, the last two statements imply that if I go now,

I prefer to go to city 3 by plane than go to city 1 by car; however

these statements do not say what I prefer between flying to city 1

or driving to city 3. In fact, I prefer the former, this tradeoff can be

expressed with the statement w̄ | ∅ : c1p ≥ c3p̄. Finally, if I go later, I

prefer to drive, irrespective of the city:w |{C} : p̄ ≥p.

Conditional preference statements have been studied in many

works, under various language restrictions. They are the basis for

CP-nets [4, 6] and their extensions, and have been studied in a more

logic-based fashion by e.g. [24] and [32, 33, 35].
1
They are closely

related to CI-statements by [7]

For the semantics sets of CP statements, we use the definitions

of [35]. Given a statement α |V :w ≥w ′, let U = Var(α) andW =
Var(w) = Var(w ′): a worsening swap is any pair of alternatives

(o,o′) such that o[U] = o′[U] |= α , o[W] = w and o′[W] = w ′,
and such that for every attribute Y < U ∪ V ∪W it holds that

o[Y] = o′[Y]; we say that α |V :w ≥w ′ sanctions (o,o′). For a set of
CP-statementsφ, letφ∗ be the set of all worsening swaps sanctioned
by statements of φ, and define ⪰φ to be the reflexive and transitive

closure of φ∗. [35] proves that o ⪰φ o′ if and only if o = o′ or φ∗

contains a finite sequence of worsening swaps (oi ,oi+1)0 ≤ i ≤ k−1

with o0 = o and ok = o
′
.
2

Example 2 (Example 1, continued). Let φ = {⊤ |{CP } : w̄ ≥w,
⊤ | ∅ : c3 ≥ c1 ≥ c2,n | ∅ :p ≥ p̄, w̄ | ∅ : c1p ≥ c3p̄,w |{C} : p̄ ≥ p}. Then
⊤ |{CP } : w̄ ≥w sanctions for instance (w̄c2p,wc3p̄), so w̄c2p ⪰φ
wc3p̄. Also, ⊤ | ∅ : c3 ≥ c1 ≥ c2 sanctions (w̄c1p, w̄c2p), w̄ | ∅ :p ≥ p̄
sanctions (w̄c2p, w̄c2p̄), so, by transitivity, w̄c1p ⪰φ w̄c2p̄. It is not
difficult to check that w̄c2p ▷◁φ w̄c1p̄.

Let us callCP the language where formulas are sets of statements

of the general form α |V :w ≥w ′. This language is very expressive:

it is possible to represent any preorder “in extension” with prefer-

ence statements of the form o ≥ o′ – they all haveW = X as set of

swapped attributes, α = ⊤ as condition, and no free attribute.

This expressiveness has a cost: we will see that many queries

about pre-orders represented by CP-statements are PSPACE-hard
for the language CP. Several restrictions / sub-languages have been
studied in the literature, we review them below.

Linearisability. Although the original definition of CP-nets by

[6] does not impose it, many works on CP-nets, especially following

[4], consider that they are intended to represent a strict partial order,

that is, that ⪰φ should be antisymmetric; equivalently, this means

that the irreflexive part ≻φ of ⪰φ can be extended to a linear order.

We say that a set φ of CP-statements is linearisable in this case.
3

1
The formula u |V : x ≥ x ′ is written u : x > x ′[V] by [35].

2
Actually, [35] proves that (o, o′) is in the transitive closure of φ∗ if and only there

is such a worsening sequence from o to o′, but adding the reflexive closure to this

transitive closure does not change the result, since we can add any pair (o, o) to, or
remove it from, any sequence of worsening swaps without changing the validity of

the sequence.

3
Such sets of CP-statements are often called consistent in the standard terminology on

CP-nets, but we prefer to depart from this definition which only makes sense when

one asserts that φ should indeed represent a strict partial order.

Main Track AAMAS 2021, May 3-7, 2021, Online

493

Notations. We write α :w ≥w ′ when V is empty, and w ≥w ′

when V is empty and α = ⊤. Note that we reserve the symbol ≥

for conditional preference statements, whereas “curly” symbols ≻,

⊁, ⪰, ⪰̸ are used to represent relations over the set of alternatives.

In the remainder of this section, we present various sublanguages

of CP. Some are defined by imposing various simple syntactical

restrictions on the formulas, two are languages which have been

well studied (CP-nets and lexicographic preference trees); we close

the section by introducing a new, parameterised class of sublan-

guages of CP which have interesting properties, as will be shown

in subsequent subsections.

3.2 Statement-wise Restrictions
Some restrictions are on the syntactical form of statements allowed;

they bear on the size of the set of free attributes, or on the size

of the set of swapped attributes, or on the type of conditioning

formulas allowed. Given some language L ⊆ CP, we define the
following restrictions:

L⋫ = only formulas with empty free parts (V = ∅) for every state-

ment;
4

L∧ = only formulas where the condition α of every statement is a

conjunction of literals;

k-L = only formulas where the set of swapped attributes contains

no more than k attributes (|W | ≤ k) for every statement; in

particular, we call elements of 1-CP unary statements.

In particular, 1-CP∧ is the language studied by [35], and 1-CP⋫ is

the language of generalized CP-nets as defined by [24].

3.3 Graphical Restrictions
Given φ ∈ CP over set of attributes X, we define Dφ as the graph

with sets of verticesX, and such that there is an edge (X ,Y) if there
is α |V :w ≥w ′ ∈ φ such that X ∈ Var(α) and Y ∈ Var(w), or X ∈
Var(w) and Y ∈ V . We call Dφ the dependency graph of φ. Note that
Dφ can be computed in polynomial time. This definition, inspired

by [35, Def. 15], generalises that of [4], which is restricted to the

case where all CP statements are unary and have no free attributes,

and that of [8], who study statements with free attributes. Many

tractability results on sets of CP statements have been obtained

when Dφ has good properties. Given some language L ⊆ CP, we
define:

L̸⟳ = the restriction of L to acyclic formulas, which are those φ
such that Dφ is acyclic;

5

L̸⟳poly = the restriction of L to formulas where the dependency

graph is a polytree.

[35] also defines a weaker graphical restriction, called “context-

uniform conditional acyclicity”, but it turns out that it does gives

rise to the same complexities as another, weaker restriction called

“conditional acyclicity” by [35], which we generalize in section 3.6.

4
In the literature, the symbol▷ is sometimes used to represent an importance relation

between attributes; and, as explained by [35], statement α |V :w ≥w ′ is a way to

express that attributes in Var(w) are more important than those inV (when α is true).

5
This is full acyclicity in [35].

W w̄ ≥w

CP
c3p ≥ c1p ≥ c3p̄ ≥ c1p̄ ≥ c2p̄

c1p ≥ c2p ≥ c2p̄
P p̄ ≥ p

C c3 ≥ c1 ≥ c2

w̄ w

Figure 1: An LP-tree equivalent to the set of CP-statements
of Example 2.

