
Multivariate Analysis of Scheduling Fair Competitions
Siddharth Gupta

Ben-Gurion University of the Negev
BeerSheva, Israel

siddhart@post.bgu.ac.il

Meirav Zehavi
Ben-Gurion University of the Negev

BeerSheva, Israel
meiravze@bgu.ac.il

ABSTRACT
A fair competition, based on the concept of envy-freeness, is a non-
eliminating competition where each contestant (team or individual
player) may not play against all other contestants, but the total
difficulty for each contestant is the same: the sum of the initial
rankings of the opponents for each contestant is the same. Similar
to other non-eliminating competitions like the Round-robin com-
petition or the Swiss-system competition, the winner of the fair
competition is the contestant who wins the most games. The Fair
Non-Eliminating Tournament (Fair-NET) problem can be used
to schedule fair competitions whose infrastructure is known. In
the Fair-NET problem, we are given an infrastructure of a tour-
nament represented by a graph G and the initial rankings of the
contestants represented by a multiset of integers S . The objective
is to decide whether G is S-fair, i.e., there exists an assignment
of the contestants to the vertices of G such that the sum of the
rankings of the neighbors of each contestant in G is the same con-
stant k ∈ N. We initiate a study of the classical and parameterized
complexity of Fair-NET with respect to several central structural
parameters motivated by real world scenarios, thereby presenting
a comprehensive picture of it.

KEYWORDS
Tournament Scheduling; Fixed Parameter Tractable; Fair Allocation;
Computational Social Choice
ACM Reference Format:
Siddharth Gupta and Meirav Zehavi. 2021. Multivariate Analysis of Sched-
uling Fair Competitions. In Proc. of the 20th International Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2021), Online, May 3–7,
2021, IFAAMAS, 10 pages.

1 INTRODUCTION
Various real life situations require to conduct fair competitions. For
illustration, suppose we want to schedule a non-eliminating sports
competition in which there are n contestants and n grounds located
on the circumference of a circle. As organizers, we want to assign a
home ground to each contestant in such a way that every contestant
c plays only against r contestants whose home ground is nearest
to c’s home ground rather than all the contestants. The underlying
rationale can be time constraints and also to minimize the travel
time for each contestant (similar to the Traveling Tournament
problem, see e.g. [22, 23]). However, the total difficulty for each
contestant should be the same, i.e., the sum of the initial rankings
of the opponents for each contestant is the same. We can model this
problem as an instance of the Fair Non-Eliminating Tournament

Proc. of the 20th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2021), U. Endriss, A. Nowé, F. Dignum, A. Lomuscio (eds.), May 3–7, 2021, Online.
© 2021 International Foundation for Autonomous Agents and Multiagent Systems
(www.ifaamas.org). All rights reserved.

(Fair-NET) problem, where we are given an infrastructure of a
tournament represented by a graphG and the initial rankings of the
contestants represented by a multiset of integers S . The objective
is to decide whether G is S-fair, i.e., there exists an assignment
of the contestants to the vertices of G such that the sum of the
rankings of the neighbors of each contestant in G is the same
constant k ∈ N. Here, k is called the S-fairness constant, or simply
fairness constant if S is clear from the context, of G. Clearly, the
above problem is equivalent to having an r -regular graph G with
n vertices, one for each ground, and edges connecting each vertex
to r/2 nearest vertices on the left and r/2 nearest vertices on the
right, and the objective is to determine whether G is S-fair where
S is the multiset of the rankings of the contestants (see Figure 1).
As the total difficulty for each contestant in the competition is the
same, we refer to such a competition as a fair competition.

In general, if we have the infrastructure of the competition (im-
plicitly, like the above example, or explicitly) and we want to sched-
ule a fair competition, we can model the problem as that of deter-
mining whether the graph representing the infrastructure of the
competition is S-fair where S is the multiset of the rankings of the
contestants. This situation is very frequently observed in on-line
games or in other recurring competitions - in such competitions, the
infrastructure of the competition is fixed and the set of contestants
keeps changing.

