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ABSTRACT
In this paperwe present Probabilistic Control Argumentation Frame-

works (PCAFs) that extend classical Control Argumentation Frame-

works (CAFs) to take into account probabilistic information in

the reasoning process. We show that probabilities can be used to

optimally control CAFs that cannot be controlled otherwise. We

introduce the notion of controlling power, that represents the prob-

ability that a control configuration reaches its target. A computa-

tional method based on Monte Carlo simulations for computing

the controlling power of control configurations is defined. We ex-

perimentally show that PCAFs outperform w.r.t runtime classical

CAFs and in a large number of situations they can reach the target

with a high probability while the classical CAFs fail.
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1 INTRODUCTION
Computational argumentation has become a major sub-domain in

the field of autonomous agents and multi-agent systems during the

last decades. It has applications like reasoning in presence of incon-

sistent knowledge [9], decision making [4, 5, 23], or legal reasoning

[8]. It has also applications in the modeling of agent dialogues

such as negotiation [14], persuasion [28], etc. A classical abstract

argumentation framework [16] is a directed graph where the nodes

are the arguments, and edges are attacks between arguments. The

evaluation of arguments acceptability is made through the concept

of extensions, i.e. sets of arguments that are collectively acceptable.

In the last decade, argumentation dynamics [6, 15, 35] and uncer-

tainty in argumentation [7, 11] have gained interest. Bridging the

gap between these matters, Control Argumentation Frameworks

(CAFs) [13, 26, 27] have been defined to provide an approach that

allows an agent to enforce a set of arguments (called the target) as

a subset of some (or each) extension in presence of uncertainty.

As said before argumentation has shown its value in automated

negotiation (see e.g. [3, 14]). In this context, it was natural to use

CAFs for proposing a new negotiation framework [12], where CAFs
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are used to model the uncertain knowledge that an agent has about

the profile of its opponent. Roughly speaking, a proponent agent

makes an offer to its opponent if this offer is supported in the

opponent’s uncertain theory, by an argument that is expected to be

accepted by the opponent. The CAFs reasoning mechanism aims at

guaranteeing that the supporting argument is accepted whatever

the current (“real") opponent theory. When this arrives we say that

we have a controllable CAF.

Experimental results presented in [12] have shown that using

CAFs allows to improve the quality of negotiation, i.e. the percent-
age of agreement between agents. But there are situations where a

CAF is not controllable, meaning that the agent cannot make an

offer, because it is not sure that the arguments supporting offers can

be accepted by its opponent (even with the support of additional

arguments sent to the opponent).

However, the CAFs used in negotiation are based on a qualitative

representation of uncertainty. The work on negotiation proposed

in [12] has thus motivated us for proposing a quantitative approach

for representing uncertainty in CAFs by introducing Probabilistic
CAFs (PCAFs). Indeed, we do expect this will improve the overall

quality of the negotiation (see e.g. observations in [29]). For instance,

in situations where the negotiation dialogue is submitted to time

and/or number of rounds limits constraints, it is worth focusing on

the “best" completions (corresponding to the most probable profiles)

instead of considering the whole set of completions (i.e. all possible

profiles) for computing the arguments that will support the desired

offer in the “real" opponent’s theory.

Besides automated negotiation, Probabilistic CAFs could also be

used in persuasion dialogues but they have natural applications in

many other domains, since conflicting information and uncertainty

are omnipresent in real world problems such as automated risk

and threat management and mitigation, automated management

of regulatory compliance, crisis risk management, strategic risk

management, etc., where quantitative information on uncertainty

can be gathered and profitable. For example in the context of strate-

gic risk management, fixed arguments could represent strategic

goals (conclusions of arguments) and scenarios established by the

business analysts that support these goals (supporting evidence).

Strategic goals are usually conflicting. Scenarios may be then in

conflict with potential external events (represented by uncertain

arguments) that could occur. But these events could then be mit-

igated by actions the company may take to enforce and protect

its strategy (represented by control arguments). So being able to

calculate the probability of success of a set of such actions through
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probabilistic controllability, will determine the probability of suc-

cess of the strategy, and if this probability is too low then it would

help the decision makers to change their current strategy.

While argumentation frameworks with probabilities already ex-

ist [19–21, 24, 25, 30–33], our PCAF is the first one to incorporate

argumentation dynamics and probabilistic argumentation. In this

paper we experimentally show that our PCAFs approach outper-

forms (in most cases) the classical CAFs one w.r.t. runtime and

target reachability.

2 PRELIMINARIES
2.1 Background on AFs and CAFs
We assume that the reader is familiar with abstract argumentation

[16]. We use AF = ⟨A,R⟩ to denote an argumentation framework

(AF), and st(AF ) for its set of stable extensions. The stable semantics

is chosen for a question of exemplification, but all concepts defined

here can be directly adapted to other semantics. See [16] for other

extension semantics.

Let us now introduce control argumentation frameworks (CAFs)

[13]. Besides the classical arguments and attacks, a CAF is made of

uncertain information (that can represent the information that an

agent has about the environment, or about the other agents) and

control arguments (that represent the possible ways for the agent

to interact with the environment or the other agents). Formally,

CAF = ⟨F ,C,U ⟩ with F = ⟨AF ,→⟩; C = ⟨AC ,⇛⟩; U = ⟨AU ,d
∪⇆⟩. AF , AC and AU are disjoint sets of arguments, while →,⇛,

d and⇆ are disjoint sets of attacks.

