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ABSTRACT
We address the problem of strategyproof (SP) facility location mech-

anisms on discrete trees. Our main result is a full characterization

of onto and SP mechanisms. In particular, we prove that when a

single agent significantly affects the outcome, the trajectory of the

facility is almost contained in the trajectory of the agent, and both

move in the same direction along the common edges. We show

tight relations of our characterization to previous results on discrete
lines and on continuous trees. We then derive further implications

of the main result for infinite discrete lines.
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1 INTRODUCTION
In facility location problems, a central planner has to determine the

location of a public facility that needs to serve a set of agents. Once

the facility is located, each agent incurs some cost. Importantly, in

non-cooperative settings, agents may have an incentive to misre-

port their locations to decrease their costs. One key objective of the

planner that received much attention in the multiagent systems lit-

erature is to design a mechanism that incentivizes agents to report

their true locations, i.e., mechanisms that are strategyproof (SP).

An 𝑛-agent facility location mechanism on a domain D receives

a profile of the agents’ locations 𝑎 = (𝑎1, . . . , 𝑎𝑛) ∈ D𝑛 and outputs

a location in D depending on the profile. We refer to the agent’s

location as her peak. We say that a mechanism is SP if it is a weakly

dominant strategy of every agent to report truthfully.

The fundamental characterization result for strategyproof facil-

ity location was given by Moulin [12], who characterized the class

of deterministic SP mechanisms on the real line when the prefer-

ences of the agents are single-peaked as “generalized median voter

schemes" (g.m.v.s.’s). An agent with single-peaked preferences on a

line prefers a closer location to her peak over a distant location on

the same side of her peak.

Border and Jordan [5] proved that the characterization also ap-

plies for cases where the preferences are “quadratic" (i.e., symmetric

and single-peaked)—the more common model in facility location

used in this work as well. An agent with quadratic preferences on

a line prefers a closer location to her peak over a distant location
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As quadratic preferences are a special case of single-peaked

preferences, the class of SP mechanisms for quadratic preferences

may be larger. This is indeed the case e.g. for mechanisms on the

discrete lines [9], but not on continuous lines [5].

Schummer and Vohra [16] generalized the result of Border and

Jordan to prove that an SP mechanism on a continuous tree, under

quadratic preferences, is a consistent collection of g.m.v.s.

As hinted above, the trigger for the current work is the observa-

tion by Dokow et al. [9] that results on continuous graphs do not

carry over to discrete graphs. In particular, while g.m.v.s entails

that the trajectory of the facility is contained in the trajectory of the

moving agent on a line (we later observe this also applies for contin-

uous trees), Dokow et al. show it is only “almost contained" when

the line is made of discrete vertices. Similarly, while a strategyproof

onto mechanism on a continuous circle must be dictatorial [16], it

is only “almost dictatorial" when the circle is discrete [9]. These

extensions may be subtle, but they help us understand what in the

characterization is inherent to the topology of the graph.

Given these previous results, a natural question is whether a

similar extension can be applied to discrete trees.

As we will later show, a naïve extension of the properties defined

in [9] fails. We therefore formulate similar properties to charac-

terize the valid moves of the facility under SP, onto mechanisms

on discrete trees. In particular, we provide a definition of “almost

Pareto efficient" mechanisms that might be of independent interest.

Recent research by Peters et al. [14] provides a different charac-

terization of randomized strategyproof voting mechanisms on trees

and on other graphs (which, of course, include deterministic mecha-

nisms), under general single-peaked preferences. However, the class

of strategyproof mechanisms on discrete trees under single-peaked

preferences is not equivalent to the one under quadratic preferences

and therefore the characterization in [14] does not apply to our

study.

1.1 Structure and Contribution
After some preliminary notation in Section 3, we provide an al-

ternative characterization of onto, SP mechanisms on continuous

trees in Section 4, based on the work of Schummer and Vohra [16].

We then present our main result in Section 5— a full characteri-

zation of onto, SP mechanisms on discrete trees. In contrast to the

work of Dokow et al. [9], our proof also works for infinite trees

(with bounded degree).

In Section 6, we derive a characterization of SP and shift-invariant

mechanisms on infinite discrete lines.

Some of the omitted proofs are available in the full version of

this paper.
1
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2 RELATEDWORK
Following the initial work of Black [4], several researchers have

developed characterizations of deterministic and probabilistic strat-

egyproof facility location mechanisms in various scenarios.

Schummer and Vohra [16], beyond their work on trees, showed

that any onto SP mechanism on the continuous cycle must be a

dictatorship and that any SP mechanism on a graph has a dictator

in a subdomain. Their work was extended to discrete cycles in [9].

Additional variations of the problem include the multiple facility

problem [6, 11], the obnoxious facility location problem [7, 8], the

heterogeneous facility location problem [2, 10], and the activity

scheduling problem [20].

Todo et al. [17] extended Moulin’s work for characterizing the

class of false-name-proof mechanisms on the continuous line. Their

work was extended to discrete structures in [13, 18]. The motivation

for designing suchmechanisms is to prevent agents from submitting

multiple reports under different identities, e.g., in internet polls by

creating different e-mail addresses. A later work of Wada et al. [19]

on variable and dynamic populations characterizes mechanisms

that incentivize the agents to participate in the reporting process.

Finally, concrete cost functions also allow us tomeasure the social
cost (e.g., as the sum or max of agents’ costs). The research line of

approximate mechanism design without money builds on characteri-

zations such as those mentioned above, and seeks the mechanisms

that minimize the social cost among all strategyproof mechanisms.

Incidentally, the iconic domain for this line of work, as reflected in

the fundamental paper of Procaccia and Tennenholtz [15], is the

facility location problem. Their work was extended to the domain

of continuous graphs by Alon et al. [1]. In the context of onto and

strategyproof mechanisms on trees (either continuous or discrete),

the question of minimizing the utilitarian social cost, defined as

the sum of agents’ costs, is moot since there is a simple mechanism

for trees (the median voter) that is both strategyproof and socially

optimal.

3 PRELIMINARIES
Consider an unweighted, undirected, bounded degree discrete tree

𝑇 = (𝑉 , 𝐸) with a set 𝑉 of vertices and a set 𝐸 of edges. The sets

𝑉 and 𝐸 can be infinite. For any two vertices 𝑣1, 𝑣2 ∈ 𝑉 , 𝑑 (𝑣1, 𝑣2)
is the length of the unique path between 𝑣1 and 𝑣2. The distance

between two sets of vertices 𝐴 ⊆ 𝑉 and 𝐵 ⊆ 𝑉 is the length of the

shortest path between any pair of vertices 𝑎, 𝑏, where 𝑎 ∈ 𝐴 and

𝑏 ∈ 𝐵. We sometimes refer to a discrete tree as the set of its vertices.

Consequently, the distance between two subtrees of a tree is the

distance between the corresponding sets of vertices. For 𝑢,𝑤 ∈ 𝑉

with 𝑢 ≠ 𝑤 , [𝑢,𝑤] is the sequence of vertices 𝑣0, . . . , 𝑣𝑘 on the

unique path of length 𝑘 between 𝑢 and 𝑣 s.t. 𝑣0 = 𝑢, 𝑣𝑘 = 𝑤 . We

denote by (𝑢,𝑤] the sequence 𝑣1, . . . 𝑣𝑘 , and by (𝑢,𝑤) the sequence
𝑣1, . . . 𝑣𝑘−1, where {𝑣𝑖 , 𝑣𝑖+1} ∈ 𝐸 for all 𝑖 = 0, . . . 𝑘 − 1. We say that

𝑒 = {𝑢,𝑤} ∈ [𝑎, 𝑏] if [𝑢,𝑤] ⊆ [𝑎, 𝑏]. A line-graph is a tree with a

maximum degree of 2.

Let𝑁 = {1, . . . , 𝑛} be the set of agents, and 𝑎 = (𝑎1, . . . , 𝑎𝑛) ∈ 𝑉𝑛

be a location profile, where 𝑎𝑖 ∈ 𝑉 denotes the location of agent

𝑖 for every 𝑖 ∈ 𝑁 . The location profile of all agents excluding

agent 𝑖 is denoted by 𝑎−𝑖 ∈ 𝑉𝑛−1
. A deterministic facility location

mechanism on a discrete tree is a function 𝑓 : 𝑉𝑛 → 𝑉 , that maps

a given profile of the agents’ locations to a single location.

For any two vertices 𝑢,𝑤 ∈ 𝑉 , the notation 𝑢 ≻𝑖 𝑤 indicates

that agent 𝑖 prefers vertex 𝑢 over vertex 𝑤 . The notation 𝑢 ⪰𝑖 𝑤
indicates that agent 𝑖 prefers vertex𝑢 over vertex𝑤 , or is indifferent

between the two.