3.4 CP-nets
In their seminal work, [4] define a CP-net over a set of attributes X

to be composed of two elements:

(1) a directed graph over X, which should represent preferential

dependencies between attributes;
6

(2) a set of conditional preference tables, one for every attribute

X : ifU is the set of parents of X in the graph, the conditional

preference table for X contains exactly |U | rules u : ≥, for

every u ∈ U , where the ≥’s are linear orders over X .

Therefore, as shown by [35], CP-nets can be seen as sets of unary

CP statements in conjunctive form with no free attribute. Specifi-

cally, given a CP-net N over X, define φN to be the set of all CP

statements u :x ≥ x ′, for every attribute X , every u ∈ U where U
is the set of parents of X in the graph, every x ,x ′ ∈ X such that

x ,x ′ are consecutive values in the linear order ≥ specified by the

rule u : ≥ of N . Then the dependency graph of φN , as defined in

Section 3.3, coincides with the graph of N . We call

CPnet = the language that contains all φN , for every CP-net N .

Note that CPnet ⊆ 1-CP∧⋫. For a given φ ∈ 1-CP∧⋫, being a

CP-net necessitates a very strong form of local consistency and

completeness: for every attributeX with parentsU in Dφ , for every
u ∈ U , for every x ,x ′ ∈ X , φ must explicitly, and uniquely, order

ux and ux ′.
[8] define TCP-nets as an extension of CP-nets where it is possi-

ble to represent tradeoffs, by stating that, under some conditions,

some attributes are more important than other ones. [35] describes

how TCP-nets can be transformed, in polynomial time, into equiv-

alent sets of 1-CP∧ statements.

3.5 Lexicographic Preference Trees
LP-trees generalise lexicographic orders, which have been widely

studied in decision making – see e.g. [21]. As an inference mecha-

nism, they are equivalent to search trees used by [5], and formalised

by [32, 35]. As a preference representation, and elicitation, language,

slightly different definitions for LP-trees have been proposed by

[3, 10, 18]. We use here a definition which subsumes the others.

An LP-tree that is equivalent to the set of CP-statements of

Example 2 is depicted on Figure 1. More generally, an LP-tree

over X is a rooted tree with labelled nodes and edges, and a set of

preference tables; specifically

• every node N is labelled with a set of attributes, denoted

Var(N);
• if N is not a leaf, it can have one child, or | Var(N) | children;

6
Given some pre-order ⪰ over X, attribute X is said to be preferentially dependent

on attribute Y if there exist x, x ′ ∈ X , y, y′ ∈ Y , z ∈ X \ ({X , Y }) such that

xyz ⪰φ x ′yz but xy′z ⪰̸φ x ′y′z .

Main Track AAMAS 2021, May 3-7, 2021, Online

494

• in the latter case, the edges that connect N to its children

are labelled with the instantiations in Var(N);

• if N has one child only, the edge that connects N to its child

is not labelled: all instantiations in Var(N) lead to the same

subtree;

• we denote by Anc(N) the set of attributes that appear in the

nodes between the root and N (excluding those at N), and by

Inst(N) (resp. NonInst(N)) the set of attributes that appear
in the nodes above N that have more than one children (resp.

only one child);

• a conditional preference table CPT(N) is associated with N :

it contains local preference rules of the form α : ≥, where ≥

is a preorder over Var(N), and α is a propositional formula

over some attributes in NonInst(N).

We assume that the rules in CPT(N) define their preorder over
Var(N) in extension. Additionally, two constraints guarantee that

an LP-tree φ defines a unique preorder over X:

• no attribute can appear at more than one node on any branch

of φ; and,
• at every node N of φ, for every u ∈ NonInst(N), CPT(N)

must contain exactly one rule α : ≥ such that u |= α .

Given an LP-tree φ and an alternative o ∈ X, there is a unique way
to traverse the tree, starting at the root, and along edges that are

either not labelled, or labelled with instantiations that agree with o,
until a leaf is reached. Now, given two distinct alternatives o,o′, it
is possible to traverse the tree along the same edges as long as o
and o′ agree, until a node N is reached which is labelled with some

W such that o[W] , o′[W]: we say that N decides {o,o′}.
In order to define ⪰φ for some LP-tree φ, let φ∗ be the set of

all pairs of distinct alternatives (o,o′) such that there is a node

N that decides {o,o′} and the only rule α : ≥ ∈ CPT(N) with
o[NonInst(N)] = o′[NonInst(N)] |= α is such that o[W] ≥ o′[W].

Then ⪰φ is the reflexive closure of φ∗.

Proposition 1. Let φ be an LP-tree over X, then ⪰φ as defined

above is a preorder. Furthermore, ⪰φ is a linear order if and only if 1)

every attribute appears on every branch and 2) every preference rule

specifies a linear order.

An LP-tree φ is said to be complete if the two conditions in

Proposition 1 hold, that is, if ⪰φ is a linear order.

From a semantic point of view, an LP-tree φ is equivalent to the

set that contains, for every node N of φ labelled withW = Var(N),
and every rule α : ≥αN in CPT(N), all CP statements of the form

α ∧ u |V :w♯ ≥w ′♯ , where

• u is the combination of values given to the attributes in

Inst(N) along the edges between the root and N , and

• w,w ′ ∈W such thatw ≥αN w ′, andW ♯
is the set of attributes

on whichw andw ′ have distinct values, andw♯ = w[W ♯
],

andw ′♯ = w ′[W ♯
]; and

• V = [X − (Anc(N) ∪W)].

This set of statements indicate that outcomes that agree on Anc(N)
and satisfy u ∧ α , but have different values for Var(N), should be

ordered according to ≥αN , whatever their values for attributes in V .

LPT = the language of LP-trees as defined above; we consider that

LPT is a subset of CP.7

Note that, using the notations defined above, k-LPT = LPT∩k-CP
is the restriction of LPT where every node has at most k attributes,

for every k ∈ N; in particular, 1-LPT is the language of LP-trees

with one attribute at each node; and LPT∧ = LPT ∩ CP∧ is the

restriction of LPTwhere the condition α in every rule at every node

is a conjunction of literals. Search trees of [32, 35] and LP-trees as

defined by [3, 27] are sublanguages of 1-LPT∧; LP-trees of [18] and
[10] are sublanguages of LPT∧.

3.6 Lexico-compatible Formulas
Many graphical restrictions that have been proposed in order to

enable polytime answers to some queries are in fact particular cases

of a more general property which we study now. We define a new,

parameterised family of languages. Given some language L ⊆ CP
and k ∈ N, we define:

L̸⟳lex
k = the restriction of L to formulas φ such that there exists

some complete LP-tree ψ ∈ k-LPT such that ⪰ψ extends ⪰φ .

We say that formulas of CP̸⟳lex
k are k-lexico-compatible.

8

[35] proves that acyclic formulas of 1-CP are 1-lexico-compatible

when they enjoy some local consistency property; it illustrates that

k-lexico-compatibility is indeed a weak form of acyclicity. We will

see that k-lexico-compatibility makes some queries tractable.