F is the fixed part, made of arguments AF and attacks → that

are certain to exist. The uncertain part U is made of arguments

AU that may appear in the system, but could be absent. Similarly,

the attacks fromd are uncertain. Finally, the symmetric conflict

relation⇆ allows to state that we are sure that two arguments a,b
are conflicting, but we are not sure whether the direction of the

attack is from a to b, from b to a, or even both at the same time.

The uncertain part represents elements that can be actually part of

the system (or not) w.r.t. the evolution of a dynamic environment,

or w.r.t. the actions of other agents. Finally, the control part C is

made of arguments AC and attacks ⇛ that the agent can use for

defending arguments in the fixed part from attacks coming from

the uncertain part. When it is the case, the agent defines a control
configuration cc ⊆ AC and then only the control arguments in

cc (and the associated attacks) are considered by the system; this

defines the CAF configured by cc .
Similarly to incomplete argumentation frameworks [7, 11], a

CAF can be associated with a set of completions, that are classical
AFs compatible with the (uncertain) information carried by CAF .
Each completion represents a possible state of the system that is

modeled by CAF .
The notion of controllability of a CAF is related to a target, i.e.

a set of arguments T ⊆ AF . This target has to be (skeptically or

credulously) accepted in each completion ofCAF . For instance, [12]
propose a method for automated negotiation where the target is

an argument that supports the agent’s preferred offer; making the

target accepted in this context means that the agent is certain that

its opponent will accept this offer. We say that CAF is skeptically
(resp. credulously) controllablew.r.t.T and σ if there exist cc ⊆ AC s.t.

T is included in each (resp. some) σ -extension of CAF configured

by cc . Since the agent expects the target to be included in each (or

some) extension, we can focus on conflict-free targets.

t1

t2

a

d

b

c1

c2

c3

(a) CAF

t1

t2

a

d

b

c1

c2

(b) Configured CAF

Figure 1: CAF and one possible configuration

Example 1. In CAF given at Figure 1a, the fixed part is AF =

{a,b,d, t1, t2}, →= {(d, t2)}. The uncertain part is here AU = ∅,
⇆= ∅, and d= {(a, t1), (b, t2)}. Finally, the control part is AC =
{c1, c2, c3}, and⇛= {(c1,a), (c2,b), (c2,d), (c3,a), (c3,d)}. Figure 1b
corresponds to CAF configured by cc = {c1, c2}. This (configured)
CAF has four completions, since both (a, t1) and (b, t2) can either
belong to the completion or not. We notice that the target {t1, t2}
is included in each extension of each completion of the configured
CAF (for any of the semantics considered in this paper). So, CAF is
skeptically controllable w.r.t. {t1, t2} the stable semantics.

2.2 New Definitions and Notations
Let us now introduce some new concepts and notations related to

CAFs, that are not defined in [13], and that will be useful when

working with probabilities.

First, we distinguish between "basic" control configurations, that

consist in selecting a subset of AC , and a valid configuration that

allows to guarantee the acceptance of a target set of arguments.

Definition 1. Let T ⊆ AF be a target set of arguments, and σ a
semantics. For a given CAF = ⟨F ,C,U ⟩, cc ⊆ AC is a skeptical (resp.
credulous) valid control configuration of CAF w.r.t. T and σ if T is
included in each (resp. at least one) σ -extension of every completion
of CAF ′ = ⟨F ,C ′,U ⟩, with C ′ = ⟨cc, {(ai ,aj ) ∈⇛ | ai ,aj ∈ (AF ∪

AU ∪ cc)}⟩.

For instance, in CAF given at Figure 1a, cc = {c1, c2} is a valid
configuration: in every completion, t1 is defended against the (po-

tential) attack from a, and t2 is defended against the (potential)

attack from t2. On the contrary, cc ′ = {c1} is not valid, since t2 is
not defended against b in completions where (b, t2) is there. Con-
trolling a CAF is then the capacity to find at least a valid control

configuration for the CAF.

Let us now introduce a notation for the set of completions of a

CAF configured by a control configuration:

Definition 2. We defineComp(CAF ) as the set of all possible com-
pletions of CAF . Then, Compcc (CAF ) = Comp(CAF ′) where CAF ′ =
⟨F ,C ′,U ⟩, with C ′ = ⟨cc, {(ai ,aj ) ∈⇒ |ai ,aj ∈ (AF ∪AU ∪ cc)}⟩.

Again, when we consider CAF from Figure 1a, for cc = {c1, c2},
Compcc (CAF ) is the set of completions of the configured CAF drawn

at Figure 1b.
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Definition 3. GivenCAF = ⟨F ,C,U ⟩, we defineCAFU , the CAF
without control part derived from it: CAFU = ⟨F , ∅,U ⟩. A root com-
pletion of CAF is a completion of the associated CAFU .

A root completion of a CAF is then a completion built with no

control arguments. Intuitively, this concept will be useful in the

computation of probabilities of completions: since control argu-

ments are not attached with a probability (but they are only used if

they are selected by the agent), the probability of any completion

is the same as the probability of the associated root completion.

Finally, given a semantics σ andT ⊆ AF a target, cc is a skeptical
(resp. credulous) valid configuration for a root completion AFr =
⟨A,R⟩ if T belongs to each (resp. at least one) extension of the AF

⟨A ∪ cc,R ∪ {(ai ,aj ) ∈⇛ | ai ,aj ∈ (AF ∪AU ∪ cc)}⟩.