Scheduling competitions and tournaments with different objec-
tives is a well studied problem in the literature. There are, mainly,
two fundamental competition designs, with all other designs con-
sidered as variations and hybrids. The first one is the elimination
(or knockout) competition, in which the contestants are mapped
to the leaf nodes of a complete binary tree. Contestants mapped to
nodes with same parent compete against each other in a match, and
the winner of the match moves up the tree. The contestant who
reaches the root node is the winner of the tournament. The second
one is the non-eliminating competition, in which no contestant
is eliminated after one or few loses, and the winner is decided at
the end of all the games by selecting the contestant with largest
number of wins.

In recent years, algorithmic perspectives of scheduling both
kinds of competitions have received significant attention by the
computational social choice community. We will first discuss elim-
ination competitions, followed by non-eliminating competitions.
With respect to elimination competitions, the design of a fair elim-
ination competition under various definitions of being fair has
received notable attention [24, 39, 47, 48]. In this context, it is also
relevant to mention the Tournament Fixing problem. Here, we
are given n contestants, an encoding of the outcome of each po-
tential match between every two contestants as a digraph D, and a
favorite contestant v: the goal is to design an elimination tourna-
ment so that v wins the tournament. This problem was introduced

Main Track AAMAS 2021, May 3-7, 2021, Online

555

by Vu et al. [46]. After this, it was extensively studied from both
combinatorial and algorithmic (as well as parameterized) points of
view [3, 20, 28–30, 35, 41, 42, 50].

With respect to non-eliminating competitions, a round-robin
tournament (RRT) is one of the most popular forms, in which each
contestant plays every other contestant [38]. Awell studied problem
regarding RRTs is the Traveling Tournament problem, where the
goal is to design a fair RRT by minimizing the total travel distance
for every team [19, 22, 23, 31, 44, 51]. Another related problem is to
design a fair RRT by minimizing the number of “breaks” during the
tournament [36, 45, 52]. Despite of being a popular non-eliminating
competition, RRTs have some disadvantages. The first disadvantage
of this format is the long tournament length, as each contestant
plays against all other contestants. From the fairness point of view,
a second disadvantage of this format, also mentioned in [38], is
that it favors the strongest contestants (i.e., the contestants with
the highest initial ranking). To see this, let R = {r1, r2, . . . , rn }
be the initial rankings of the n contestants, where ri is the initial
ranking of contestant i , and let R be the total sum of the rankings.
In RRT, the total difficulty faced by contestant i is R − ri , which
shows that the total difficulty faced by a contestant increases as we
go from the strongest contestants to the weakest contestants. In
light of the above disadvantage, motivated by one of the definitions
proposed for fairness in [38, 39, 48], and based on a popular fairness
concept called envy-freeness introduced by Foley [13] in the study
of fair division and allocation problems in multi-agent systems
(see, e.g. [5, 7, 8, 17]), we define a fair competition in an attempt
to address both the above disadvantages with RRTs. Here, a fair
competition is one where each contestant plays with a subset of all
other contestants, yet the total difficulty for each contestant in the
competition is the same. Similar to an envy-free division where no
agent feels envy of another agent’s share, in a fair competition no
contestant feels envy about another contestant’s schedule as the
total difficulty for each contestant is the same.

Apart from scheduling fair competitions, Fair-NET can be used
to model other computational problems in social choice. For ex-
ample, suppose we havem candidates and n jobs, and every job is
associated with an integer “reward”. Every candidate can choose
r jobs and every job is chosen by exactly one candidate. Now, we
want to get an assignment of the jobs to the candidates such that
the total reward collected by every candidate is k , for some integer
k . Then, this is equivalent of having a graph G that is a collection
ofm stars, each having r leaves, with n total leaves, and the objec-
tive is to determine whether G is S-fair with the fairness constant
k where S is the union of (i) the multiset of rewards and (ii) the
multiset S ′ = {k, . . . ,k} containing the element k m times. Intu-
itively, S ′ represents the multiset of rewards collected by every
candidate. Every star vertex corresponds to a candidate c , and its
leaves correspond to the jobs c is assigned to.