In this research we assume that the agents’ costs are inversely

related to their distance from the chosen location. We refer to such

cost functions as “quadratic" costs. The class of preferences induced

by quadratic costs is single-peaked and symmetric. Formally, for

every agent 𝑖 ∈ 𝑁 located at 𝑎𝑖 ∈ 𝑉 ,

∀𝑢,𝑤 ∈ 𝑉 : 𝑢 ≻𝑖 𝑤 ⇐⇒ 𝑑 (𝑎𝑖 , 𝑢) < 𝑑 (𝑎𝑖 ,𝑤)

Next, we give the standard definitions of mechanism properties:

Definition 3.1 (Strategyproof). A mechanism 𝑓 is strategyproof
(SP) if no agent can benefit from reporting a false location. Formally,

𝑓 is strategyproof if for every agent 𝑖 ∈ 𝑁 , every profile 𝑎 ∈ 𝑉𝑛

and every alternative location 𝑎′
𝑖
∈ 𝑉 , it holds that

𝑑 (𝑎𝑖 , 𝑓 (𝑎𝑖 , 𝑎−𝑖 )) ≤ 𝑑 (𝑎𝑖 , 𝑓 (𝑎′𝑖 , 𝑎−𝑖 )) .

Definition 3.2 (Onto). A mechanism 𝑓 is onto, if for every loca-

tion 𝑥 ∈ 𝑉 there is a location profile 𝑎 ∈ 𝑉𝑛
s.t. 𝑓 (𝑎) = 𝑥 .

Definition 3.3 (Unanimous). A mechanism f is unanimous if for
every location 𝑥 ∈ 𝑉 , 𝑓 (𝑥, . . . , 𝑥) = 𝑥

Clearly, every unanimous mechanism is onto. The following

lemma provides a necessary condition for an onto, SP mechanism

on any domain.

Lemma 3.4 (Barbera and Peleg [3]). Every mechanism that is
both onto and SP, is unanimous.

The definitions above apply also for continuous trees. A finite

continuous tree 𝐺 = (𝑉 , 𝐸) is a connected, acyclic collection of

curves of finite length. 𝐸 is the set of curves and 𝑉 is the set of

the extremities and intersections of the curves [16]. Let 𝐿 ⊆ 𝑉

denote the set of extremities only. For all 𝑝1, 𝑝2 ∈ 𝐺 , 𝑑 (𝑝1, 𝑝2) is
the length of the unique path between 𝑝1 and 𝑝2. We denote by

(𝑝1, 𝑝2) the open segment between 𝑝1 and 𝑝2, and by [𝑝1, 𝑝2] the
closed segment between the two points. For any point 𝑝 and a set

𝑆 ⊆ 𝐺 (which may itself be a segment), the notation [𝑝, 𝑆] stands for
the segment [𝑝, 𝑠] where 𝑠 = argmin𝑠∈𝑆𝑑 (𝑝, 𝑠). For a mechanism

on a continuous tree, the agents and the facility can be placed on

arbitrary points on the edges. A mechanism on a continuous tree

is therefore a function 𝑓 : 𝐺𝑛 → 𝐺 . The definitions are illustrated

in Fig 1.

4 SP MECHANISMS ON CONTINUOUS TREES
Schummer and Vohra [16] provided a characterization of onto,

SP mechanisms on continuous trees. They showed that when the

agents’ preferences are quadratic, every SP, onto mechanism on

the continuous tree is based on a set of generalized median voter

schemes, defined in [12], satisfying a consistency condition.

In this section, we provide an alternative characterization of

onto, SP mechanisms on continuous trees, that relies on previous

works [5, 16].
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𝑣2 𝑎1 𝑣4

𝑣5 𝑓 ′

𝑣6

𝑣1

𝑣3
𝑎′
1

𝑓
𝑎2

Figure 1: In this tree, {𝑣𝑖 |1 ≤ 𝑖 ≤ 6} is the set of vertices.
{𝑣1, 𝑣3, 𝑣5, 𝑣6} is the set of leafs. The agents are located at 𝑎1
and 𝑎2 (i.e., not on any vertex). The facility is located at point
𝑓 , which is closer to 𝑎2.

Previous Results on a Continuous Line. The following definition
given in [16] describes onto and SP mechanisms on a continuous

line. It is similar to the one introduced by Moulin [12] for single-

peaked preferences and confirmed for quadratic preferences by

Border and Jordan [5].

Definition 4.1 (Generalized Median Voter Scheme [16]). A function

𝑔𝑥𝑦 is called a generalized median voter scheme (g.m.v.s.) on

[𝑥,𝑦] if there exist 2 |𝑁 |
points in [𝑥,𝑦], {𝛼𝑥𝑦

𝑆
}𝑆⊆𝑁 such that:

(1) 𝑆 ⊂ 𝑅 implies that 𝑑 (𝛼𝑥𝑦
𝑆

, 𝑥) ≤ 𝑑 (𝛼𝑥𝑦
𝑅

, 𝑥).
(2) 𝛼

𝑥𝑦

∅ = 𝑥 and 𝛼
𝑥𝑦

𝑁
= 𝑦.

(3) For all 𝑎 ∈ [𝑥,𝑦]𝑛 , 𝑔𝑥𝑦 (𝑎) is the unique point satisfying
𝑑 (𝑔𝑥𝑦 (𝑎), 𝑥) = max𝑆⊂𝑁min{(𝑑 (𝑎𝑖 , 𝑥))𝑖∈𝑆 , 𝑑 (𝛼

𝑥𝑦

𝑆
, 𝑥)}

The following is a key property of the class of g.m.v.s.’s defined

in [5]. It implies that when an agent moves without crossing the

mechanism outcome, the facility does not move.

Definition 4.2 (Uncompromising [5]). A mechanism 𝑓 : R𝑛 → R
is called uncompromising if for every 𝑎 ∈ R𝑛 , 𝑖 ∈ 𝑁 , 𝑎′

𝑖
∈ R, it

holds that:

(1) 𝑎𝑖 > 𝑓 (𝑎) implies that 𝑓 (𝑎−𝑖 , 𝑎′𝑖 ) = 𝑓 (𝑎) for all 𝑎′
𝑖
≥ 𝑓 (𝑎)

(2) 𝑎𝑖 < 𝑓 (𝑎) implies that 𝑓 (𝑎−𝑖 , 𝑎′𝑖 ) = 𝑓 (𝑎) for all 𝑎′
𝑖
≤ 𝑓 (𝑎)

Lemma 4.3 (Border and Jordan [5]). Suppose that 𝑓 : R𝑛 → R
is SP and unanimous. Then 𝑓 is uncompromising.

As shown in [16], this also applies for every mechanism 𝑓 :

[𝑥,𝑦]𝑛 → [𝑥,𝑦] where [𝑥,𝑦] is a finite interval inR. Note that every
SP and onto mechanism is unanimous by Lemma 3.4. Therefore we

can rely on uncompromisingness for our characterization of onto

and SP mechanisms.

Previous Results on a Continuous Tree.

Definition 4.4 (Graph Restriction [16]). For any subgraph𝐺 ′ ⊂ 𝐺 ,

the graph restriction of 𝑓 : 𝐺𝑛 → 𝐺 to G’ is the function 𝑓 |𝐺′ :

𝐺 ′𝑛 → 𝐺 s.t for all profiles 𝑎 ∈ 𝐺 ′𝑛, 𝑓 |𝐺′ (𝑎) = 𝑓 (𝑎)

By [16], if mechanism 𝑓 is SP and onto, then for every 𝑎 ∈ [𝑥,𝑦]𝑛 ,
𝑓 |𝑥𝑦 (𝑎) ∈ [𝑥,𝑦].

The following property characterizes onto and SP mechanisms

on continuous trees. For all 𝑥,𝑦 ∈ 𝐿 and 𝑎𝑖 ∈ 𝐺 , let the unique point

in [𝑥,𝑦] closest to 𝑎𝑖 be denoted 𝑎𝑖 |𝑥𝑦 = argmin𝑧∈[𝑥,𝑦 ]𝑑 (𝑧, 𝑎𝑖 ).

Definition 4.5 (Extended GeneralizedMedian Voter Scheme [16]). A
mechanism 𝑓 is an extended generalizedmedian voter scheme
(e.m.v.s.) if

(1) For all𝑤, 𝑥,𝑦, 𝑧 ∈ 𝐺 , 𝑓 |𝑥𝑦 and 𝑓 |𝑤𝑧 are consistent g.m.v.s.’s.

(2) For all 𝑎 ∈ 𝐺𝑛, 𝑓 (𝑎) is the unique point p such that for all

𝑥,𝑦 ∈ 𝐿, 𝑝 ∈ [𝑥,𝑦] implies 𝑓 |𝑥𝑦 (𝑎 |𝑥𝑦) = 𝑝 .

Theorem 4.6 (Schummer and Vohra [16]). For any continuous
tree 𝐺 , a rule 𝑓 is SP and onto if and only if it is an e.m.v.s.