CCTσ ,X (CAF ) denotes the set of allX valid control configurations

for the CAF w.r.t.T and σ , where X ∈ {sk, cr } stands for "skeptical"
or "credulous". Similarly,CCTσ ,X (AFr ) is the set of allX valid control

configurations for the root completion AFr w.r.t. T and σ . If it is
clear from the context, we drop σ andX to keep the notation lighter.

3 PROBABILISTIC CAF
Since a CAF contains an uncertain part, it makes sense to study

how a probability distribution can be added to the uncertain part

and how extensions and control configurations can be qualified

using this distribution. While probabilistic argumentation has al-

ready been studied, our work is the first approach that is related

to argumentation dynamics (more precisely, we recall that CAFs

are closely related to extension enforcement defined by [6]). We

discuss related work in a later section of the paper.

Here, we consider the case where the probabilities of different

arguments and attacks are independent. Indeed, having conditional

probabilities is meaningful when structured argumentation is con-

sidered. For instance, the probability of an argument to appear in

the framework is related to the probability of its sub-arguments.

But this kind of approach is out of the scope of our work, since we

consider abstract argumentation frameworks where arguments are

self-contained.

Therefore we can give a formal definition of a probabilistic CAF.

Definition 4. A Probabilistic Control Argumentation Framework
is a tuple PCAF = ⟨F ,C,U ,p1,p2,p3⟩ where ⟨F ,C,U ⟩ is a CAF, and:

• p1 is a mapping fromAU to ]0; 1[ that expresses the probability
of presence of uncertain arguments;

• p2 is a mapping fromd to ]0; 1[, that gives the probability of
presence of uncertain attacks, if both arguments are present
(implicit conditional probability);

• p3 is a mapping from⇄ to ]0; 1[×]0; 1[, corresponding to the
probability that an undirected attack appears in one or the
other direction when both arguments are present (again, there
is an implicit conditional probability). Since there certainly is a
conflict between the arguments, p3(x)[0] + p3(x)[1] ≤ 1 holds.

For (a,b) ∈⇆ an undirected conflict, p3((a,b)) is a pair s.t.

p3((a,b))[0] is the probability that only (a,b) is in the system,

p3((a,b))[1] is the probability that only (b,a) is in the system, and

1 − p3((a,b))[0] − p3((a,b))[1] is the probability that both attacks

are in the system.

Here we need to clarify that none of the individual probabilities

of uncertain elements can be 0 or 1. If the probability is 0, we just

need to remove the element from the PCAF definition, and if the

probability is 1, we have to move the element to the fixed part F .
A simple example is given at Figure 2, where the uncertainty

only concerns two attacks: (a, t1) belongs to the system with a

probability of 0.2, while (b, t2) has a probability of 0.8 to appear.

Considering PCAF and a root completion AFr = ⟨Ar ,Dr ⟩ of

PCAF , s.t. Ar = ArU ∪AF and ArU ⊆ AU , we define the following

random events:

• on(a) ⇐⇒ a ∈ Ar
• off (a) ⇐⇒ a < Ar
• on((ai ,aj )) ⇐⇒ (ai ,aj ) ∈ Dr
• off ((ai ,aj )) ⇐⇒ (ai ,aj ) < Dr and ai ,aj ∈ Ar
• dir1((ai ,aj )) ⇐⇒ (ai ,aj ) ∈ Dr and (aj ,ai ) < Dr
• dir2((ai ,aj )) ⇐⇒ (aj ,ai ) ∈ Dr and (ai ,aj ) < Dr
• dir12((ai ,aj )) ⇐⇒ (ai ,aj ) ∈ Dr and (aj ,ai ) ∈ Dr

We define as well the following sets:

• A1 = ArU
• A2 = AU \ArU
• R1 = {(ai ,aj ) ∈ Dr | ai ,aj ∈ Ar and (ai ,aj ) ∈d}

• R2 = {(ai ,aj ) < Dr | ai ,aj ∈ Ar and (ai ,aj ) ∈d}

• R3 = {(ai ,aj ) ∈ Dr , (aj ,ai ) < Dr | ai ,aj ∈ Ar , (ai ,aj ) ∈⇆}

• R4 = {(aj ,ai ) ∈ Dr , (ai ,aj ) < Dr | ai ,aj ∈ Ar , (ai ,aj ) ∈⇆}

• R5 = {(aj ,ai ) ∈ Dr , (ai ,aj ) ∈ Dr | ai ,aj ∈ Ar , (ai ,aj ) ∈⇆}

Knowing that (1) P(off (x)) = 1 − P(on(x)), (2) P(off ((ai ,aj ))) =
1 − P(on((ai ,aj ))), and (3) P(dir12(ai ,aj )) = 1 − P(dir1(ai ,aj )) −
P(dir2(ai ,aj )), we observe the following result.

Observation 1.

P(AFr ) =
∏

a∈A1
P(on(a)) ×

∏
a′∈A2

[1 − P(on(a′))]
×
∏

(ai ,aj )∈R1
P[on((ai ,aj ))]

×
∏

(ak ,al )∈R2
[1 − P[on((ak ,al )]]

×
∏

(am,an )∈R3
P[dir1((am ,an ))]

×
∏

(ao,ap )∈R4
P[dir2((ao ,ap ))]

×
∏

(aq,ar )∈R5
[1 − P[dir1((aq ,ar ))]

−P[dir2((aq ,ar ))]]

Observation 1 states that the probability of a root completion

is computed as the product of the probabilities of its elements.