The Fair-NET problem can also be used to design semi-magic
and magic squares [49] defined as follows. A semi-magic square is
an n × n grid (n ≥ 3) filled with positive integers from a multiset I
such that each cell contains a distinct integer occurrence in I and
the sum of integers in each row and each column is the same. A
magic square is a semi-magic square with the additional constraint
that the sum of the integers in both the diagonals is also the same
and equal to the sum of integers in each row and each column. The

Figure 1: Example of a 4 regular graph where every vertex is
connected to 2 vertices on the left and 2 on the right.

Table 1: Summary of our results. Here ∆, tw, fvs and vc de-
note the maximum degree, treewidth, feedback vertex set
number and vertex cover number of the input graph, respec-
tively; α denotes the number of distinct elements in S . Note
that tw ≤ fvs ≤ vc.

Parameters Parameterized Complexity

tw + ∆ NP-hard for tw = 3,∆ = 3 (also for regular
graphs) [Theorem 3.1]

α + ∆ NP-hard for α = 3,∆ = 6 (also for regular
graphs) [Theorem 3.3]

fvs + ∆ NP-hard for fvs = 0,∆ = 3 [Theorem 3.2]
fvs + ∆ + α FPT [Theorem 4.6]
fvs FPT (for regular graphs) [Theorem 4.8]
vc + α FPT [Theorem 4.7]

details about how to model a semi-magic square (and similarly a
magic square) as an instance of Fair-NET can be found in [21].

1.1 Our Contribution and Methods
To the best of our knowledge, while Fair-NET has been studied
extensively from a combinatorial point of view (discussed later in
the section), close to nothing is known from an algorithmic point
of view. We initiate a systematic algorithmic study of Fair-NET.
On the one hand, we show NP-hardness results on special graph
classes, which imply para-NP-hardness for the problemwith respect
to several combinations of structural graph parameters. (For basic
notions in parameterized complexity, see Section 2). On the other
hand, we show that the problem is fixed-parameter tractable (FPT)
for four different combinations of these parameters.

The choice of our parameters is motivated by the real world
examples from the introduction. In the example of fair competition,
we may want every contestant to play only a fraction of the total
possible games, which in turn means that the maximum degree ∆
of the infrastructure graph is small compared to the total number of
contestants. Similarly, it is likely to happen that a lot of contestants
have the same rankings or a lot of jobs have the same rewards,
which implies that the number α of unique elements in S is small
compared to the total number of contestants or jobs. In the case
of job assignment, the underlying graph is a set of stars, which
has treewidth 1 and the size of minimum feedback vertex set is
0. Moreover, treewidth, feedback vertex set and vertex cover are
central parameters in the field of parameterized complexity.

Main Track AAMAS 2021, May 3-7, 2021, Online

556

Our main results are as follows (summarized in Table 1). First,
we show that Fair-NET isNP-hard for three different graph classes:
disjoint unions of K3,3’s, disjoint unions of K1,3’s and 6-regular
graphs with 3 distinct labels. Consequently, it is para-NP-hard
parameterized by (i) treewidth plus maximum degree, (ii) maximum
degree plus feedback vertex set number, and (iii) maximum degree
plus the number of distinct labels. The para-NP-hard results hold
even for regular graphs when parameterized by either treewidth
plus maximum degree or maximum degree plus the number of
distinct labels.

Second, we show that Fair-NET is FPT parameterized by (i) max-
imum degree plus feedback vertex set number plus the number of
distinct labels, (ii) vertex cover number plus the number of distinct
labels, and (iii) feedback vertex set number for regular graphs. We
derive some of these results by using insights into Fair-NET it-
self when the input graph is a cycle, a disjoint union of stars, or
a connected graph with minimum degree 1, and Integer Linear
Programming.

Our choice of parameters also shows several borders of (in-
)tractability. For example, the problem is para-NP-hard when pa-
rameterized by either ∆ + α or by fvs + ∆, but becomes FPT when
parameterized by fvs + ∆ + α . Similarly, it is para-NP-hard by
fvs + ∆, but becomes FPT by fvs for regular graphs. Overall, we
give a comprehensive picture of the classical and parameterized
complexity of Fair-NET. For lack of space, some results and proofs
marked with an asterisk (∗) are omitted or sketched; for complete-
ness see [21].