We omit the definition of consistency since it is not relevant for

our purpose.

4.1 Our Characterization
We rely on the characterization in [16] to formulate our characteri-

zation for SP and onto mechanisms on continuous trees, which is

a conceptual step on the way to our main result on discrete trees.

The following properties limit the effect of an agent’s move on the

outcome of a mechanism on a continuous tree.

Definition 4.7 (TreeMonotone). Amechanism 𝑓 on the continuous

tree is tree monotone (TMON) if for every profile 𝑎 ∈ 𝐺𝑛
, every

agent 𝑖 ∈ 𝑁 , every location 𝑎′
𝑖
∈ 𝐺 and every segment [𝑥,𝑦] s.t.

[𝑥,𝑦] ⊆ [𝑎𝑖 , 𝑎′𝑖 ] ∩ [𝑓 (𝑎), 𝑓 (𝑎−𝑖 , 𝑎′𝑖 )], it holds that
𝑑 (𝑎𝑖 , 𝑥) < 𝑑 (𝑎𝑖 , 𝑦) ⇔ 𝑑 (𝑓 (𝑎), 𝑥) < 𝑑 (𝑓 (𝑎), 𝑦)

Intuitively, TMON means that the facility moves in the same direc-

tion as the moving agent (if it crosses the agent’s path at all).

Definition 4.8 (Trajectory Contained). A mechanism 𝑓 on the

continuous tree is trajectory contained (TC) if for every profile

𝑎 ∈ 𝐺𝑛
, every agent 𝑖 ∈ 𝑁 and every location 𝑎′

𝑖
∈ 𝐺 , it either holds

that [𝑓 (𝑎), 𝑓 (𝑎−𝑖 , 𝑎′𝑖 )] ⊆ [𝑎𝑖 , 𝑎′𝑖 ], or 𝑓 (𝑎) = 𝑓 (𝑎−𝑖 , 𝑎′𝑖 ).

In words, either the trajectory of the outcome is contained in

the trajectory of the agent, or the facility does not move at all. In

Fig. 1, when agent 1 moves from 𝑎1 to 𝑎
′
1
, the facility moves from 𝑓

to 𝑓 ′. This violates TC since [𝑣4, 𝑓 ′] ⊈ [𝑎𝑖 , 𝑎′𝑖 ]. This also violates

TMON since the facility and the agent move in opposite directions

in the segment [𝑓 , 𝑣4].

Lemma 4.9. Every onto and SP mechanism 𝑓 on the continuous
tree is TC.

Proof. Consider an SP, onto mechanism 𝑓 : 𝐺𝑛 → 𝐺 on a

continuous tree. Assume by contradiction that there exists an agent

𝑖 and two profiles 𝑎, 𝑎′ = (𝑎′
𝑖
, 𝑎−𝑖 ) s.t. 𝑓 (𝑎) ≠ 𝑓 (𝑎′) and w.l.o.g.,

that 𝑓 (𝑎) ∉ [𝑎𝑖 , 𝑎′𝑖 ]. By Theorem 4.6, 𝑓 is an e.m.v.s. and therefore

it is a collection of g.m.v.s’s. Let 𝑔𝑥𝑦 denote the g.m.v.s. on [𝑥,𝑦],
where 𝑥,𝑦 ∈ 𝐿 and [𝑓 (𝑎), 𝑓 (𝑎′)] ⊆ [𝑥,𝑦]. Note that 𝑔𝑥𝑦 = 𝑓 |𝑥𝑦 . By
Lemma 4.3, 𝑔𝑥𝑦 is uncompromising. From the second property of

the e.m.v.s., it holds that

𝑔𝑥𝑦 (𝑎 |𝑥𝑦) = 𝑓 (𝑎) and 𝑔𝑥𝑦 (𝑎′ |𝑥𝑦) = 𝑓 (𝑎′)
We divide into two cases, according to the locations 𝑎𝑖 |𝑥𝑦, 𝑎′𝑖 |𝑥𝑦 .
Note that for any other agent 𝑗 ≠ 𝑖 , 𝑎′

𝑗
= 𝑎 𝑗 and thus 𝑎

′
𝑗
|𝑥𝑦 = 𝑎 𝑗 |𝑥𝑦 .

(1) | [𝑎𝑖 , 𝑎𝑖 |𝑥𝑦] ∩ [𝑎′
𝑖
, 𝑎′

𝑖
|𝑥𝑦] | > 0: In this case, 𝑎𝑖 |𝑥𝑦 = 𝑎′

𝑖
|𝑥𝑦 and

therefore 𝑔𝑥𝑦 (𝑎 |𝑥𝑦) = 𝑔𝑥𝑦 (𝑎′ |𝑥𝑦) contradicting the assump-

tion that 𝑓 (𝑎) ≠ 𝑓 (𝑎′).
(2) | [𝑎𝑖 , 𝑎𝑖 |𝑥𝑦] ∩ [𝑎′

𝑖
, 𝑎′

𝑖
|𝑥𝑦] | = 0: In this case, the path between

𝑎𝑖 and 𝑎′
𝑖
must intersect the segment [𝑥,𝑦] and therefore,

[𝑥,𝑦] ∩ [𝑎𝑖 , 𝑎′𝑖 ] = [𝑎𝑖 |𝑥𝑦, 𝑎′𝑖 |𝑥𝑦]. By our initial assumption

𝑓 (𝑎) = 𝑔𝑥𝑦 (𝑎 |𝑥𝑦) ∉ [𝑎𝑖 , 𝑎′𝑖 ], thus 𝑓 (𝑎) ∉ [𝑎𝑖 |𝑥𝑦, 𝑎′𝑖 |𝑥𝑦], con-
tradicting the uncompromisingness of 𝑔𝑥𝑦 . □
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Lemma 4.10. Every SP mechanism on the continuous tree is TMON.

Lemma 4.11. Every TC and TMON mechanism on the continuous
tree is SP.

The proofs of these lemmas are omitted since they are straight-

forward from the definition of strategyproofness and Lemma 4.9.

Theorem 4.12. An onto mechanism on the continuous tree is SP if
and only if it is TMON and TC.

Proof. The proof follows from Lemmas 4.9, 4.10 and 4.11. □

5 SP MECHANISMS ON DISCRETE TREES
In this section we provide a complete characterization of onto, SP

mechanisms on discrete trees, generalizing the result of Dokow et

al. for discrete lines [9].

Before presenting themain result, we show that a naïve extension

of the properties defined for mechanisms on discrete lines in [9]

fails for trees. Their result implies that an agent can affect the

outcome of the mechanism only in a way in which its trajectory

intersects the trajectory of the facility in at least two consecutive

points.

The mechanism described in Fig. 2 is an example of an SP, onto

mechanism that violates a naïve extension of this property. Agent 1

is located at vertex 0. Agent 2 is initially at 3 and moves to 4. As a

result, the facility moves from vertex 1 to 0 without intersecting

the segment [3, 4].

Quadratic vs. Single-Peaked Preferences.

Definition 5.1 (Single-Peaked [14]). A preference of an agent 𝑖 is

single-peaked on a graph 𝐺 if there is a spanning tree 𝑇 = (𝑉 , 𝐸)
of 𝐺 such that for all distinct 𝑥,𝑦 ∈ 𝑉 with 𝑎𝑖 ≠ 𝑦,

𝑥 ∈ [𝑎𝑖 , 𝑦) ⇒ 𝑥 ≻𝑖 𝑦

The following example shows that under single-peaked prefer-

ences, the mechanism in Fig. 2 is not SP. Assume the preferences

of the agents are as follows:

(1) Agent 1: 0 ≻1 2 ≻1 3 ⪰1 1 ≻1 4

(2) Agent 2: 3 ≻2 4 ⪰2 2 ≻2 0 ≻2 1

Both agents have single-peaked preferences according to the def-

inition in [14]. In particular, the preference of the first agent is

quadratic. The preference of the second agent is not, since she

strictly prefers vertex 0 over vertex 1. If both agents report truth-

fully, the facility will be located at vertex 1. However, if the second

agent reports vertex 4 as her peak, the facility will be located at

vertex 0 and the agent will benefit.

We conclude that similarly to the case of the line-graph, qua-

dratic preferences allow more SP mechanisms than single-peaked

preferences, and therefore the characterization of probabilistic SP

mechanisms under single-peaked preferences in [14] does not apply

for quadratic preferences.

5.1 Basic Mechanism Properties
Here we define several new terms which are specific for mecha-

nisms on discrete trees.

if ∃𝑖 : 𝑎𝑖 = 0 then
𝑓 (𝑎) = 𝑎−𝑖 mod 2

else if ∃𝑖 : 𝑎𝑖 = 2 then
𝑓 (𝑎) =𝑚𝑖𝑛{𝑎−𝑖 , 3}

else𝑓 (𝑎) =𝑚𝑖𝑛{𝑎𝑖 , 𝑎−𝑖 }
end if

𝑎1

0

1

2

𝑎2

3

𝑎′
2

4

Figure 2: An example of a two-agent mechanism that is SP
and onto on a discrete tree, that violates the properties de-
fined by Dokow et al. [9].