The probability distribution for the root completions follows the

Kolmogorov axioms.

4 CONTROLLING UNDER UNCERTAINTY
4.1 Discussion on Probabilistic Controllability
When a PCAF has valid control configurations, the exact methods

proposed by [13, 27], based on Quantified Boolean Formulas (QBFs)

or iterative SAT solving, can be used to compute these configu-

rations. But in the case where the PCAF is not controllable, the

problem is different. We need to identify the "best" control configu-

ration(s). In this section, we propose two different approaches to

solve this problem.

The reasons for a PCAF to be uncontrollable are of two kinds:

• There is one (or more) element of the targetT = {t1, . . . , tn }
for which the PCAF is not controllable taken individually.

Main Track AAMAS 2021, May 3-7, 2021, Online

521



If PCAF is not controllable w.r.t. ti ∈ T , then PCAF is not

controllable w.r.t. T .
• Each individual ti ∈ T can be controlled individually, but

there is no way to control all of them at the same time.

Therefore the intersection of control configurations with

regard to each individual target element of T is empty.

From the above, it is clear that even if it is not possible to control a

PCAF w.r.t. a targetT , we may still be able to control the PCAF w.r.t.

T ′ ⊂ T . The following example illustrates the issue of "optimally

controlling" an uncontrollable PCAF.

t1

t2

a

d

b

0.2

0.8

c1

c2

c3

Figure 2: Uncontrollable PCAF

Example 2. The PCAF depicted at Figure 2 is not controllable with
regards to T = {t1, t2}. It has exactly four possible root completions.
If we choose the control configuration {c2}, we will control T with a
probability of 80%. The only case where the PCAF is not controlled w.r.t.
T is when the attack (a, t1) is present. But if we choose this control
configuration, t2 will always be in all stable extensions whereas t1
will be present only 80% of the time. If now we set a priority on the
elements of the target, and it turns out that t1 is more important
to protect than t2, we would rather choose {c3} as the best control
configuration. Now, t1 is sure to be accepted, while t2 is only accepted
in situations where the attack (b, t2) is not in the system.

Both approaches are valid. An agent could have a policy where

all target elements are equally important, but in other situations, it

could decide to set priorities on the target elements. For instance,

in an autonomous car, the target to protect pedestrians is certainly

more important than not damaging the car, even if at the end it

is preferable to have both targets protected if possible. In order to

formalize both approaches, we introduce two fundamental concepts:

controlling power and supporting power.

4.2 Maximising Controlling Power
The controlling power of a control configuration cc in PCAF , w.r.t.
a semantics and a target T , is the probability that the target is

accepted when PCAF is configured by cc . This concept is formalized

as follows:

Definition 5. Given PCAF = ⟨F ,C,U ,p1,p2,p3⟩, a targetT and
a control configuration cc ⊆ AC , we define f σT : Compcc (PCAF ) →
{0, 1} s.t. f σT (AFcc ) = 1 iff T is accepted according to the semantics
σ for the completion AFcc ∈ Compcc (PCAF ).

The controlling power of cc w.r.t. T is:

cTpower (cc) =
∑

AFcc ∈Compcc (PCAF )

P(AFcc ) × f σT (AFcc )

The controlling power of a configuration cc , w.r.t. a target T , is
the sum of the probabilities of the completions whereT is accepted

when the PCAF is configured with cc . Said otherwise, this is the

probability that the target is reached if the PCAF is configured by cc .

Since we know that there is always a root configuration AFr
with the exact same probability as AFcc obtained by removing

all control arguments and control attacks from AFcc , we have

cTpower (cc) =
∑
AFcc ∈Compcc (PCAF ) P(AFr ) ∗ f

σ
T (AFcc ), whereAFr

is the corresponding root completion of AFcc .

t1

t2

a

d

b

(a) AF 1

r

t1

t2

a

d

b

(b) AF 2

r

t1

t2

a

d

b

(c) AF 3

r

t1

t2

a

d

b

(d) AF 4

r

Figure 3: Four root completions of PCAF

Example 3. We consider again the PCAF described at Figure 2.
This PCAF has four root completions, that are represented at Figure 3.
These completions have probabilities: P(AF 1r ) = (1 − 0.2) × (1 −

0.8) = 0.16, P(AF 2r ) = 0.2 × (1 − 0.8) = 0.04, P(AF 3r ) = (1 −

0.2) × 0.8 = 0.64 and P(AF 4r ) = 0.2 × 0.8 = 0.16. We start with the
target T = {t1, t2}. With cc = {c2}, T is accepted in the completions
built from AF 1r and AF 3r (since c2 does not defend t1 against a, the
other completions do not work). So, cTpower (cc) = 0.16 + 0.64 =

0.8. Similarly, cTpower (cc
′) = 0.2, with cc ′ = {c3}. If we consider

other targets, we have e.g. c
{t2 }
power (cc) = 1, c {t1 }power (cc) = 0.8 or

c
{t1 }
power (cc

′) = 0.8.