The next result shows that proving that some φ ∈ CP is k-lexico-
compatible, for a fixed k , is not always easy:

Proposition 2. For a fixed k ∈ N, checking if a formula φ ∈ CP
is k-lexico-compatible is coNP-complete.

Algorithm 1 checks if a given formula is k-lexico-compatible.

Given φ ∈ CP, it builds, in a top-down fashion, a complete ψ ∈
k-LPT that is compatible with φ. The algorithm is similar to the

algorithm proposed by [3] to learn an LP-tree that sanctions a

given set of pairs (o,o′). It starts with an empty root node at step 1;

then, while there is some empty node, it picks one of them, call it

N , and calls at step 2b the function chooseAttribute to get a pair

(T , ≥) to label N , where T is a set of at most k attributes, none of

which appear above N , and ≥ is a linear order over T ; if no such

pair is compatible with φ, in a sense that will be defined shortly,

chooseAttribute returns failure and the algorithm stops at step 2c;

otherwise, if there remain some attributes that do not appear in

T nor at any node above N , then the algorithm expands the tree

below N at step 2e by creating a branch and a new node for every

instantiation t ∈ T , and loops.

Note that all edges of the tree built by the algorithm are labelled,

so that, at every node N , NonInst(N) = ∅, so CPT(N) must contain

only one rule of the form ⊤ : ≥, where ⊤ is the formula always true.

This is why chooseAttribute needs to return one linear order overT
only, we do not need to specify the trivial condition ⊤ here. There

may be a more compact k-LP-tree compatible with φ than the one

returned by the above algorithm when it does not fail, but we are

only interested here in checking if φ is k-lexico-compatible, and we

7
Strictly speaking, for LPT ⊆ CP to hold, we can add the possibility to augment every

formula in CP with a tree structure.

8
This definition generalises conditionally acyclic formulas of [35], which are the for-

mulas of CP̸⟳lex
1

.

Main Track AAMAS 2021, May 3-7, 2021, Online

495

Algorithm 1: Build complete LP tree

Input: φ ∈ CP; k ∈ N;
Output:ψ ∈ k-LPT,ψ complete, s.t. ⪰ψ ⊇ ⪰φ , or FAILURE;

(1) ψ ← {an unlabelled root node};

(2) whileψ contains some unlabelled node:

(a) choose unlabelled node N ofψ ;
(b) (T , ≥) ← chooseAttribute(N ,k,φ);
(c) if T = FAILURE then STOP and return FAILURE;
(d) label N with (T , ≥);
(e) if Anc(N) ∪ T , X, for each t ∈ T : add new unlabelled

node toψ , attached to N with edge labelled with t ;
(3) returnψ .

have seen that the problem is coNP-complete, so it seems difficult

to avoid exploring a tree with size exponential in the size of φ in the

worst case. We now specifiy some condition that chooseAttribute
must verify in order for the algorithm to be correct and complete.

Given any yet unlabelled node N of the tree being build, let φ (N) =
{α |V :w ≥w ′ ∈ φ | α ∧ inst(N) ̸ |= ⊥,W ∩ Anc(N) = ∅}.

Definition 1. We say that chooseAttribute isφ-compatible if the pair

(T , ≥) that chooseAttribute returns at some yet unlabelled nodeN is

such that for every α |V :w ≥w ′ ∈ φ (N): (1) if Var(w)∩T = ∅, then
V ∩T = ∅; (2) if Var(w)∩T , ∅, then t >N t ′ for every t , t ′ ∈ T such

that t ∧w ̸ |= ⊥, t ′∧w ′ ̸ |= ⊥, t[X \ (V ∪W)] = t ′[X \ (V ∪W)] and
t ∧α ̸ |= ⊥. If no such pair (T , ≥) can be found, then chooseAttribute
must return failure.

Condition (2) guarantees that N will correctly decide every pair

of alternatives that is sanctionned by α |V :w ≥w ′ and that will be

decided at N . When the entire tree is built in this way, condition

(1) guarantees that at every node N , if α |V :w ≥w ′ ∈ φ (N) then
V ∩ Anc(N) = ∅.

Proposition 3. Given φ ∈ CP and some k ∈ N, suppose that

chooseAttribute is φ-compatible, then φ ∈ CP̸⟳lex
k if and only if

the algorithm above returns some ψ ∈ k-LPT such that ⪰ψ ⊇ ⪰φ ;

otherwise, it returns FAILURE.

Note that chooseAttribute can be implemented to run in poly-

nomial time, for fixed k : there are no more than

∑k
i=1

(n
i

)
≤ knk

possibilities for theT it can return, and the number of pairs t , t ′ that
it must check against every statement in φ (N) is bounded by |T |2,

and |T | is bounded by dk , where d is the size of the largest domain

of the attributes in X. Also, each branch of the tree returned by the

algorithm, when it succeeds, can have at most n nodes, but the tree

can have up to dn leaves.

4 EXPRESSIVENESS
We detail our results about expressiveness of the various languages

studied here in this section, the results about succinctness are in

the next section. These results are summarised on Figure 2.

Definition 2. Let L and L′ be two languages for representing

preorders. We say that L is at least as expressive as L′, written

L ⊒ L′, if every preorder that can be represented with a formula

ofL′ can also be represented with a formula ofL; wewriteL = L′

if L ⊒ L′ but it is not the case that L′ ⊒ L, and say in this case

that L is strictly more expressive than L′. We write L ⊑⊒ L′ when

the two languages are equally expressive.

We reserve the usual “rounded” symbols ⊂ and ⊆ for (strict) set

inclusion, and ⊃ and ⊇ for the reverse inclusions. Note that ⊒ is a

preorder, and obviously L ⊇ L′ implies L ⊒ L′.

Clearly, CP⋫ ⊂ CP and CP∧ ⊂ CP; however, these three lan-
guages have the same expressiveness, because of the following:

Property 4. Given some preorder ⪰, define φ ∈ {o[∆(o,o′)] ≥
o′[∆(o,o′)] | o ⪰ o′,o , o′}, where ∆(o,o′) is the set of attributes
that have different values in o and o′, then φ ∈ CP⋫ ∩ CP∧, and
⪰φ = ⪰.

A large body of works on CP-statements since the seminal paper

by [5] concentrate on various subsets of 1-CP. With this strong

restriction on the number of swapped attributes, CP-statements

have a reduced expressiveness.

Example 3. Consider two binary attributesA and B, with respective

domains {a, ā} and {b, ¯b}. Define preorder ⪰ such that ab ≻ ā ¯b ≻
a ¯b ≻ āb. This can be represented in CP with φ = {ab ≥ ā ¯b, ā ¯b ≥ a ¯b,
a ¯b ≥ āb}. But it cannot be represented in 1-CP: {b :a ≥ ā, ¯b : ā ≥ a,
a :b ≥ ¯b, ā : ¯b ≥ b}∗ ⊆ φ∗, but this is not sufficient to compare a ¯b
with āb. The four remaining formulas of 1-CP over these two at-

tributes are B :a ≥ ā, B : ā ≥ a,A :b ≥ ¯b,A : ¯b ≥ b, adding any of them
to φ yields a preorder which would not be antisymmetric.