Definition 5.2 (Tree). 𝒕𝒓𝒆𝒆(𝒂 → 𝒃, 𝒗) is the subtree which in-

cludes only 𝑣 and vertices which are accessible from 𝑣 , via the edges

that are not in [𝑎, 𝑏].

Definition 5.3 (Depth). 𝒅𝒆𝒑𝒕𝒉(𝒂 → 𝒃, 𝒗) is the distance of vertex
𝑣 from [𝑎, 𝑏].

We demonstrate the above definitions in Fig. 3: 𝑡𝑟𝑒𝑒 (𝑎1 → 𝑎′
1
, 𝑣1)

contains 𝑣1 (at depth 0) and another node at depth 1. 𝑑𝑒𝑝𝑡ℎ(𝑎1 →
𝑎′
1
, 𝑣2) = 2 in the subtree rooted by 𝑎1.

Our next definitions are intended to generalize the properties

defined in [9].

Definition 5.4 (𝑚-tree step independent). A mechanism 𝑓 is 𝒎-
tree step independent (𝑚-TSI) if for every 𝑎 ∈ 𝑉𝑛

, 𝑖 ∈ 𝑁 , 𝑎′
𝑖
∈ 𝑉

s.t. 𝑑 ( [𝑎𝑖 , 𝑎′𝑖 ], 𝑓 (𝑎)) > 𝑚, it holds that

𝑡𝑟𝑒𝑒 (𝑎𝑖 → 𝑎′𝑖 , 𝑓 (𝑎)) = 𝑡𝑟𝑒𝑒 (𝑎𝑖 → 𝑎′𝑖 , 𝑓 (𝑎−𝑖 , 𝑎
′
𝑖 ))

For 𝑚 = 1, the definition states that for every 𝑎 ∈ 𝑉𝑛
, 𝑖 ∈ 𝑁 ,

𝑎′
𝑖
∈ 𝑉 s.t. | [𝑓 (𝑎), 𝑓 (𝑎−𝑖 , 𝑎′𝑖 )] ∩ [𝑎𝑖 , 𝑎′𝑖 ] | ≥ 2 it holds that

𝑑 (𝑓 (𝑎), [𝑎𝑖 , 𝑎′𝑖 ]) ≤ 1

Fig. 3 illustrates a violation of the property. Mechanism 𝑔 vio-

lates 1-TSI since 𝑡𝑟𝑒𝑒 (𝑎1 → 𝑎′
1
, 𝑔(𝑎)) ≠ 𝑡𝑟𝑒𝑒 (𝑎1 → 𝑎′

1
, 𝑔(𝑎′))

and 𝑑 ( [𝑎1, 𝑎′
1
], 𝑔(𝑎)) = 3.

Definition 5.5 (Depth Balanced). A mechanism 𝑓 is depth bal-
anced (DB) if for every 𝑎 ∈ 𝑉𝑛

, 𝑖 ∈ 𝑁 , 𝑎′
𝑖
∈ 𝑉 , it holds that

𝑑 (𝑡𝑟𝑒𝑒 (𝑎𝑖 → 𝑎′𝑖 , 𝑓 (𝑎)), 𝑡𝑟𝑒𝑒 (𝑎𝑖 → 𝑎′𝑖 , 𝑓 (𝑎−𝑖 , 𝑎
′
𝑖 ))) ≥

|𝑑𝑒𝑝𝑡ℎ(𝑎𝑖 → 𝑎′𝑖 , 𝑓 (𝑎)) − 𝑑𝑒𝑝𝑡ℎ(𝑎𝑖 → 𝑎′𝑖 , 𝑓 (𝑎−𝑖 , 𝑎
′
𝑖 )) |

Informally, DB means that when the facility moves as a result

of a single agent’s deviation, the distance between the tree of the

original outcome and the tree of the new outcome is bigger than

the difference between the depths of the outcomes. Fig. 3 illustrates

a violation of the property by mechanism 𝑔. 𝑔 violates DB since

𝑑 (𝑡𝑟𝑒𝑒 (𝑎1 → 𝑎′
1
, 𝑔(𝑎)), 𝑡𝑟𝑒𝑒 (𝑎1 → 𝑎′

1
, 𝑔(𝑎′

1
, 𝑎2))) = 1

< |𝑑𝑒𝑝𝑡ℎ(𝑎1 → 𝑎′
1
, 𝑔(𝑎)) − 𝑑𝑒𝑝𝑡ℎ(𝑎1 → 𝑎′

1
, 𝑔(𝑎′

1
, 𝑎2) | = 3

Definition 5.6 (Tree Pareto Location). Let 𝐼𝑛𝑡 (𝑎) be the set of

interior vertices of the subtree defined by profile 𝑎:

𝐼𝑛𝑡 (𝑎) = {𝑣 ∈ 𝑉 |∃𝑎𝑖 , 𝑎 𝑗 ∈ 𝑎 s.t. 𝑣 ∈ (𝑎𝑖 , 𝑎 𝑗 )}.

A location 𝑥 ∈ 𝑉 is tree Paretow.r.t. 𝑎 if 𝑑 (𝑥, 𝐼𝑛𝑡 (𝑎)) ≤ 1 or 𝑥 = 𝑎𝑖
for some 𝑖 ∈ 𝑁 .
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𝑎1 𝑣1 𝑎′
1

𝑧

𝑣2

𝑓 (𝑎) 𝑓 (𝑎′)𝑎2

𝑎1 𝑔(𝑎′) 𝑣1 𝑎′
1

𝑧

𝑣2

𝑔(𝑎) 𝑎2

Figure 3: Mechanism 𝑓 violates ADR and TPAR w.r.t. profile
𝑎′ = (𝑎′

1
, 𝑎2), but satisfies TPAR w.r.t. profile 𝑎. Mechanism 𝑔

violates 1-TSI and DB.

This definition generalizes the definition in [9] of a Pareto loca-

tion on the discrete line. Note that it is weaker than the standard

definition of Pareto.

Definition 5.7 (Tree Pareto Mechanism). A mechanism 𝑓 is tree
Pareto (TPAR) if for every profile 𝑎 ∈ 𝑉𝑛

, 𝑓 (𝑎) is a tree Pareto

location w.r.t. 𝑎.

Mechanism 𝑓 in Fig. 3 violates TPAR w.r.t. profile 𝑎′ since

𝑑 (𝑓 (𝑎′), 𝐼𝑛𝑡 (𝑎′)) = 𝑑 (𝑓 (𝑎′), [𝑣1, 𝑣2]) = 2

Definition 5.8 (Almost Depth Restricted). A mechanism 𝑓 is al-
most depth restricted (ADR) if for every 𝑎 ∈ 𝑉𝑛

, 𝑖 ∈ 𝑁 , 𝑎′
𝑖
∈ 𝑉

s.t. 𝑓 (𝑎) ≠ 𝑓 (𝑎′
𝑖
, 𝑎−𝑖 ) and

𝑡𝑟𝑒𝑒 (𝑎𝑖 → 𝑎′𝑖 , 𝑓 (𝑎)) = 𝑡𝑟𝑒𝑒 (𝑎𝑖 → 𝑎′𝑖 , 𝑓 (𝑎
′
𝑖 , 𝑎−𝑖 )),

the following holds: Let 𝑧 be the unique point s.t.

𝑧 = [𝑎𝑖 , 𝑓 (𝑎)] ∩ [𝑎𝑖 , 𝑓 (𝑎′𝑖 , 𝑎−𝑖 )] ∩ [𝑓 (𝑎), 𝑓 (𝑎′𝑖 , 𝑎−𝑖 )]
Then

(1) 𝑑 (𝑓 (𝑎), 𝑧) = 𝑑 (𝑓 (𝑎′
𝑖
, 𝑎−𝑖 ), 𝑧)

(2) 𝑑 (𝑓 (𝑎), 𝑧) = 1

Informally, ADR means that when the facility moves as a result

of a single agent’s deviation, without intersecting the trajectory

of the agent in at least two points, the new outcome has the same

parent as the original outcome in the tree induced by the deviation.

That is, either the facility does not move, or it moves to a sibling

node. We can think of this property as “approximate uncompro-

mising" (replacing ‘1’ with ‘0’ in the definition would yield exact

uncompromising). In Fig. 3, ADR is violated by mechanism 𝑓 for

the pair of profiles (𝑎, 𝑎′), which differ by the location of agent 1,

since 𝑑 (𝑓 (𝑎), 𝑧) = 2.