We identify the best configurations w.r.t. controlling power:

Definition 6. The most powerful control configurations for a
PCAF w.r.t. a target T are

mpccT (PCAF ) = {cc | argmax(cTpower (cc))}

The controlling power of a control configuration cc is the proba-
bility that it protects (according to the chosen semantics) the target.

Thus, the set of most powerful control configurations are those with

the highest probability to protect the target. From the definition

above, if the PCAF is controllable (in the sense of [13]), the most

powerful control configurations are the valid control configurations

of the PCAF, with a controlling power of 1. Now, we identify a way

to simplify the search for control configurations:

Theorem 1. Given PCAF = ⟨F ,C,U ,p1,p2,p3⟩, ∀cc ⊆ AC , ∃cc ′
such that

• cTpower (cc
′) ≥ cTpower (cc);
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• cc ′ is conflict free;
• cc ′ is conflict free with T ;
• cc ′ is always in the same extension as T ;
• cTpower (cc

′) = cT∪cc
′

power (cc
′).

The intuition behind Theorem 1 is that removing from a control

configuration the arguments that are in conflict with the target and

also mutually conflicting, can only increase the controlling power.

We end up with a control configuration that is conflict free and

conflict free with the target. Thus control arguments and target are

always in the same extension.

4.3 Maximising Supporting Power
Once we have chosen a control configuration cc that is conflict-

free, and conflict-free with the target, we know that the target will

be in the same extension(s) as cc with a probability equal to the

controlling power of cc . But other arguments may be present in

these extensions, with a possibly different probability. And this

is what we are willing to measure with the notion of supporting

power.

Definition 7. Given PCAF = ⟨F ,CU ,p1,p2,p3⟩, a control con-
figuration cc ⊆ AC , a semantics σ , and a target T ⊆ AF , we consider
ContTcc (PCAF ) the set of all the root completions that are controlled
by cc w.r.t.T . For each AFr ∈ ContTcc (PCAF ), Xr denotes the set of σ -
extensions containingT and cc . We have ∀xr ∈ Xr , xr = T ∪cc ∪Ar
where Ar ⊆ AU ∪AF .

The supporting power of an argument ai ∈ AU ∪AF , according to
a control configuration cc and a target T is:

spTcc (ai ) =

∑
AFr ∈ContTcc (PCAF )

P(AFr ) ×
∑
xr ∈Xr fxr (ai )∑

AFr ∈ContTcc (PCAF )
P(AFr ) × |Xr |

where fxr (ai ) = 1 if ai ∈ xr and fxr (ai ) = 0 otherwise.

The supporting power of an argument ai according to a given
valid control configuration cc and a target T measures the prob-

ability of ai to belong to the same extensions as T . Trivially, the
supporting power of any element of the target is 1 and if an argu-

ment ai has a supporting power of 1, it can be added to the target

without changing the controlling power of the corresponding con-

trol configuration.

Let us now formalize the method used to optimally control a

PCAF when the elements of the target do not have the same relative

importance.

Definition 8. Given ≥ a total pre-order onT , we define classically
ti > tj iff ti ≥ tj and tj ≱ ti and ti ≈ tj iff ti ≥ tj and tj ≥ ti . Given
such a binary relation, we can split T in {Ti | 0 ≤ i ≤ n} such that⋃n
i=0Ti = T , ∀a ∈ Ti−1,∀b ∈ Ti ,a > b, and ∀a,b ∈ Ti ,a ≈ b.
The preferred control configurations pccT are defined by:

(1) CE0 =mpccT0 (CAF )

(2) CEi = {cc ∈ CEi−1 |
∑
ti ∈Ti sp

T0
cc (ti ) is maximum}

(3) pccT = CEn

Here we keep the best control configurations for the set of pre-

ferred target elements, and we refine our choice by maximizing the

sum of supporting power recursively on the subsequent target sets.

Example 4. We have seen at Example 3 that cc = {c2} has a con-
trolling power of 0.8 w.r.t.T = {t1, t2}. If the agent absolutely needs to
control t1 and t2 at the same time, this is the best control configuration.
Now, suppose that the agent can express relative priorities between
t1 and t2: t1 > t2 (e.g. the former corresponds to pedestrian safety,
while the latter corresponds to avoiding damages to the car). Then, the
search for the best configuration consists in optimizing the probability
to control T0 = {t1}, and if several configurations are possible at this
first step, then the agent chooses one that optimizes the probability
to control T0 ∪T1, where T1 = {t2}. In our example, cc ′ = {c1} and
cc ′′ = {c3} both have a controlling power of 1 w.r.t. T0 = {t1}. Both
have a controlling power of 0.2 w.r.t. T0 ∪T1.

In this section, we have proposed two alternatives to define the

best control configurations w.r.t. the probabilistic information avail-

able in the PCAF: either these are the configurations that have the

highest probability to control the whole target, or these are the ones

that have the highest probability to control the most important ele-

ments of the target. The above possibilities may be very important

in multi-issues negotiation dialogues. For example when there is

no control configuration that allows for all the arguments of the

target, supporting respectively several issues belonging to the nego-

tiation object (e.g. the price of the product, the means of payment,

the delivery date, etc.) to get accepted in the opponent’s theory, it

might be useful to find a control configuration that can control the

argument(s) of the target that support the most important/preferred

issue(s).