Forbidding free parts incurs an additional loss in expressiveness:

Example 4. Consider two binary attributesA and B, with respective

domains {a, ā} and {b, ¯b}. Define preorder ⪰ such that ab ≻ a ¯b ≻
āb ≻ ā ¯b. This can be represented in 1-CP with φ = {B :a ≥ ā,b ≥ ¯b}.
But the “tradeoff” a ¯b ≻ āb cannot be represented in 1-CP⋫, any for-

mula of 1-CP⋫ that implies it will put some intermediate alternative

between a ¯b and āb

However, restricting to conjunctive statements does not incur a

loss in expressiveness.

Proposition 5. CP =
⋃
k ∈N k-CP and, for every k ∈ N:

CP∧ ⊑⊒ CP⋫ ⊑⊒ CP = k-CP ⊑⊒ k-CP∧ = k-CP⋫ ⊑⊒ k-CP∧⋫
k-CP = (k-1)-CP.

Because an LP-tree can be a single node labelled with X, and a

single preference rule ⊤ : ≥ where ≥ can be any preorder, LPT can

represent any preorder. Limiting to conjunctive conditions in the

rules is not restrictive. However, restricting to 1-LPT reduces ex-

pressiveness, even if one considers formulas of 1-CP that represent

total, linear orders:

Example 5. Let φ = {a ≥ ā, c̄ |A : ¯b ≥ b, āc : ¯b ≥ b,ac :b ≥ ¯b,a : c ≥ c̄,
ā | B : c̄ ≥ c}. This yields the following linear order: abc ⪰φ a ¯bc ⪰φ
a ¯bc̄ ⪰φ ā ¯bc̄ ⪰φ abc̄ ⪰φ ābc̄ ⪰φ ā ¯bc ⪰φ ābc . No ψ ∈ 1-LPT
can represent it: A could not be at the root of such a tree because

for instance a ¯bc̄ ⪰φ ā ¯bc̄ and ā ¯bc̄ ⪰φ abc̄; neither could C , since

a ¯bc ⪰φ a ¯bc̄ and ābc̄ ⪰φ ā ¯bc; and finally B could not be at the root

either, because abc ⪰φ a ¯bc and ā ¯bc̄ ⪰φ abc̄ .

Proposition 6. LPT =
⋃
k ∈N k-LPT and, for every k ∈ N:

CP ⊑⊒ LPT ⊑⊒ LPT∧ = k-LPT ⊑⊒ k-LPT∧ = (k-1)-LPT.

Main Track AAMAS 2021, May 3-7, 2021, Online

496

Finally, note that k-lexico-compatibility is a weaker restriction

than being a k-LP-tree.

Proposition 7. For every k ∈ N: CP̸⟳lex
k = CP̸⟳lex

k−1
, and

CP̸⟳lex
k = k-LPT.

[35] proves that 1-CP̸⟳ ⊆ CP̸⟳lex
1

. Whether this property can

be generalised, with an appropriate definition of k-acyclicity, is left
for future work.

5 SUCCINCTNESS
Another criterion is the relative sizes of formulas that can repre-

sent the same preorder in different languages. [11] study the space

efficiency of various propositional knowledge representation for-

malisms. An often used definition of succinctness [14, 23] makes it

a particular case of expressiveness, which is not a problem when

comparing languages of same expressiveness. However, we study

here languages with very different expressiveness, so we need a

more fine grained definition:

Definition 3. Let L and L′ be two languages for representing

preorders. We say that L is at least as succinct as L′, written L ≦
L′, if there exists a polynomial p such that for every φ ′ ∈ L′, there
exists φ ∈ L that represent the same preorder as φ ′ and such that

| φ | < p (| φ ′ |).9 Moreover, we say that L is strictly more succinct

than L′, written L ≪ L′, if L ≦ L′ and for every polynomial p,
there exists φ ∈ L such that:

• there exists φ ′ ∈ L′ such that ⪰φ=⪰φ ′ , but

• for every φ ′ ∈ L′ such that ⪰φ=⪰φ ′ , | φ
′ | >p (| φ |).

With this definition, L≪L′ if every formula of L′ has an equiv-

alent formula in L which is “no bigger” (up to some polynomial

transformation of the size of φ), and there is at least one sequence

of formulas (one formula for every polynomial p) in L that have

equivalent formulas in L′ but necessarily “exponentially bigger”.
10

Proposition 8. The following hold, for languages L, L′, L′′:

• if L ⊇ L′ then L ≦ L′; and if L ≦ L′, then L ⊒ L′;
• if L ≪ L′ then L ≦ L′ and L′ ̸≦ L;
• if L ⊑⊒ L′, the reverse implication holds:

if L ≦ L′ and L′ ̸≦ L then L ≪ L′

(otherwise, it might be that L′ ̸≦ L because L′ ̸⊒ L);

• if L ⊇ L′ and L′ ≪ L′′, then L ≪ L′′.

Restricting the conditioning part of the statements to be con-

junctions of literals does induce a loss in succinctness.

Example 6. Consider 2n+1 binary attributesX1,X2, . . . ,Xn ,Y1,Y2,

. . . ,Yn ,Z , and let φ contain 2n + 2 unary CP-statements with no

free attribute: (x1 ∨y1) ∧ (x2 ∨y2) ∧ . . .∧ (xn ∨yn) : z ≥ z̄, ¬[(x1 ∨

y1) ∧ (x2 ∨y2) ∧ . . . ∧ (xn ∨yn)] : z̄ ≥ z and x̄i ≥ xi and ȳi ≥yi for
every i ∈ {1, . . . ,n}. Then φ ∈ 1-CP⋫, but φ is not in conjunctive

form. A set of conjunctive CP-statements equivalent to φ has to

contain all 2
n
statements of the form µ1µ2 . . . µn : z ≥ z̄ with µi = xi

or µi = yi for every i .

9
Where | φ | =

∑
α |V :w ≥w′∈φ (| α | + |V | +2 | Var(w) |), with | α | = the number

of connectives plus the number of atoms of α .
10
When ≪ is defined as the strict counterpart of≦, it can happen that L≪L′ even

if there is no real difference in representation size in the two languages, but L=L′.