Definition 5.9 (Almost Trajectory Contained). A mechanism 𝑓 is

almost trajectory contained (ATC) if it is ADR and 1-TSI.

Finally, we use the term TMON defined in Section 4 to describe

mechanisms on discrete trees as well.

We now go on to characterize SP and onto mechanisms on dis-

crete trees.

Theorem 5.10. An onto mechanism 𝑓 on the discrete tree is SP if
and only if it is TMON and ATC.

First we show a weak characterization. We then use it to prove

the Tree Pareto property and the main property of “almost trajec-

tory containment", which consists of two properties, ADR and 1-TSI.

To prove ADR, we first show that when an agent moves towards

the facility, either the facility remains in place (as in the continuous

case), or it moves exactly one step towards the agent and one step

away. To prove 1-TSI, we first show that when an agent moves to a

neighboring vertex on edge 𝑒 , the facility can intersect 𝑒 only if it

is at most one step away from 𝑒 .

DB and TMON.

Lemma 5.11. A pair of profiles violates SP if and only if it violates
DB or TMON.

The proof is straightforward from the definition of SP. The idea is

that if a pair of profiles𝑎, 𝑎′ = (𝑎−𝑖 , 𝑎′𝑖 ) violates one of the properties,
agent 𝑖 will benefit from the move 𝑎𝑖 → 𝑎′

𝑖
or the move 𝑎′

𝑖
→ 𝑎𝑖 .

This is true for infinite trees as well.

Lemma 5.11 characterizes all pairs of profiles that violate SP. We

later show a stronger characterization that describes the pairs that

indicate that an onto mechanism is not SP. These pairs differ only

in a single agent’s location, who does not necessarily benefit from

misreporting, contrary to the characterization in Lemma 5.11.

TPAR.

Lemma 5.12. Every SP and onto mechanism 𝑓 on the discrete tree
is TPAR.

Proof. Assume by contradiction that an onto, SP mechanism 𝑓

is not TPAR. Then there exists a profile 𝑎 s.t. 𝑑 (𝑓 (𝑎), 𝐼𝑛𝑡 (𝑎)) > 1.

Let 𝑣 denote the first vertex on the path from 𝑓 (𝑎) to all other

locations of 𝑎. Let 𝑧𝑖 := (𝑎1, . . . , 𝑎𝑖 , 𝑣, . . . , 𝑣). Note that 𝑧𝑛 is the

profile 𝑎 and 𝑧0 is the profile (𝑣, . . . 𝑣). By definition of 𝑣 , we have

that 𝑓 (𝑎) = 𝑓 (𝑧𝑛) ∈ 𝑡𝑟𝑒𝑒 (𝑎𝑖 → 𝑣, 𝑣). Since TPAR is violated, 𝑣 has

exactly one neighbor 𝑢 on the path to any other agent location

𝑎𝑖 ≠ 𝑣 . When moving from profile 𝑧𝑖+1 to 𝑧𝑖 , it follows from TMON

that ∀0 ≤ 𝑖 ≤ 𝑛 − 1,

𝑓 (𝑧𝑖 ) ∈ 𝑡𝑟𝑒𝑒 (𝑎𝑖 → 𝑣, 𝑓 (𝑧𝑖+1)) = 𝑡𝑟𝑒𝑒 (𝑎𝑖 → 𝑣, 𝑣) (1)

From DB and (1) we have that

𝑑𝑒𝑝𝑡ℎ(𝑎𝑖 → 𝑣, 𝑓 (𝑧𝑖 )) = 1 ≠ 0 = 𝑑𝑒𝑝𝑡ℎ(𝑎𝑖 → 𝑣, 𝑣) (2)

It follows from (2) that

𝑓 (𝑧0) = 𝑓 (𝑣, .., 𝑣) ≠ 𝑣

in contradiction to unanimity. □

ADR. Here we prove that ADR is a necessary condition for an

onto, SP mechanism. We first show that if a pair of profiles violates

the property, there exists a pair of profiles that violates the property

in which the agent moves to a vertex on the path between the two

outcomes.

Lemma 5.13. If an onto, SP mechanism 𝑓 violates ADR, there exists
a pair of violating profiles 𝑎, 𝑎′ = (𝑎−𝑖 , 𝑎′𝑖 ) s.t.

𝑧 = [𝑎𝑖 , 𝑓 (𝑎)] ∩ [𝑎𝑖 , 𝑓 (𝑎′)] ∩ [𝑓 (𝑎), 𝑓 (𝑎′)] = 𝑎′𝑖

and
𝑑 (𝑓 (𝑎), 𝑧) = 𝑑 (𝑓 (𝑎′), 𝑧)

The proof is omitted since it can easily be shown that if an agent’s

move violates ADR, a second move to the closest vertex on the path

between the outcomes violates ADR w.r.t. one of the outcomes.
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The following lemma proves the necessity of ADR by showing

that there is no violating pair of profiles in which the agent moves

to a location on the path between the outcomes.

Lemma 5.14. Every onto SP mechanism on the discrete tree is ADR.

Proof. Assume that there exists an agent 𝑖 and two profiles

𝑎, 𝑎′ = (𝑎′
𝑖
, 𝑎−𝑖 ) s.t. 𝑥 := 𝑓 (𝑎), 𝑥 ′ := 𝑓 (𝑎′) and

𝑡𝑟𝑒𝑒 (𝑎𝑖 → 𝑎′𝑖 , 𝑥) = 𝑡𝑟𝑒𝑒 (𝑎𝑖 → 𝑎′𝑖 , 𝑥
′)

From DB, we have that 𝑑 (𝑥, 𝑧) = 𝑑 (𝑥 ′, 𝑧), where 𝑧 is the unique

point s.t. 𝑧 = [𝑎𝑖 , 𝑥] ∩ [𝑎𝑖 , 𝑥 ′] ∩ [𝑥, 𝑥 ′]. We show that ADR holds

when 𝑧 = 𝑎′
𝑖
. Assume by contradiction that

𝑧 = 𝑎′𝑖 and 𝑑 (𝑥, 𝑧) = 𝑑 (𝑥 ′, 𝑧) > 1 (3)

Among the violating pairs, let (𝑎, 𝑎′) be one of the pairs that min-

imize Σ𝑘≠𝑖𝑑 (𝑎𝑘 , [𝑎𝑖 , 𝑎′𝑖 ]). We let 𝑣1 denote the first vertex on the

path from 𝑥 to 𝑧 and 𝑣2 denote the second vertex on the path from

𝑥 to 𝑧 (see Figs. 4.1 and 4.2). Note that 𝑣2 and 𝑧 is the same vertex if

𝑑 (𝑥, 𝑧) = 𝑑 (𝑥 ′, 𝑧) = 2.

Since 𝑓 is TPAR, there must be some other agent 𝑗 s.t. 𝑥 is suffi-

ciently close to the path from agent 𝑗 to agent 𝑖 . Formally,

∃ 𝑗 : 𝑎 𝑗 ∈ 𝑡𝑟𝑒𝑒 (𝑎𝑖 → 𝑣1, 𝑣1) \ 𝑣1
(see locations 𝑎 𝑗1 , 𝑎 𝑗2 , 𝑎 𝑗3 in Fig. 4.1). We define two profiles 𝑏 =

(𝑎−𝑗 , 𝑏 𝑗 = 𝑣1) and 𝑏 ′ = (𝑎′−𝑗 , 𝑏
′
𝑗
= 𝑣1), which differ from 𝑎 and 𝑎′

only by the location of agent 𝑗 . Let 𝑦 denote 𝑓 (𝑏) and 𝑦′ denote
𝑓 (𝑏 ′).

For the pair of profiles (𝑎, 𝑏): If 𝑥 is on the path from 𝑎 𝑗 to 𝑣1
(location 𝑎 𝑗3 in Fig. 4.1), it follows from DB and TMON that the

facility will stay in the same tree w.r.t. the move 𝑎 𝑗 → 𝑣1 at depth 0

(location 𝑦3 in Fig. 4.3) or move to 𝑡𝑟𝑒𝑒 (𝑎 𝑗 → 𝑣1, 𝑣1) and be located
at depth 0 (location 𝑦2 in Fig. 4.3) or 1 (locations 𝑦1, 𝑦4 in Fig. 4.3).

Otherwise, if 𝑥 is not on the path from 𝑎 𝑗 to 𝑣1 (locations 𝑎 𝑗1 , 𝑎 𝑗2
in Fig. 4.1), 𝑥 will stay in the same tree at the same depth w.r.t. the

move 𝑎 𝑗 → 𝑣1 (locations 𝑦1, 𝑦3 in Fig. 4.3). Overall, the possible

locations of 𝑦 are 𝑥, 𝑣1, 𝑣2 and the direct children of 𝑣1.