Related Work. The Fair-NET problem was first introduced
by Vilfred [26] when S = {1, 2, . . . ,n}. Such a labeling is called
sigma-labeling in that paper. The concept of fair scheduling was
independently studied byMiller et al. [32] in 2003 under the name 1-
vertexmagic and by Sugeng et al. [43] under the name distancemagic
labeling. For recent surveys on distance magic labeling, see [1, 37].
The Fair-NET problem for a general multiset S was first studied by
O’Neal and Slater [33]. In the same paper, they also proved that if a
graphG is S-fair, then the S-fairness constant ofG is unique. In [40],
Slater proved that Fair-NET is NP-hard. More recently, Godinho
et al. [18] studied the special case of Fair-NET where S is a set and
not a multiset. They gave a simpler proof for the uniqueness of S-
fairness constant and also exhibited several families of S-fair graphs.
Recently, the same set of authors studied a measure called distance
magic index related to S-fair labeling and determined the distance
magic index of trees and complete bipartite graphs in [2]. There
has also been a long line of studies on other kinds of graph labeling,
like {0,1}-Fair-NET, where we consider the closed neighborhood
of every vertex instead of open neighborhood (i.e., the vertex itself
is also considered in its neighbor set). Another example is vertex-
bimagic labeling, in which there exists two constants k1 and k2 such
that the sum of neighbors of every vertex is either k1 or k2. For
more information, see the recent survey [15].

2 PRELIMINARIES
Sets and Functions. Given two multisetsA = {a1,a2, . . . ,an } and

B = {b1,b2, . . . ,bm }, their disjoint union is the multiset S = A⊎B =
{a1,a2, . . . ,an ,b1,b2, . . . ,bm }. For example, let A = {1, 3, 4, 5, 5}
and B = {3, 2, 4, 6}. Then, A ⊎ B = {1, 2, 3, 3, 4, 4, 5, 5, 6}. Given a

multiset S , α(S) denotes the number of distinct elements in S , and
for every a ∈ S,αS (a) denotes the number of times a appear in S .
Given a multiset A,

∑
A denotes the sum of its elements (in case

they are integers), and |A| denotes its size. For any t ∈ N, [t] denotes
the set {1, 2, . . . , t}. Given a function f defined on a multiset A,
f (A) = { f (a) : a ∈ A}. Let f : A → B be a function from a multiset
A to a multiset B. Then the restriction of f to a multiset A′ ⊆ A
is the function f |A′ : A′ → B given as f |A′(x) = f (x) for every
x ∈ A′.

Graphs. In this paper, we consider only undirected graphs. Given
a graph G, we denote its vertex set and edge set by V (G) and E(G),
respectively. For a vertex v ∈ V (G), the set of all the neighbors of v
in G is denoted by NG (v), i.e. NG (v) = {u ∈ V (G) | {u,v} ∈ E(G)}.
The degree of a vertex v ∈ V (G) inG is denoted by degG (v). When
G is clear from the context, we drop the subscript. Given an induced
subgraph H of G, the set of neighbors of vertices in H which are
not in H is denoted by NG (H), i.e., NG (H) =

(⋃
v ∈V (H) NG (v)

)
\

V (H). The maximum and minimum degree of G are denoted by
∆(G) and δ (G), respectively. Given a set V ′ ⊆ V (G), the subgraph
of G induced by V ′ is denoted by G[V ′]. A path on n vertices is
denoted by Pn . A cycle on n vertices is denoted by Cn . A complete
bipartite graph with bipartition A and B such that |A| =m, |B | = n
is denoted by Km,n (A,B). If A and B are clear from the context, we
write Km,n (A,B) as Km,n . Given a forest F , the set of leaves of F is
denoted by leaves(F). Given a rooted tree T , for a vertex v ∈ V (T),
the set of children of v in T is denoted by childrenT (v).