Also, free attributes enable succinct representation of relative

importance of some attributes over others; disabling free attributes

thus incurs a loss in succinctness:

Example 7. Consider n + 1 binary attributes X1,X2, . . . ,Xn ,Y ,
let U = {X1,X2, . . . ,Xn }, and let φ = {U |y ≥ ȳ}. Then φ∗ =
{(uy,u ′ȳ) |u,u ′ ∈ U }, and φ∗ is equal to its transitive closure, so, if

o , o′, then o ⪰φ o′ if and only if o[Y] = y and o′[Y] = ȳ. This can
be represented, without free attribute, with formulaψ that contains,

for every V ⊆ U and every v ∈ V , the statement vy ≥ v̄ȳ, where v̄
denotes the tuple obtained by inverting all values of v . For every

0 ≤ i ≤ n there are

(n
i

)
subsets ofV of size i , with 2

i
ways to choose

v ∈ V , thusψ contains

∑n
0

(n
i

)
2
i = 3

n
statements.

Restricting to CP-nets induces a further loss in succinctness, as

the next example shows:

Example 8. Consider n + 1 binary attributes X1,X2, . . . ,Xn ,Y , and
letφ be the 1-CP⋫∧ formula that contains the following statements:

xi ≥ x̄i for i = 1, . . . ,n; x1x2 . . . xn :y ≥ ȳ; x̄i : ȳ ≥y for i = 1, . . . ,n.
The size of φ is linear in n. Because preferences for Y depend on

all Xi ’s, a CP-net equivalent to φ will contain, in the table for Y , 2
n

CP statements.

Proposition 9. The following hold:

• L ≪ L∧ for every L such that 1-CP⋫ ⊆ L ⊆ CP;
• L ≪ L⋫ for every L such that 1-CP∧ ⊆ L ⊆ CP;
• 1-CP⋫∧ ≪ CPnet.

6 QUERIES
Table 1 gives an overview of the tractability of the queries that we

study in this section.We begin this section with the two queries that

have generated most interest in the literature on CP statements.

Linearisability. Knowing that a given φ ∈ CP is linearisable

(that is, that ⪰φ is antisymmetric) is valuable, as it makes several

other queries easier. It also gives some interesting insights into the

semantics of φ. The following query has been addressed in many

works on CP statements:
11

linearisability Given φ, is φ linearisable?

[4] prove that when its dependency graph Dφ is acyclic, then a

CP-net φ is linearisable. This result has been extended by [8, 15, 35],

who give weaker, sufficient syntactical conditions that guarantee

that a locally consistent set of unary, conjunctive CP statements is

linearisable; more generally, by definition of k-lexico-compatibility,

every formula of CP̸⟳lex
k is linearisable (since it is compatible with

a complete LP-tree). [24, Theorem 3 and 4] prove that linearis-

ability is PSPACE-complete for 1-CP⋫∧.

Proposition 10. linearisability can be checked in polynomial

time for LPT.

Comparing alternatives. A basic question, given a formula φ
and two alternatives o,o′ is: how do o and o′ compare, according

to φ? Is it the case that o ≻φ o′, or o′ ≻φ o, or o ▷◁φ o′, or o ∼φ o′?
We define the following query, for any relation R ∈ {≻, ⪰,∼, ▷◁}:

R-comparison Given formula φ, alternatives o , o′, is it the case
that oRφo

′
?

11
This query is often called consistency.

Main Track AAMAS 2021, May 3-7, 2021, Online

497

CP

CP∧

CP⋫

CP∧⋫

≪

≪

≪

≪

k-CP k-CP∧≪

k-LPT k-LPT∧≪k-CP⋫ k-CP∧⋫≪

≪ ≪

CP̸⟳lex
k

(k-1)-CP (k-1)-CP∧≪

(k-1)-CP⋫ (k-1)-CP∧⋫≪

≪ ≪

(k-1)-LPT (k-1)-LPT∧≪

CP̸⟳lex
k−1

CPnet

≪

CPnet̸⟳

L L′′: L is strictly more expressive than L′

L ≪ L′′: L is strictly more succinct than L′

For k > 2. Boxes contain languages that are equally

expressive.

Figure 2: Rel. expressiveness and succinctness

C
P

1-
C
P⋫

1-
C
P⋫
∧

C
Pn

e
t

C
P̸⟳

le
x

k
C
Pn

e
t
̸⟳

C
Pn

e
t
̸⟳
po
ly

LP
T

LT
P
w
.
c
a
n
.

t
a
b
l
e
s

linearisability ✘✘ ✘✘ ✘✘ ⊤ ⊤ ⊤ ✓ ✓

R-comparison, R ∈ {⪰,≻, ▷◁} ✘✘ ✘✘ ✘✘ ✘◦ ✘◦ ✘ ✓ ✓ ✓

∼-comparison ✘✘ ✘✘ ✘✘ ⊥ ⊥ ⊥ ✓ ✓

eqivalence ✘✘ ✘◦ ✘◦ ✓ ✘◦ ✓ ✓ ✘◦ ✓

top-p ✓ ✓ ✓ ✓ ✓

w. undominated ∃ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤

undominated ∃ ✘✘ ✘✘ ✘✘ ⊤ ⊤ ⊤ ⊤ ⊤

s. dom. ∃, dom. ∃ ✘✘ ✘✘ ⊤ ⊤ ✓ ✓

undom. check, ⪰-cut extract. ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

s. dom., dom., w. undom. check ✘✘ ✘✘ ✘✘ ✓ ✓ ✓ ✓

≻-cut extraction ✘✘ ✘✘ ✘✘ ✓ ✓ ✓ ✓ ✓

≻-cut counting ✘✘ ✘✘ ✘✘ ✓ ✓

Each column corresponds to one sub-language of CP. They are sorted in order of

decreasing expressiveness from left to right, except when columns are separated

by double lines. For each query and sub-language: ⊤ = always true for the

language ; ⊥ = always false for the language; ✓ = polytime answer; ✘ =

NP-complete query; ✘◦ = NP/coNP-hard query; ✘✘ = PSPACE-complete query.

Table 1: Complexity of queries.

For LP-trees, in order to compare alternatives o and o′, one only
has to traverse the tree from the root downwards until a node

that decides the pair is reached, or up to a leaf if no such node

is encountered: in this case o and o′ are incomparable. Note that

checking if a node decides the pair, and checking if a rule at that

nodes applies to order them, can both be done in polynomial time.

Proposition 11. R-comparison is in P for LPT for R ∈ {≻,⪰,∼,▷◁}.

Tractability of comparisons, except in some trivial cases, comes at

a heavy price in terms of expressiveness: ⪰-comparison is tractable

for CP-nets when the dependency graph is a polytree [4, Theo-

rem 14], but [4, Theorems 15, 16] prove that ⪰-comparison is

already NP-hard for the quite restrictive language of binary-valued,
directed-path singly connected CP-nets, which are acyclic. [24,

Prop. 7, Corrolary 1] prove that ⪰-comparison, ≻-comparison, ▷◁-

comparison and ∼-comparison are PSPACE complete for 1-CP⋫∧
and for linearisable, locally complete formulas of 1-CP⋫. More pre-

cise hardness results for acyclic CP-nets are also proved by [28].

Proposition 12 completes the picture.

Proposition 12. ≻-comparison and ▷◁-comparison are NP-hard
for the language of fully acyclic CP-nets, and tractable for polytree

CP-nets. ∼-comparison is easy for 1-CP ̸⟳lex
.