Location 𝑦′ satisfies: 𝑑 (𝑦′, 𝑣1) ≤ 𝑑 (𝑥 ′, 𝑣1). Otherwise, SP is vio-

lated for the pair of profiles (𝑎′, 𝑏 ′). The location 𝑦′ also satisfies

𝑦′ ∈ 𝑡𝑟𝑒𝑒 (𝑎𝑖 → 𝑎′𝑖 , 𝑎
′
𝑖 ); and

𝑑𝑒𝑝𝑡ℎ(𝑎𝑖 → 𝑎′𝑖 , 𝑦
′) = 𝑑𝑒𝑝𝑡ℎ(𝑎𝑖 → 𝑎′𝑖 , 𝑦) (4)

Otherwise, SP is violated for the pair of profiles (𝑏,𝑏 ′) (therefore
𝑦′
1
in Fig. 4.4 is not a valid location). We divide into two cases by

the possible locations of 𝑦′:

(1) 𝑦′ is a child of 𝑣1 in 𝑡𝑟𝑒𝑒 (𝑎𝑖 → 𝑎′
𝑖
, 𝑣1): In this case the pair

(𝑎′, 𝑏 ′) is a violation of SP, since

𝑑 (𝑎 𝑗 , 𝑦′) ≤ 𝑑 (𝑎 𝑗 , 𝑣1) + 𝑑 (𝑣1, 𝑦′) (5)

= 𝑑 (𝑎 𝑗 , 𝑣1) + 1 (6)

< 𝑑 (𝑎 𝑗 , 𝑣1) + 3

≤ 𝑑 (𝑎 𝑗 , 𝑥 ′) (7)

Eq. (5) follows from the triangle inequality, Eq. (6) follows

from the case condition and Eq. (7) follows from Eq. (3).

(2) 𝑦′ is not a child of 𝑣1 in 𝑡𝑟𝑒𝑒 (𝑎𝑖 → 𝑎′
𝑖
, 𝑣1): It follows from

Eq. (4) and the case condition that

𝑦′ ∉ 𝑡𝑟𝑒𝑒 (𝑎𝑖 → 𝑎′𝑖 , 𝑣1) \ {𝑣1} (8)

𝑎𝑖
𝑧

𝑣2

𝑣1

𝑎 𝑗1 ;𝑥 𝑎 𝑗2
𝑎 𝑗3

1) 𝑎 𝑎′
𝑖
; 𝑧

𝑣2
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3

4) 𝑏 ′

Figure 4: An illustration of the possible locations of agent
𝑗 and the facility locations for the profiles 𝑎, 𝑎′, 𝑏, 𝑏 ′ in the
proof of Lemma 5.14.

Therefore, 𝑣1 ∈ [𝑎 𝑗 , 𝑦′]. From Eq. (8),

𝑑 (𝑣1, 𝑦′) = 𝑑 (𝑣1, 𝑥 ′) (9)

Otherwise, the pair (𝑎′, 𝑏 ′) violates SP, since the nearest

location to 𝑣1 between 𝑦
′
and 𝑥 ′ is strictly closer to agent 𝑗

whether agent 𝑗 is located at 𝑎 𝑗 or at 𝑣1. From Eq. (4),

𝑑𝑒𝑝𝑡ℎ(𝑎𝑖 → 𝑎′𝑖 , 𝑦
′) ∈ {𝑑𝑒𝑝𝑡ℎ(𝑎𝑖 → 𝑎′𝑖 , 𝑥),

𝑑𝑒𝑝𝑡ℎ(𝑎𝑖 → 𝑎′𝑖 , 𝑣1), 𝑑𝑒𝑝𝑡ℎ(𝑎𝑖 → 𝑎′𝑖 , 𝑣2)} (10)

We divide into two cases:

(a) 𝑑𝑒𝑝𝑡ℎ(𝑎𝑖 → 𝑎′
𝑖
, 𝑦′) ∈ {𝑑𝑒𝑝𝑡ℎ(𝑎𝑖 → 𝑎′

𝑖
, 𝑣1),

𝑑𝑒𝑝𝑡ℎ(𝑎𝑖 → 𝑎′
𝑖
, 𝑣2)} (locations 𝑦′

4
, 𝑦′

5
in Fig. 4.4):

𝑑 (𝑣1, 𝑦′) ≤ 𝑑 (𝑣1, 𝑧) + 𝑑 (𝑧,𝑦′) (11)

< 𝑑 (𝑣1, 𝑧) + 𝑑 (𝑧, 𝑥 ′) (12)

= 𝑑 (𝑣1, 𝑥 ′)
contradicting Eq. (9). Eq. (11) follows from the triangle

inequality and Eq. (12) follows from the case condition.

(b) 𝑑𝑒𝑝𝑡ℎ(𝑎𝑖 → 𝑎′
𝑖
, 𝑦′) = 𝑑𝑒𝑝𝑡ℎ(𝑎𝑖 → 𝑎′

𝑖
, 𝑥) (locations 𝑦′

2
, 𝑦′

3

in Fig. 4.4): Since 𝑦′ is not a direct child of 𝑣1, the pair

(𝑏,𝑏 ′) violates ADR in contradiction to the minimality of

Σ𝑘≠𝑖𝑑 (𝑎𝑘 , [𝑎𝑖 , 𝑎′𝑖 ]), since agent 𝑗 is closer to the trajectory
of agent 𝑖 in profiles 𝑏, 𝑏 ′ than in profiles 𝑎, 𝑎′.

We have shown that there is no valid location for 𝑦′, and there-

fore ADR is not violated for the case in which 𝑎′
𝑖
= 𝑧. From Lemma

5.13, every SP onto mechanism is ADR. □

1-TSI. Here we prove that 1-TSI is a necessary condition for an

onto, SP mechanism. We first show that if there is a violation of

the 1-TSI property, then w.l.o.g. it occurs when an agent moves a

single step.

Lemma 5.15. If an onto, SP mechanism 𝑓 violates 1-TSI, there exists
a pair of violating profiles 𝑎, 𝑎′ = (𝑎−𝑖 , 𝑎′𝑖 ) s.t. 𝑑 (𝑎𝑖 , 𝑎

′
𝑖
) = 1.

Proof. Assume that 𝑑 (𝑎𝑖 , 𝑎′𝑖 ) > 1 and assume w.l.o.g. that

𝑑 (𝑓 (𝑎), [𝑎𝑖 , 𝑎′𝑖 ]) > 1
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𝑎𝑖 𝑥 𝑦 𝑎′
𝑖

𝑓 (𝑎) 𝑓 (𝑦′)𝑓 (𝑥 ′)

Figure 5: An illustration of the proof of Lemma 5.15. The
pair (𝑥 ′ = (𝑎−𝑖 , 𝑥), 𝑦′ = (𝑎−𝑖 , 𝑦)) violates ADR.

We denote by 𝑥,𝑦 the two adjacent vertices on the path from 𝑎𝑖 to

𝑎′
𝑖
s.t. 𝑥 ′ := (𝑎−𝑖 , 𝑥), 𝑦′ := (𝑎−𝑖 , 𝑦) and

𝑡𝑟𝑒𝑒 (𝑎𝑖 → 𝑎′𝑖 , 𝑓 (𝑥
′)) ≠ 𝑡𝑟𝑒𝑒 (𝑎𝑖 → 𝑎′𝑖 , 𝑓 (𝑦

′)) (13)

If there is more than one such pair thenwe select the pair 𝑥,𝑦 closest

to 𝑎𝑖 (see Fig. 5). From Lemma 5.11, every SP, onto mechanism

satisfies DB. Therefore, it holds that for every move 𝑎𝑖 → 𝑧 where

𝑧 ∈ [𝑎𝑖 , 𝑥], the facility stays in the same depth w.r.t. its initial tree,

i.e.,

𝑑𝑒𝑝𝑡ℎ(𝑎𝑖 → 𝑧, 𝑓 (𝑎−𝑖 , 𝑧)) = 𝑑𝑒𝑝𝑡ℎ(𝑎𝑖 → 𝑧, 𝑓 (𝑎)) (14)

Assume by contradiction that

𝑡𝑟𝑒𝑒 (𝑥 → 𝑦, 𝑓 (𝑥 ′)) = 𝑡𝑟𝑒𝑒 (𝑥 → 𝑦, 𝑓 (𝑦′)) (15)

From Eq. (13), when agent 𝑖 moves from 𝑥 to 𝑦, the trajectory of

the facility intersects the segment [𝑎𝑖 , 𝑎′𝑖 ] in two points, and since

d (𝑓 (𝑎), [𝑎𝑖 , 𝑎′𝑖 ]) ≥ 2, it holds that

𝑑 (𝑓 (𝑎), 𝑓 (𝑦′)) ≥ 3 (16)

On the other hand, from Eq. (15) and ADR we have that

𝑑 (𝑓 (𝑎), 𝑓 (𝑦′)) ∈ {0, 2} (17)

contradicting Eq. (16) (see locations 𝑓 (𝑥 ′), 𝑓 (𝑦′) in Fig. 5). Thus,

it follows that 𝑡𝑟𝑒𝑒 (𝑥 → 𝑦, 𝑓 (𝑥 ′)) ≠ 𝑡𝑟𝑒𝑒 (𝑥 → 𝑦, 𝑓 (𝑦′)). There-
fore, the pair (𝑥 ′, 𝑦′) violates 1-TSI by a one-step deviation, since

𝑑 (𝑓 (𝑥 ′), [𝑎𝑖 , 𝑎′𝑖 ]) > 1, and in particular, 𝑑 (𝑓 (𝑎), [𝑥,𝑦]) > 1 as re-

quired. □

The following lemma proves the necessity of 1-TSI by showing

that there is no violating pair of profiles in which the agent moves

to a neighboring vertex.