An r -regular graph is a regular graph where every vertex has
degree r . Ann-star graph (onn+1-vertices) is the complete bipartite
graphK1,n . Given ann-star graphwheren ≥ 2, the star-vertex is the
unique vertexwith degreen. The disjoint union of two graphsG1 and
G2, denoted byG1 +G2, is the graph with vertex setV (G1) ⊎V (G2)
and edge set E(G1) ⊎ E(G2). For anym ∈ N, we denote the disjoint
union ofm copies of a graphG bymG . Note that, the disjoint union
of two or more nonempty graphs is always a disconnected graph.
For other standard notations not explicitly defined here, we refer
to the book [11].

The treewidth, vertex cover number and feedback vertex set number
of a graph G are defined as follows.

Definition 2.1 (Treewidth). A tree decomposition of a graphG is
a treeT whose nodes, called bags, are labeled by subsets of vertices
ofG . For each vertexv , the bags containingv must form a nonempty
contiguous subtree of T , and for each edge {u,v}, at least one bag
must contain both u and v . The width of the decomposition is one
less than the maximum cardinality of any bag, and the treewidth
tw(G) ofG is the minimum width of any of its tree decompositions.

Based on the definition of treewidth, we have the following
observation about disjoint union.

Observation 1. The treewidth of the disjoint union of two vertex-
disjoint graphs G1 and G2 is max{tw(G1), tw(G2)}.

Definition 2.2 (Vertex Cover). A vertex cover of a graph G is
a set of vertices in G such that every edge in G has at least one
endpoint in the set. We denote the minimum size of a vertex cover
of G by vc(G).

Main Track AAMAS 2021, May 3-7, 2021, Online

557

Definition 2.3 (Feedback Vertex Set). A feedback vertex set of
a graph G is a set of vertices whose removal results in an acyclic
graph. We denote the minimum size of a feedback vertex set of G
by fvs(G).

We will show hardness results from 3-Partition and a variant
of SAT called 3-XSAT3+ (which were proved to be strongly NP-
complete and NP-complete in [16] and [34], respectively), defined
as follows.

Definition 2.4 (3-Partition). Given a multiset W of n = 3m
positive integers, for some m ∈ N, canW be partitioned into m
triplets W1,W2, . . . ,Wm (i.e., W =

⊎
i ∈[m]Wi and |Wi | = 3 for

every i ∈ [m]) such that for every i ∈ [m],
∑
Wi =

∑
W /m?

Definition 2.5 (3-XSAT3
+). Given a formula in conjunctive nor-

mal form (CNF) where all literals are positive, each clause has size
exactly 3, and each variable occurs exactly 3 times, does there exist
a truth assignment to the variables so that each clause has exactly
one true variable?

Fair Non-Eliminating Tournament. Given an infrastructure of a
tournament represented by a graph G and the initial rankings of
the contestants represented by a multiset of integers S , G is called
S-fair if there exists an assignment of the contestants to the vertices
of G such that the sum of the rankings of the neighbors of each
contestant in G is the same. Equivalently, given the infrastructure
graph G and the multiset of contestants’ rankings S with |S | =
|V (G)|,G is S-fair if there exists a bijection f : V (G) → S such that
for every vertex v ∈ V (G),

∑
f (N (v)) = k , where k is a constant

called S-fairness constant.
For any vertex v ∈ V (G), f (v) is called the label of v . We denote

the set of all bijective functions that satisfy the above property by
M(G, S). In [33], O’Neal and Slater showed that if a graph G is
S-fair, then its S-fairness constant is unique.

Since the infrastructure graph of a tournament is an undirected
graph and the initial ranking of several players can be the same,
we define the Fair Non-Eliminating Tournament (Fair-NET)
problem as follows.

Definition 2.6 (Fair-NET Problem). Given an undirected graph
G and a multiset of positive integers S with |S | = |V (G)|, isG S-fair
(i.e. M(G, S) , ∅)?

The following observations about S-fair graphs follow directly
from its definition.