Comparing theories. Checking if two theories yield the same

preorder can be useful during the compilation process. We say that

two formulas φ and φ ′ are equivalent if they represent the same

preorder, that is, if ⪰φ and ⪰φ ′ are identical; we then write φ ≡ φ ′.

eqivalence Given two formulas φ and φ ′, are they equivalent?

Consider a formula φ ∈ CP, two alternatives o,o′, and let φ ′ =
φ ∪ {o ≥ o′}: clearly o ⪰φ ′ o

′
, thus φ ≡ φ ′ if and only if o ⪰φ o′.

Therefore, if language L is such that adding CP statement o ≥ o′ to
any of its formulas yields a formula that is still in L, then eqiva-

lence has to be at least as hard as ⪰-comparison for L. This is the

case of CP. The problem remains hard for 1-CP⋫, because it is hard

to check the equivalence, in propositional logic, of the conditions

of statements that entail a particular swap x ≥ x ′.

Example 9. Consider three attributes A, B and C with respective

domains {a, ā}, {b, ¯b} and {c1, c2, c3}. Consider two CP statements

s = ā : c1 ≥ c2 and s ′ = b : c2 ≥ c3, and let φ = {s, s ′,a : c1 ≥ c3}.

Because of statements s and s ′ we have ābc1 ≥φ ābc2 ≥φ ābc3; also,

abc1 ≥φ abc3 because of statement a : c1 ≥ c3. Hence, for any u ∈
A × B, if u |= a ∨ (āb) then uc1 ≥uc3. Thus φ ≡ {s, s

′} ∪ {a ∨
(āb) : c1 ≥ c3} ≡ φ ∪ {b : c1 ≥ c3}.

Proposition 13. equivalence is coNP-hard for 1-CP⋫∧̸⟳, and

for 1-LPT∧, both restricted to binary attributes.

As usual, comparing two formulas is easier for languages where

there exists a canonical form. This is the case of CP-nets, as shown

by [26, Lemma 2]; their proof makes it clear that the canonical form

of any CP-net φ can be computed in polynomial time. Hence:

Proposition 14. equivalence is in P for CP-net.

eqivalence also becomes tractable if some form of canonicity

is imposed for the conditions of the rules in an LP-tree; this is

because, as with CP-net, it is possible to define a canonical form for

the structure, by imposing that the labels of the node be as small as

possible – which may lead, in some cases, to splitting some nodes.

Top p alternatives. Given a set of alternatives S and some integer

p, we may be interested in finding a subset S ′ of S that contains p
“best” alternatives of S , in the sense that for every o ∈ S ′, for every

Main Track AAMAS 2021, May 3-7, 2021, Online

498

o′ ∈ S \ S ′ it is not the case that o′ ≻φ o. Note that such a set must

exist, because ≻φ is acyclic. The Top-p query is usually defined for

totally ordered sets; a definition suited to partial orders is given in

[35] (where it is called ordering), we adopt this definition here:

Top-p Given S ⊆ X, p < | S |, and φ, find o1,o2, . . . ,op ∈ S such

that for every i ∈ 1, . . . ,p, for every o′ ∈ S , if o′ ≻φ oi then
o′ ∈ {o1, . . . ,oi−1}.

Note that if o1,o2, . . . ,op is the answer to such query, if 1 ≤ i <
j ≤ p, then it can be the case that oi ▷◁ oj , but it is guaranteed
that oj ⊁ oi : in the context of a recommender system for instance,

where one would expect alternatives to be presented in order of

non-increasing preference, oi could be safely presented before oj .
[4] prove that top-p is tractable for acyclic CP-nets for the spe-

cific case where | S | = 2. More generally, ≻-comparison queries

can be used to compute an answer to a top-p query (by asking

≻-comparison queries for every pair of elements of S , the number

of such pairs being in Θ(| S |2)). However, [35] shows that an upper

approximation of ≻ is sufficient, and proves that such an approxima-

tion can be obtained in time polynomial in | φ | for a restricted class
of lexico-compatible formulas of 1-CP∧ [35, Th. 5]. We prove that

this result does indeed hold for the full class of lexico-compatible

formulas of 1-CP∧. The top-p query is also tractable for LPT.

Proposition 15. top-p can be answered in time which is polyno-

mial in the size of φ and the size of S for k-lexico-compatible formulas

(for fixed k); and for LPT.

Optimization. Instead of ordering a given set, we may want to

find a globally optimal alternative. Following [24], given φ, we say
that alternative o is:

• weakly undominated if there is no o′∈X such that o′≻φo;
• undominated if there is no o′ ∈ X, o′ , o, such that o′ ⪰φ o;
• dominating if for every o′ ∈ X, o ⪰φ o′;
• strongly dominating if for every o′ ∈ X with o′ , o, o ≻φ o′.

Note that o is strongly dominating if and only if it is dominating

and undominated; and that if o is dominating or undominated, then

it is weakly undominated. This gives rise to several types of queries:

[w | s] (undominated | dominating) existence Given φ, is there
a [weakly | strongly] (undominated | dominating) alternative?

[w | s] (undominated | dominating) checking Given φ, o, is o a
[weakly | strongly] (undominated | dominating) alternative?

All these queries are easily shown to be tractable for LPT. The
problem undominated check has been shown to be tractable for

CP-nets [4] and for 1-CP⋫ [24]. This can be generalized:

Proposition 16. undominated check is in P for CP.

The existence of a weakly undominated alternative is trivially

true for CP (in any finite directed graph, at least one vertex has

no "strict" predecessor). Linearisability also ensure that there is at

least one undominated alternative.

For CP-nets, [4] give a polytime algorithm that computes the

only dominating alternative when the dependency graph is acyclic;

in this case, this alternative is also the only strongly dominating

one and the only undominated one, since the CP-net is linearisable:
this implies that dominating ∃, s. dominating ∃, undominated ∃,

s. dominating check, dominating check and w. undominated

check are tractable for acyclic CP-nets.

[24, Prop. 8, 9 and 11] prove that w. undominated check, dom-

inating check, s. dominating check, dominating ∃ and s. domi-

nating ∃ are PSPACE-complete for 1-CP⋫, and their reductions

for proving hardness of w. undominated check, dominating

check, s. dominating check indeed yield formulas of 1-CP⋫∧.
NP-hardness of undominated ∃ for 1-CP⋫∧ is proved by [16],

Cuts. Cuts are sets of alternatives that are at the same “level” with

respect to ⪰. For rankings defined with real-valued functions, cuts

are defined with respect to possible real values. In the case of pre-

orders, we define cuts with respect to some alternative o: given
φ ∈ CP, for any R ∈ {≻, ⪰}, for every alternative o, we define

• CUTR,o (φ) = {o′ ∈ X | o′ , o,o′Rφo} .