Lemma 5.16. Every onto, SP mechanism on the discrete tree is
1-TSI.

Proof. Assume by contradiction that there exists a violating

pair of profiles 𝑎, 𝑎′ = (𝑎−𝑖 , 𝑎′𝑖 ) s.t.

𝑡𝑟𝑒𝑒 (𝑎𝑖 → 𝑎′, 𝑓 (𝑎)) ≠ 𝑡𝑟𝑒𝑒 (𝑎𝑖 → 𝑎′, 𝑓 (𝑎−𝑖 , 𝑎′𝑖 )) (18)

Assume w.l.o.g. that 𝑑 (𝑓 (𝑎′), [𝑎𝑖 .𝑎′𝑖 ]) > 1. We can assume that

𝑑 (𝑎𝑖 , 𝑎′𝑖 ) = 1 from lemma 5.15. Among these pairs, let (𝑎, 𝑎′) be the
pair that minimizes Σ𝑘≠𝑖𝑑 (𝑎𝑘 , [𝑎𝑖 , 𝑎′𝑖 ]). From TMON, we have that

𝑓 (𝑎) ∈ 𝑡𝑟𝑒𝑒 (𝑎𝑖 → 𝑎′𝑖 , 𝑎𝑖 ) and 𝑓 (𝑎′) ∈ 𝑡𝑟𝑒𝑒 (𝑎𝑖 → 𝑎′𝑖 , 𝑎
′
𝑖 )

Since 𝑑 (𝑎𝑖 , 𝑎′𝑖 ) = 1,

𝑑 (𝑡𝑟𝑒𝑒 (𝑎𝑖 → 𝑎′𝑖 , 𝑓 (𝑎)), 𝑡𝑟𝑒𝑒 (𝑎𝑖 → 𝑎′𝑖 , 𝑓 (𝑎
′))) = 1

In order to satisfy DB, the difference between the depths of 𝑓 (𝑎)
and 𝑓 (𝑎′) has to be at most 1. Therefore, 𝑑𝑒𝑝𝑡ℎ(𝑎𝑖 → 𝑎′

𝑖
, 𝑓 (𝑎)) ≥ 1.

𝑝;𝑎𝑖

𝑎 𝑗1 ; 𝑓 (𝑎) 𝑎 𝑗2

𝑎 𝑗3

1) 𝑎 𝑎′
𝑖

𝑎′
𝑗1

𝑎′
𝑗2

𝑓 (𝑎′)𝑎′
𝑗3

2) 𝑎′

𝑦1;𝑏𝑖 ;𝑏 𝑗 𝑦2

𝑦3 𝑦4

3) 𝑏 𝑏 ′
𝑗 𝑏 ′

𝑖

𝑦′
1

𝑦′
2

4) 𝑏 ′

Figure 6: An illustration of the possible locations of agent 𝑗
and the facility locations 𝑦,𝑦′ for the profiles 𝑎, 𝑎′, 𝑏, 𝑏 ′.

Let 𝑝 denote the first vertex on the path from 𝑓 (𝑎) to 𝑎𝑖 (see

Fig. 6.1). From TPAR, there exists an agent 𝑗 s.t.

𝑎 𝑗 ∈ 𝑡𝑟𝑒𝑒 (𝑎′𝑖 → 𝑝, 𝑝) \ 𝑝
(see locations 𝑎 𝑗1 , 𝑎 𝑗2 , 𝑎 𝑗3 in Fig. 6.1). We define two profiles:

𝑏 := (𝑎−𝑗 , 𝑏 𝑗 = 𝑝) and 𝑏 ′ := (𝑎′−𝑗 , 𝑏
′
𝑗 = 𝑝)

and their outcomes: 𝑦 := 𝑓 (𝑏) and 𝑦′ := 𝑓 (𝑏 ′).
For the pair (𝑎, 𝑏), when agent 𝑗 moves to 𝑝 , it follows from DB

that the facility can only move to 𝑝 , or to a vertex 𝑧 s.t.

𝑑 (𝑝, 𝑧) = 1 (19)

For the pair (𝑎, 𝑎′), when agent 𝑗 moves to 𝑝 , it follows from

ADR that the facility can only move from 𝑓 (𝑎′) to a different child

of 𝑝 in the tree induced by the move 𝑎𝑖 → 𝑎′
𝑖
(see Fig. 6.2, Fig. 6.4).

Therefore it holds that 𝑦′ ∈ 𝑡𝑟𝑒𝑒 (𝑎 → 𝑎′
𝑖
, 𝑎′

𝑖
) and

𝑑𝑒𝑝𝑡ℎ(𝑎 → 𝑎′, 𝑦′) = 𝑑𝑒𝑝𝑡ℎ(𝑎 → 𝑎′, 𝑓 (𝑎′)) ≥ 2 (20)

(see Figs. 6.2 and 6.4). We show that every possible location of the

facility for profile 𝑏 violates SP or the minimality condition:

(1) 𝑦 ∈ 𝑡𝑟𝑒𝑒 (𝑎𝑖 → 𝑎′
𝑖
, 𝑎′

𝑖
) (location 𝑦2 in Fig. 6.3): DB is violated

for the pair (𝑏,𝑏 ′) since 𝑦,𝑦′ are in the same tree w.r.t. the

move 𝑎𝑖 → 𝑎′
𝑖
, but from Eq. (19), 𝑑𝑒𝑝𝑡ℎ(𝑎𝑖 → 𝑎′

𝑖
, 𝑦) = 0

while 𝑑𝑒𝑝𝑡ℎ(𝑎𝑖 → 𝑎′
𝑖
, 𝑦′) ≥ 2 from Eq. (20).

(2) 𝑦 ∈ 𝑡𝑟𝑒𝑒 (𝑎𝑖 → 𝑎′
𝑖
, 𝑎𝑖 ) (locations 𝑦1, 𝑦3, 𝑦4 in Fig. 6.3): The

pair (𝑏,𝑏 ′) violates 1-TSI. This contradicts the minimality of

Σ𝑘≠𝑖𝑑 (𝑎𝑘 , [𝑎𝑖 , 𝑎′𝑖 ]), since agent 𝑗 is closer to the trajectory

of agent 𝑖 in profiles 𝑏,𝑏 ′ than in profiles 𝑎, 𝑎′. □

5.2 Our Characterization
We now complete our characterization of onto, SP mechanisms.

Lemma 5.17. Every TMON and ATC mechanism 𝑓 on the discrete
tree is SP.

Proof. Suppose 𝑓 is TMON and ATC. By definition it is 1-TSI

and ADR. Consider an arbitrary pair of profiles (𝑎, 𝑎′) s.t. 𝑎′ =

(𝑎−𝑖 , 𝑎′𝑖 ) for some 𝑖 ∈ 𝑁, 𝑎′
𝑖
∈ 𝑉 . If 𝑡𝑟𝑒𝑒 (𝑎𝑖 → 𝑎′

𝑖
, 𝑓 (𝑎)) = 𝑡𝑟𝑒𝑒 (𝑎𝑖 →

𝑎′
𝑖
, 𝑓 (𝑎′)), it follows from ADR that

𝑑𝑒𝑝𝑡ℎ(𝑎𝑖 → 𝑎′𝑖 , 𝑓 (𝑎)) − 𝑑𝑒𝑝𝑡ℎ(𝑎𝑖 → 𝑎′𝑖 , 𝑓 (𝑎
′)) = 0

= 𝑑 (𝑡𝑟𝑒𝑒 (𝑎𝑖 → 𝑎′𝑖 , 𝑓 (𝑎)), 𝑡𝑟𝑒𝑒 (𝑎𝑖 → 𝑎′𝑖 , 𝑓 (𝑎
′))) (21)
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If 𝑡𝑟𝑒𝑒 (𝑎𝑖 → 𝑎′
𝑖
, 𝑓 (𝑎)) ≠ 𝑡𝑟𝑒𝑒 (𝑎𝑖 → 𝑎′

𝑖
, 𝑓 (𝑎′)), it follows from 1-TSI

that

𝑑 (𝑓 (𝑎), [𝑎𝑖 , 𝑎′𝑖 ]) ≤ 1; and 𝑑 (𝑓 (𝑎′), [𝑎𝑖 , 𝑎′𝑖 ]) ≤ 1 (22)

Eq. (22) implies that

|𝑑𝑒𝑝𝑡ℎ(𝑎𝑖 → 𝑎′𝑖 , 𝑓 (𝑎)) − 𝑑𝑒𝑝𝑡ℎ(𝑎𝑖 → 𝑎′𝑖 , 𝑓 (𝑎−𝑖 , 𝑎
′
𝑖 )) | ≤ 1

≤ 𝑑 (𝑡𝑟𝑒𝑒 (𝑎𝑖 → 𝑎′𝑖 , 𝑓 (𝑎)), 𝑡𝑟𝑒𝑒 (𝑎𝑖 → 𝑎′𝑖 , 𝑓 (𝑎
′)))

From Eqs. (21), (22), 𝑓 satisfies DB, and therefore 𝑓 is SP from

Lemma 5.11. □

We conclude that every onto mechanism 𝑓 on the discrete tree

is strategyproof if and only if it is TMON and ATC. This follows

from Lemmas 5.11, 5.14, 5.16 and 5.17.