5 COMPUTATIONAL METHOD
In [25] the authors propose an algorithm based on Monte Carlo

simulations in order to calculate the probability of a subset of argu-

ments to be accepted according to a given semantic. This is directly

related to determining the acceptance of arguments in classical AFs.

In our case, the problem is different. We are looking for the control

configurations that maximize the probability of a subset of fixed

arguments, called target, to get accepted, which is related to the

notion of extension enforcement [6]. This is the first time that this

kind of reasoning process is applied to probabilistic argumentation.

In the meantime we want to measure the frequency of presence of

other arguments together with the target and the control configu-

ration in the extensions. We propose a Monte Carlo algorithm to

approximate all these metrics at once. Algorithm 1 describes the

method. For this purpose, we introduce the notation Extcc (AFr ),
that corresponds to the set of extensions of the AF made of the root

completion AFr and the control arguments (and attacks) from the

configuration cc .
The map cont ⟨cc,occ⟩ is used to count the number of root com-

pletions that are controlled by the configuration cc . On line 2, we ini-
tialize recorder ⟨cc,arдscounter ⟩, that is used to compute howmany

times different arguments appear in the extensions. arдscounter
is also a mapping structure, where each argument a is associated

to an integer. We suppose that when a configuration cc is encoun-
tered for the first time, the pair ⟨cc, 0⟩ is added to the map count .
Similarly, in the map recorder , cc is initially associated with an

arдscounter where each argument is mapped to 0. These lines are

omitted from the algorithm to keep it simple. These maps are used

to compute (respectively) the controlling power and the supporting
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Algorithm 1 Monte Carlo simulation for approaching mpcc

Require: PCAF = ⟨A,C,U ,p1,p2,p3⟩, T ⊆ AF
1: Initialize map cont ⟨cc,occ⟩
2: Initialize map recorder ⟨cc,arдscounter ⟩
3: for i = 0 to N do
4: Generate AFr randomly

5: for all cc ∈ CCT (AFr ) do
6: occ++ //Increment occ associated to cc
7: for all ext ∈ Extcc (AFr ) do
8: for all a ∈ ext do
9: counter++ //Increment counter associated with a in

arдscounter
10: end for
11: end for
12: end for
13: end for
14: return {⟨cc,occ⟩ | occ is maximal}, recorder

power of control configurations. The controlling power of a control

configuration cc is given by (occ/N ), where occ is the number asso-

ciated to cc in the map cont . The supporting power of any argument

according to cc is given by recorder (cc). So if we want to use the

preferred control configurations instead of most powerful control

configuration, we run the above algorithm withT0 instead ofT and

apply the recursive definition of preferred control configuration.

Monte Carlo is an approximation method and in the above algo-

rithm we have set a fixed number of simulations N . We know that

if N → ∞ we will eliminate the approximation. So we could work

with a confidence interval and a given error.

Indeed the algorithm returns on top of the best control configu-

ration cc a value:max(occ). The metric (mcpT will be abbreviated

inmcp)mcp =max(occ)/N (N is the number of simulations) is an

average calculation of independent identically distributed random

variables. The central limit theorem states that the law ofmcp tends

towards a normal law and the confidence interval is given by:

mcp ± z
1−α/2

√
mcp(1 −mcp)

N

where z
1−α/2 the 1 − α/2 percentile of the normal distribution.

If we want to ensuremcp is in this confidence interval with a

probability of 99% we must choose z
1−α/2 = 2.58.

If we want to fix the width of the confidence interval tomcp ± ϵ

we must choose N ≥
mcp(1−mcp)

ϵ 2 ∗ z2
1−α/2.

We can easily adapt the above algorithm to work with a con-

fidence interval and an error threshold rather than with a fixed

number of simulations. But we must be careful sincemcp has value

0 at first and then can take value 1 in case the CAF is controllable.

Therefore taking this approach will always stop after one simula-

tion. We will prefer the interval approach by [1], used by [25]. In

that case, we replacemcp bymcp′ =
mcp+z2

1−α /2
/2

N+z2
1−α /2

.

We need now a method to generate random root completionAFr
(line 4 of the algorithm). The method is given below:

1

• Start with an empty AF

1
Recall that we focus on the case of independence of probabilities.

• ∀ai ∈ AF add ai in AF
• Generate t ∈]0, 1[ randomly

• ∀ai ∈ AU , if p1(ai ) ≥ t then add ai to AF
• ∀(ai ,aj ) ∈→ s.t. ai ∈ AF and aj ∈ AF , add (ai ,aj ) to AF

• Generate t ∈]0, 1[ randomly

• ∀(ai ,aj ) ∈d s.t. ai ∈ AF , aj ∈ AF and p2(ai ,aj ) ≥ t , add
(ai ,aj ) to AF

• Generate t1, t2 ∈]0, 1[ randomly with t1 + t2 ≤ 1

• ∀(ai ,aj ) ∈⇄ s.t. ai ∈ AF and aj ∈ AF ,
– o1 = 1 ⇐⇒ p3((ai ,aj ))[0] ≥ t1
– o2 = 1 ⇐⇒ p3((ai ,aj ))[1] ≥ t2
– o3 = 1 ⇐⇒ 1−p3((ai ,aj ))[0]−p3((ai ,aj ))[1] ≥ 1−t1−t2

• Choose randomly one option between those having value 1

and apply the corresponding AF transformation (add direc-

tion in one way for o1, the other for o2 or both for o3).