Following [19], we define two families of queries:

R-cut counting Given φ,o, count the elements of CUTR,o (φ)

R-cut extraction Given φ,o, return an element of CUTR,o (φ)
(or that it is empty)

Proposition 17. ⪰-cut extraction is tractable for CP. ≻-cut
counting and ≻-cut extraction are PSPACE-hard for 1-CP⋫∧.
For CP̸⟳lex

k , ≻-cut extraction is equivalent to ⪰-cut extraction

and is tractable. ≻-cut counting is tractable for LP-trees.

7 CONCLUSION
The literature on languages on CP statements has long focused on

statements with unary swaps. Several examples in Section 4 show

that this strongly degrades expressiveness. We have introduced a

new parameterised family of languages, CP̸⟳lex
k , which permits

to balance expressiveness against query complexity: the lower k
is, the less expressive the language is, but the faster answering

most queries will be. Table 1 shows that comparison queries seem

to resist tractability, even for CP̸⟳lex
k , but queries like the top-p

query may be sufficient in many applications. Tractability of the

eqivalence query relies on the existence of canonical form: it is

the case when the language enforces a structure like a dependency

graph or a tree, and when the conditions of the statements are

restricted to some propositional language with a canonical form.

We have not studied here transformations, like conditioning

or other forms of projection for instance. Some initial results on

projections can be found in [1]. This is an important direction for

future work, as well as properties of the various languages studied

here with respect to machine learning.

ACKNOWLEDGMENTS
We thank anonymous referees for their valuable comments on pre-

vious versions of this paper. This work has benefited from the AI

Interdisciplinary Institute ANITI. ANITI is funded by the French "In-

vesting for the Future – PIA3" program under grant agreement ANR-

19-PI3A-0004. This work has also been supported by the PING/ACK

project of the French National Agency for Research, grant agree-

ment ANR-18-CE40-0011.

REFERENCES
[1] Philippe Besnard, Jérôme Lang, and Pierre Marquis. 2005. Variable forgetting

in preference relations over combinatorial domains. In Proceedings of the IJCAI

Multidisciplinary Workshop on Advances in Preference Handling (MPREF’05).

Main Track AAMAS 2021, May 3-7, 2021, Online

499

[3] Richard Booth, Yann Chevaleyre, Jérôme Lang, Jérôme Mengin, and Chattrakul

Sombattheera. 2010. Learning conditionally lexicographic preference relations.

In Proceedings of the 19th European Conference on Artificial Intelligence (ECAI

2010) (Frontiers in Artificial Intelligence and Applications, Vol. 215), Helder Coelho,

Rudi Studer, and Michael Wooldridge (Eds.). IOS Press, 269–274.

[4] Craig Boutilier, Romen I. Brafman, Carmel Domshlak, Holger H. Hoos, and David

Poole. 2004. CP-nets: a tool for representing and reasoning with conditional

ceteris paribus preference statements. Journal of Artificial Intelligence Research

21 (2004), 135–191.

[5] Craig Boutilier, Ronen I. Brafman, Carmel Domshlak, Holger H. Hoos, and David

Poole. 2004. Preference-Based Constrained Optimization with CP-Nets. Compu-

tational Intelligence 20, 2 (2004), 137–157.

[6] Craig Boutilier, Ronen I. Brafman, Holger H. Hoos, and David Poole. 1999.

Reasoning With Conditional Ceteris Paribus Preference Statements. In Pro-

ceedings of the 15th Annual Conference on Uncertainty in Artificial Intelli-

gence (UAI-99), Kathryn B. Laskey and Henri Prade (Eds.). Morgan Kaufmann,

71–80. https://dslpitt.org/uai/displayArticleDetails.jsp?mmnu=1&smnu=2&

article_id=155&proceeding_id=15

[7] Sylvain Bouveret, Ulle Endriss, and Jérôme Lang. 2009. Conditional Impor-

tance Networks: A Graphical Language for Representing Ordinal, Monotonic

Preferences over Sets of Goods. In Proceedings of the 21st International Joint

Conference on Artificial Intelligence (IJCAI’09), Craig Boutilier (Ed.). 67–72.

http://ijcai.org/Proceedings/09/Papers/022.pdf

[8] Ronen I. Brafman, Carmel Domshlak, and Solomon E. Shimony. 2006. On graph-

ical modeling of preference and importance. Journal of Artificial Intelligence

Research 25 (2006), 389–424.

[9] Darius Braziunas and Craig Boutilier. 2005. Local Utility Elicitation in GAI

Models. In Proceedings of the 21st Conference on Uncertainty in Artificial Intelligence

(UAI’05), Fahiem Bacchus and Tommi Jaakkola (Eds.). AUAI Press, 42–49.

[10] Michael Bräuning and Eyke Hüllermeyer. 2012. Learning Conditional Lexico-

graphic Preference Trees. In Preference Learning: Problems and Applications in

AI. Proceedings of the ECAI 2012 workshop, Johannes Fürnkranz and Eyke Hüller-

meyer (Eds.). 11–15.

[11] Marco Cadoli, Francesco M. Donini, Paolo Liberatore, and Marco Schaerf. 2000.

Space Efficiency of Propositional Knowledge Representation Formalisms. Journal

of Artificial Intelligence Research 13 (2000), 1–31. https://doi.org/10.1613/jair.664

[12] Sylvie Coste-Marquis, Jérôme Lang, Paolo Liberatore, and Pierre Marquis. 2004.

Expressive Power and Succinctness of Propositional Languages for Preference

Representation, See [17], 203–212. http://www.aaai.org/Library/KR/2004/kr04-

023.php

[13] Adnan Darwiche. 1999. Compiling Knowledge into Decomposable Negation

Normal Form. In Proceedings of the Sixteenth International Joint Conference on

Artificial Intelligence (IJCAI 99), Thomas Dean (Ed.). Morgan Kaufmann, 284–289.

http://ijcai.org/Proceedings/99-1/Papers/042.pdf

[14] Adnan Darwiche and Pierre Marquis. 2002. A Knowledge Compilation Map.

Journal of Artificial Intelligence Research 17 (2002), 229–264. https://doi.org/10.

1613/jair.989

[15] Carmel Domshlak and Ronen I. Brafman. 2002. CP-nets: Reasoning and Con-

sistency Testing. In Proceedings of the Eights International Conference on Princi-

ples of Knowledge Representation and Reasoning (KR-02), Dieter Fensel, Fausto

Giunchiglia, Deborah L. McGuinness, and Mary-Anne Williams (Eds.). Morgan

Kaufmann, 121–132.

[16] Carmel Domshlak, Steven David Prestwich, Francesca Rossi, Kristen Brent Ven-

able, and Toby Walsh. 2006. Hard and soft constraints for reasoning about

qualitative conditional preferences. J. Heuristics 12, 4-5 (2006), 263–285.

[17] Didier Dubois, Christopher A. Welty, and Mary-Anne Williams (Eds.). 2004.

Proceedings of the Ninth International Conference on the Principles of Knowledge

Representation and Reasoning. AAAI Press.