6 SHIFT-INVARIANT MECHANISMS
In this section, we show that on infinite discrete lines, the only

anonymous, shift-invariant SP mechanisms are order statistics

mechanisms—as on continuous lines [12]. Many characterization

results have a "neutral" variant. Here shift-invariance is the corre-

sponding property to neutrality. The result itself is interesting since

it shows neutrality kills the difference between discrete and contin-

uous domains. That is, all additional SP mechanisms in the discrete

domain must single out specific locations to satisfy neutrality.

Definition 6.1 (Shift-Invariant). A mechanism 𝑓 on an infinite

discrete line (w.l.o.g. Z) is shift-invariant if for every location

profile 𝑎 ∈ Z𝑛 and𝑑 ∈ Z, it holds that 𝑓 (𝑎1+𝑑, . . . , 𝑎𝑛+𝑑) = 𝑓 (𝑎)+𝑑 .

Definition 6.2 (Anonymous). A mechanism 𝑓 is anonymous if
for every location profile 𝑎 ∈ Z𝑛 and every permutation of agents

𝜋 : 𝑁 → 𝑁 , it holds that 𝑓 (𝑎1, . . . , 𝑎𝑛) = 𝑓 (𝑎𝜋1
, . . . , 𝑎𝜋𝑛 ).

Due to anonymity, we assume w.l.o.g. that the agents are ordered

by their location in profile 𝑎, i.e., if 𝑎𝑖 < 𝑎 𝑗 , 𝑖 < 𝑗 .

Definition 6.3 (𝑘th order statistic). A mechanism 𝑓 is the 𝒌th
order statistic mechanism for some 𝑘 ≤ 𝑛, if for every profile

𝑎 = (𝑎1, ..., 𝑎𝑛), it holds that 𝑓 (𝑎) = 𝑎𝑘 .

Lemma 6.4. If a mechanism 𝑓 is onto, SP and shift-invariant, then
for every profile 𝑎 = (𝑎1, . . . , 𝑎𝑛), it holds that 𝑓 (𝑎) = 𝑎𝑖 for some
𝑖 ∈ [1, 𝑛].2

Proof. Consider a pair of profiles 𝑎, 𝑎′ = (𝑎1 + 1, . . . , 𝑎𝑛 + 1).
From shift-invariance, 𝑓 (𝑎′) = 𝑓 (𝑎) + 1. The profile 𝑎′ can be

achieved by 𝑛 one-step moves, one per an agent.

Let 𝑧𝑖 := (𝑎1, . . . , 𝑎𝑖 , 𝑎𝑖+1 + 1, . . . , 𝑎𝑛 + 1). Note that 𝑧𝑛 = 𝑎 and

𝑧0 = 𝑎′. For every such move of agent 𝑗 ∈ 𝑁 , resulting in profile

𝑎 𝑗−1, the following hold:

(1) 𝑓 (𝑎 𝑗 ) ≥ 𝑓 (𝑎 𝑗+1) from TMON.

(2) If 𝑓 (𝑎 𝑗 ) ≠ 𝑓 (𝑎 𝑗+1), from shift-invariance and the previous

statement, it holds that 𝑓 (𝑎 𝑗 ) = 𝑓 (𝑎 𝑗+1) + 1.

It follows that the facility moves as a result of the move of a single

agent 𝑘 and 𝑓 (𝑎) = 𝑎𝑘 . Otherwise,

𝑡𝑟𝑒𝑒 (𝑎𝑘 → 𝑎𝑘 + 1, 𝑓 (𝑎′)) = 𝑡𝑟𝑒𝑒 (𝑎𝑘 → 𝑎𝑘 + 1, 𝑓 (𝑎))

2
This property is sometimes called “tops-only" or “peaks-only".

and

𝑑𝑒𝑝𝑡ℎ(𝑎𝑘 → 𝑎𝑘 + 1, 𝑓 (𝑎′)) ≠ 𝑑𝑒𝑝𝑡ℎ(𝑎𝑘 → 𝑎𝑘 + 1, 𝑓 (𝑎))
contradicting DB. □

Lemma 6.5. An onto, SP, anonymous, shift-invariant mechanism
𝑓 for the discrete line is a 𝑘th order statistic mechanism.

Proof. Assume by contradiction that 𝑓 is not a𝑘th order statistic

mechanism, i.e. there exists a pair of profiles (𝑎, 𝑏) s.t. 𝑓 (𝑎) is the 𝑗 th
agent location and 𝑓 (𝑏) is the 𝑘th agent location. Assume that 𝑗 < 𝑘 .

Let 𝑑 denote 𝑏𝑛 − 𝑎1 + 1. Consider a profile 𝑐 where 𝑐𝑖 = 𝑏𝑖 − 𝑑

if 𝑑 > 0 and 𝑐𝑖 = 𝑏𝑖 otherwise. Note that from shift-invariance,

𝑓 (𝑐) = 𝑐𝑘 .

We now iteratively move each agent in profile 𝑐 to a location in

profile 𝑎. In the 𝑙th iteration we move the agent with index 𝑛 + 1− 𝑙

to the location 𝑎𝑛+1−𝑙 , getting a sequence of profiles (𝑐𝑙 )𝑛𝑙=1. From
TMON, the output in every iteration is the location of an agent

with an index higher or equal to 𝑘 . After the 𝑛th iteration we reach

a profile 𝑐𝑛 that is identical to 𝑎, up to permutation of agents. Thus

by anonymity 𝑓 (𝑎) = 𝑓 (𝑐𝑛).
On the other hand, 𝑓 (𝑐𝑛) ≥ (𝑐𝑛)𝑘 = 𝑎𝑘 > 𝑎 𝑗 = 𝑓 (𝑎), i.e. a

contradiction. The proof is similar for the case 𝑗 > 𝑘 . □

Theorem 6.6. An onto, n-agent mechanism 𝑓 is anonymous, shift-
invariant and SP if and only if it is the 𝑘th order statistic for some
𝑘 ≤ 𝑛.

Proof. The first direction follows from Lemmas 6.4 and 6.5.

We prove the second direction. Clearly, a 𝑘th order statistic

mechanism is anonymous and shift-invariant. The only way for

an agent 𝑖 to change the chosen location is by reporting a location

𝑎𝑖 > 𝑎𝑘 if 𝑖 < 𝑘 or a location 𝑎𝑖 < 𝑎𝑘 if 𝑖 > 𝑘 . In both cases, the

distance of the agent from the facility will increase. □

7 CONCLUSION AND OPEN QUESTIONS
In this research, we provide a complete characterization of onto and

strategyproof facility location mechanisms on discrete trees—under

quadratic preferences. Interestingly, while a characterization for

continuous trees exists due to [16], these are not easily compared,

as the latter uses a collection of median-like rules rather than ax-

iomatic properties. The key property that allows comparison of

continuous and discrete mechanisms is trajectory containment (TC):
while this property characterizes exactly the strategyproof onto

mechanisms on continuous trees, it needs to be relaxed in a partic-

ular way to apply for discrete trees.

A different characterization for discrete trees and general single-

peaked preferences [14] uses a third type of properties that map

agents to leafs of the tree. Thus a better understanding of how prop-

erties from the different models map onto one another is important.

One possible direction for further research is a characterization

of strategyproof mechanisms on discrete weighted graphs. Contrary

to continuous graphs, there is a finite set of possible locations for

each agent and outcome. Unlike the discrete case, the distances

between such two neighboring locations vary along the tree.

Additionally, characterizations of SP mechanisms can promote

the study of optimal SP approximation mechanisms, for example

for minimizing the Egalitarian cost.
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