For the last step, it is clear that at least one option has value 1. In-

deed, we can transform the last option in: o3 = 1 iff p3((ai ,aj ))[0]+
p3((ai ,aj ))[1] ≤ t1 + t2. Therefore if o1 , 1 and o2 , 1, then o3 has
value 1. It is not straightforward to generate (t1, t2). These are inde-
pendent random variables, but t1 and t2 are linked by a constraint

t1 + t2 ≤ 1 Therefore if we generate a value of t1 s.t. 0 < t1 < 1, we

can only choose a value for t2 ∈]0, 1 − t1[. Since we use uniform
distributions for the generation of ti , we see that using this method,

we have a bias toward t2 and the full probability distribution will

not be explored. A solution is to choose randomly what variable

will be simulated first, then simulate the second (in the allowed

interval). This way, over a large number of simulations, we will

generate couples (t1, t2) that cover the entire set of possible values.
We now have a method to generate root completions respecting an

underlying probability distribution. This algorithm is linear and its

complexity is in O(|AU | + |AF | + | d | + | ⇄ | + | → |).

6 EXPERIMENTAL EVALUATION
6.1 Experimental Protocol
We have generated CAFs following two models of graph theory:

Barabási-Albert [2] and Kleinberg [17]. Regarding the choice of

Kleinberg and Barabasi-Albert, let us mention that similar graphs

are commonly used in experimental studies in the field of abstract

argumentation. For instance, the ICCMA competition [10, 18, 34]

used Barabasi-Albert graphs for evaluating algorithms dedicated to

Dung’s semantics. Graphs satisfying small-world properties were

also used (namely Watts-Strogatz, while we used Kleinberg). In the

absence of benchmarks coming from concrete applications, this

kind of “structured" benchmark seem more relevant than “purely

random" graphs. For the first model, we have two sets of CAFs,

denoted BA50 and BA60, with respectively 50 and 60 arguments,

and a density 15 − 20%. The Kleinberg model takes as parameter

an integer n, and yields graphs with n2 nodes. We have generated

CAFs with n ∈ {3, 4, 5, 7}, which gives the benchmark sets K9,

K16, K25 and K49 (with, respectively, 9, 16, 25 and 49 arguments).

In each CAF in these benchmark sets, the proportions of fixed

and uncertain arguments is between 40 and 45%, while there are

between 10 and 20% of control arguments. Then, the proportion

of attacks that belong to → or d is 40%, while there are 20% of

attacks in ⇄. Each of the benchmark sets BA50, BA60, K9, K16,

K25 and K49 contains 30 CAFs. The process described above yields
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"classical" CAFs. In order to compare the efficiency of classical

controllability and probabilistic CAFs, we generate PCAFs that are

equivalent to the CAFs: each argument in AU or attack ind has a

probability
1

2
of existing, while attacks in⇄ have a probability

1

3
of

existing in one direction, or the other direction, or both at the same

time. This makes a total of 180 CAF and 180 PCAF instances. For

these CAFs and PCAFs, we compute the credulous controllability

under the stable semantics for a target made of one argument

t ∈ AF , respectively using the QBF-based approach from [13], and

the Monte Carlo simulation from Section 5. Let us mention that

this problem is ΣP
3
-complete [27], which emphasizes the difficulty

to solve it with complete algorithms, and thus justifies the need of

approximate algorithms like ours. The experiments were made on

a machine running on Ubuntu 20.04, with a Core i7 CPU (2.40GHz)

and 8GB of RAM, with a timeout of 900 seconds. The timeout of 900

seconds was chosen since reasoning with CAFs/PCAFs is arguably

harder (from a computational point of view) than classical reasoning

with AFs. So we chose a timeout equivalent to 1.5 times the timeout

of 600 seconds chosen at each edition of the ICCMA competition.

6.2 Results
Figure 4 compares the runtime for the Barabási-Albert instances.

Each point represents an instance, such that the value on the x-
axis is the runtime for the classical CAF approach while the value

on the y-axis is the runtime for the probabilistic approach. Thus,

each point below the diagonal line represents an instance that

is solved faster with the PCAF approach than with the classical

CAF approach. We observe that most of the instances are in this

situation. Also, only the classical CAF approach faces some time-

out, including some instances that are solved almost instantly by

the PCAF approach. Figure 5a compares the runtime for the K9
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Figure 4: Runtime comparison for Barabási-Albert Instances

benchmark set. Clearly, for such small instances, the classical CAF

approach outperforms the probabilistic approach. In the majority

of these small instances the solutions with classical CAFs have been

obtained almost instantly while those with PCAFs needed more

time. The comparison between both approaches is less obvious

for slightly larger instances, K16, as shown in Figure 5b. Indeed,

the 15/30 instances were almost instantly solved with the classical

CAF approach by outperforming the PCAFs one, but for the other

15/30 instances the classical CAF approach reached the timeout

while the PCAFs one has obtained a solution. On larger instances,

the added value of our PCAFs approach is more obvious. For K49

(Figure 5d), all the instances reached the timeout with the classical

CAF approach, while have been solved (except one) with the PCAFs

one. Moreover the majority of them in a relatively short time. The

situation is almost the same for K25 (Figure 5c); only two instances,

were surprisingly easily solved with the CAF approach and took

hundreds of seconds with the PCAF approach.