[18] Hélène Fargier, Pierre Francois Gimenez, and Jérôme Mengin. 2018. Learning

Lexicographic Preference Trees From Positive Examples. In Proceedings of the

Thirty-Second AAAI Conference on Artificial Intelligence (AAAI 2018), Sheila A.

McIlraith and Kilian Q. Weinberger (Eds.). AAAI Press, 2959–2966. https://www.

aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17272/16610

[19] Hélène Fargier, Pierre Marquis, Alexandre Niveau, and Nicolas Schmidt. 2014.

A Knowledge Compilation Map for Ordered Real-Valued Decision Diagrams. In

Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence, July

27 -31, 2014, Québec City, Québec, Canada, Carla E. Brodley and Peter Stone (Eds.).

AAAI Press, 1049–1055. http://www.aaai.org/ocs/index.php/AAAI/AAAI14/

paper/view/8195

[20] Hélène Fargier and Jérôme Mengin. 2021. A Knowledge Compilation Map

for Conditional Preference Statements-based Languages. Research Report

IRIT/RR–2021–02–FR. IRIT - Institut de recherche en informatique de Toulouse.

https://hal.archives-ouvertes.fr/hal-03133187

[21] Peter C. Fishburn. 1974. Lexicographic Orders, Utilities and Decision Rules: A

Survey. Management Science 20, 11 (1974), pp. 1442–1471. http://www.jstor.org/

stable/2629975

[22] Gerd Gigerenzer and Daniel G. Goldstein. 1996. Reasoning the Fast and Frugal

Way: Models of Bounded Rationality. Psychological Review 103, 4 (1996), 650–669.

[23] Goran Gogic, Henry A. Kautz, Christos H. Papadimitriou, and Bart Selman. 1995.

The Comparative Linguistics of Knowledge Representation, See [29], 862–869.

http://ijcai.org/Proceedings/95-1/Papers/111.pdf

[24] Judy Goldsmith, Jérôme Lang, Miroslaw Truszczynski, and Nic Wilson. 2008. The

Computational Complexity of Dominance and Consistency in CP-nets. Journal

of Artificial Intelligence Research 33 (2008), 403–432.

[25] Christophe Gonzales and Patrice Perny. 2004. GAI Networks for Utility Elicitation,

See [17], 224–233.

[26] Frédéric Koriche and Bruno Zanuttini. 2010. Learning conditional preference

networks. Artificial Intelligence 174, 11 (2010), 685–703. https://doi.org/10.1016/j.

artint.2010.04.019

[27] Jérome Lang, Jérome Mengin, and Lirong Xia. 2018. Voting on Multi-Issue

Domains with Conditionally Lexicographic Preferences. Artificial Intelligence

265 (2018), 18–44. https://doi.org/10.1016/j.artint.2018.05.004

[28] Thomas Lukasiewicz and Enrico Malizia. 2019. Complexity results for preference

aggregation over (m)CP-nets: Pareto and majority voting. Artificial Intelligence

272 (2019), 101–142. https://doi.org/10.1016/j.artint.2018.12.010

[29] Chris S. Mellish (Ed.). 1995. Proceedings of the Fourteenth International Joint

Conference on Artificial Intelligence (IJCAI 95). Morgan Kaufmann. http://ijcai.

org/proceedings/1995-1

[30] Thomas Schiex, Hélène Fargier, and Gérard Verfaillie. 1995. Valued Constraint

Satisfaction Problems: Hard and Easy Problems, See [29], 631–639. http://ijcai.

org/Proceedings/95-1/Papers/083.pdf

[31] Michael Schmitt and Laura Martignon. 2006. On the Complexity of Learning

Lexicographic Strategies. Journal of Machine Learning Research 7 (2006), 55–83.

[32] Nic Wilson. 2004. Consistency and Constrained Optimisation for Conditional

Preferences. In Proceedings of the 16th Eureopean Conference on Artificial Intel-

ligence (ECAI 2004), Ramón López de Mántaras and Lorenza Saitta (Eds.). IOS

Press, 888–892.

[33] Nic Wilson. 2004. Extending CP-Nets with Stronger Conditional Preference

Statements. In Proceedings of the Nineteenth National Conference on Artificial

Intelligence (AAAI’04), Deborah L. McGuinness and George Ferguson (Eds.).

AAAI Press / The MIT Press, 735–741.

[34] Nic Wilson. 2006. An Effcient Upper Approximation for Conditional Preference.

In Proceedings of the 17th European Conference on Artificial Intelligence (ECAI

2006) (Frontiers in Artificial Intelligence and Applications), Gerhard Brewka, Silvia

Coradeschi, Anna Perini, and Paolo Traverso (Eds.). IOS Press.

[35] Nic Wilson. 2011. Computational techniques for a simple theory of conditional

preferences. Artificial Intelligence 175 (2011), 1053–1091. https://doi.org/10.1016/

j.artint.2010.11.018

Main Track AAMAS 2021, May 3-7, 2021, Online

500

https://dslpitt.org/uai/displayArticleDetails.jsp?mmnu=1&smnu=2&article_id=155&proceeding_id=15
https://dslpitt.org/uai/displayArticleDetails.jsp?mmnu=1&smnu=2&article_id=155&proceeding_id=15
http://ijcai.org/Proceedings/09/Papers/022.pdf
https://doi.org/10.1613/jair.664
http://www.aaai.org/Library/KR/2004/kr04-023.php
http://www.aaai.org/Library/KR/2004/kr04-023.php
http://ijcai.org/Proceedings/99-1/Papers/042.pdf
https://doi.org/10.1613/jair.989
https://doi.org/10.1613/jair.989
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17272/16610
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17272/16610
http://www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/view/8195
http://www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/view/8195
https://hal.archives-ouvertes.fr/hal-03133187
http://www.jstor.org/stable/2629975
http://www.jstor.org/stable/2629975
http://ijcai.org/Proceedings/95-1/Papers/111.pdf
https://doi.org/10.1016/j.artint.2010.04.019
https://doi.org/10.1016/j.artint.2010.04.019
https://doi.org/10.1016/j.artint.2018.05.004
https://doi.org/10.1016/j.artint.2018.12.010
http://ijcai.org/proceedings/1995-1
http://ijcai.org/proceedings/1995-1
http://ijcai.org/Proceedings/95-1/Papers/083.pdf
http://ijcai.org/Proceedings/95-1/Papers/083.pdf
https://doi.org/10.1016/j.artint.2010.11.018
https://doi.org/10.1016/j.artint.2010.11.018

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Combinatorial Domain
	2.2 Preference Relations

	3 Languages
	3.1 Conditional Preference Statements
	3.2 Statement-wise Restrictions
	3.3 Graphical Restrictions
	3.4 §CP§-nets
	3.5 Lexicographic Preference Trees
	3.6 Lexico-compatible Formulas

	4 Expressiveness
	5 Succinctness
	6 Queries
	7 Conclusion
	Acknowledgments
	References