0 200 400 600 800

0

200

400

600

800

CAF

P
C
A
F

(a) K9

0 200 400 600 800

0

200

400

600

800

CAF

P
C
A
F

(b) K16

0 200 400 600 800

0

200

400

600

800

CAF

P
C
A
F

(c) K25

0 200 400 600 800

0

200

400

600

800

CAF

P
C
A
F

(d) K49

Figure 5: Runtime Comparison for Kleinberg Instances

Then we look at the results regarding controllability and con-

trolling power. Figure 6a and 6b show the controlling power for the

Barabási-Albert instances solved with our PCAFs approach. All the

corresponding CAFs of these instances, either they were not con-

trollable with the classical CAFs approach or this approach reached

the timeout. However, we observe that for most of these instances

we have a high controlling power i.e. up to 1, which means our

PCAFs approach allows to accept the target with a high probability,

even when the classical CAFs approach cannot. The results for the

Kleinberg instances (Figure 7) are similar.
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Figure 6: Controlling Power for Barabási-Albert Instances
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Figure 7: Controlling Power for the Kleinberg Instances

7 RELATEDWORK AND CONCLUSIONS
Let us briefly discuss some existing work on probabilistic argu-

mentation. Among the different approaches, the closest one is the

so-called constellation approach, where probabilities attached to

arguments/attacks are interpreted as the probability that these ele-

ments actually appear in the system. This is the intuition behind the

probabilities that we use in PCAFs. In [25], the authors are basing

their work on a regular argumentation framework, and consider

that both, arguments and attacks are uncertain. In their study, they

make the assumption of independence of probabilities. There is no

concept similar to controllability that is considered in this work;

the problem studied in this paper consists in finding the probability

that a given set of arguments is accepted. [20] considers a global

probability distribution, removing the independence assumption,

but he only considers attacks as being uncertain. And again, the

goal is to compute the probability that a given set of arguments

is acceptable, not to modify the system in order to get some (set

of) argument(s) accepted. The epistemic approach for probabilistic

argumentation [21, 22, 33] attaches to arguments probabilities that

express a degree of belief. Contrary to the constellation approach

(and our work), it does not express the probability that the argument

appears in the system, but the probability (according to agent) that

the argument is acceptable. [19] proposes a probability distribution

over models of the arguments representation language, which can

then be used to give a probability distribution over arguments that

are constructed using classical logic. To that way there is a simple

and clear relationship between belief in the premises of an argu-

ment, and the belief in the argument. [24] are proposing a Bayesian

approach to argument-based reasoning for statistically estimating

the existence of an attack between arguments. In [31, 32], proba-

bilities are not attached to arguments or attacks, but to labellings.

The authors assume an empirical probability distribution over a

set of observed labellings, such that these observed labellings are

drawn from a probability distribution of a probabilistic argumen-

tation framework. Based on the observation of labellings the goal

is to learn attacks between arguments. The work proposed in [30]

concerns structured (i.e. rule-based) argumentation frameworks.

The authors propose a labelling oriented framework that they call

probabilistic labellings. This framework covers uncertainty on in-

clusion of argumentative pieces as well as uncertainty regarding

acceptance of arguments or statements, even in the case all the

argumentative pieces are included in the reasoning activity. Finally,

let us mention the existing work on "classical" CAFs. Besides the

original paper on CAFs [13] and the following work by the same

authors on negotiation [12], a detailed complexity study of control-

lability and implementations of QBF-based and SAT-based CEGAR

algorithms have been described in [27]. These works keep the orig-

inal definition of controllability, which means that there are CAFs

that cannot be controlled. On the opposite, [26] defines a weaker

form of controllability, based on some completion instead of each
completion. Somehow, this defines credulous reasoning over the

set of completions, while classical controllability is skeptical. All

these related papers consider qualitative uncertainty, contrary to

our approach that takes into account probabilistic information. Our

new method allows to identify control configurations that have the

highest probability of success, so it is a good compromise between

the original controllability that may be a goal hard to reach in some

real world situations and the weaker controllability by [26].

In this paper we have proposed an original use of probabilities

in abstract argumentation as it is the first time that probabilities

are used in the context of argumentation dynamics. More precisely,

inspired by the use of CAFs in negotiation dialogues [12], we iden-

tified some interesting issues that are arising such as how to choose

the most probable completion under some (time or other) con-

straints or how to decide which subset of the target to satisfy when

the whole target cannot be satisfied, and we have presented Proba-

bilistic CAFs (PCAFs) for improving the controllability of classical

CAFs. By associating (independent) probabilities with the uncer-

tain part (arguments and attacks) of the framework, we defined the

notion of controlling power that represents the probability that a

control configuration reaches the target and we have proposed a

computational method based on Monte Carlo. Experiments show

that our new approach outperforms in most cases the QBF solv-

ing method for classical CAFs (w.r.t. runtime) and also allows to

identify control configurations with a high probability of success,

even when the CAF cannot be controlled with classical techniques.

While the new approach is more efficient (regarding runtime) in

most cases, we observe that the classical CAFs are faster for small

size Kleinberg instances. As future work, we will perform more

experiments and analysis in order to understand the reasons this is

happening knowing that PCAFs outperform CAFs when the size

starts increasing. However intuitively we could say that exact rea-

soning (CAFs) is relevant for easy instances (the small ones) while

approximate reasoning (PCAFs) is relevant for hard instances (the

larger ones).
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