Observation 2 (Label Swap). Let G be an S-fair graph. Let
f ∈ M(G, S). Let u,v ∈ V (G) such that NG (u) = NG (v). Consider
f ′ : V (G) → S , defined as follows. For allw ∈ V (G)\ {u,v}, f ′(w) =

f (w); f ′(u) = f (v); f ′(v) = f (u). Then f ′ ∈ M(G, S).

Observation 3. Given two graphs G1 and G2 and a multiset of
positive integers S , G1 +G2 is S-fair if and only if G1 is S1-fair and
G2 is S2-fair with the same fairness constant for some S1, S2 ⊆ S such
that S1 ⊎ S2 = S .

Observation 4. Given a complete bipartite graphKm,n (A,B) and
a multiset of positive integers S , Km,n is S-fair if and only if there
exists a bijection f : V (Km,n) → S such that

∑
f (A) =

∑
f (B) =∑

S/2.

Integer Linear Programming. In the Integer Linear Program-
ming Feasibility (ILP) problem, the input consists of p variables
x1,x2, . . . ,xp and a set ofm inequalities of the following form:

a1,1x1 +a1,2x1 +· · ·+a1,pxp ≤y1
a2,1x1 +a2,2x2 +· · ·+a2,pxp ≤y2
...

...
...

...

am,1x1+am,2x2+· · ·+am,pxp≤ym

where every coefficient ai j and yi is required to be an integer. The
task is to check whether there exists an assignment of integer
values for every variable xi so that all inequalities are satisfiable.
The following theorem about the tractability of the ILP problem
will be useful throughout Section 4.

Theorem 2.7 ([14, 25, 27]). The ILP problem with p variables is
FPT parameterized by p.

Parameterized Complexity. A problem Π is a parameterized prob-
lem if each problem instance of Π is associated with a parameter
k . For simplicity, we denote a problem instance of a parameterized
problem Π as a pair (I ,k) where the second argument is the param-
eter k associated with I . The main objective of the framework of
Parameterized Complexity is to confine the combinatorial explosion
in the running time of an algorithm for an NP-hard parameterized
problem Π to depend only on k . In particular, a parameterized prob-
lem Π is fixed-parameter tractable (FPT) if any instance (I ,k) of Π is
solvable in time f (k) · |I |O(1), where f is an arbitrary computable
function of k . Moreover, a parameterized problem Π is para-NP-
hard if it is NP-hard for some fixed constant value of the parameter
k . For more information on Parameterized Complexity, we refer
the reader to books such as [10, 12].

3 PARA-NP-HARDNESS RESULTS
In this section, we exhibit the para-NP-hardness of Fair-NET with
respect to several structural graph parameters. We start with a
para-NP-hardness result with respect to the parameter tw + ∆.

Theorem 3.1. The Fair-NET problem is NP-hard for 3-regular
graphs with treewidth 3. In particular, it is para-NP-hard parameter-
ized by tw + ∆, even for regular graphs.

Proof. We present a reduction from 3-Partition. Given a mul-
tisetW of n = 3m positive integers, for some m ∈ N, we create
two instances of Fair-NET based on the value ofm as follows (see
Figure 2).
Case 1 [Whenm is a multiple of 2]: In this case, we create an
instance (G, S) of Fair-NET whereG = (m/2)K3,3 and S =W . Note
that G is a 3-regular graph. Since tw(K3,3) = 3, by Observation 1,
tw(G) = 3. LetV (G) =

⊎
i ∈[m/2]Vi whereVi = Ai ∪Bi is the vertex

set of the i-th copy of K3,3 with bipartition Ai and Bi . We now
prove thatW is a Yes instance of 3-Partition if and only if G is
S-fair.

Assume first thatW is a Yes instance of 3-Partition. LetW1,W2,
. . . ,Wm be a corresponding partition ofW . Then, by Definition 2.4,
for every i ∈ [m],

∑
Wi =

∑
W /m. Let f : V (G) → S be a bijective

function defined as follows. For every i ∈ [m/2], let f (Ai) =Wi and
f (Bi) =Wm/2+i (the internal labeling withinAi and Bi is arbitrary).

Main Track AAMAS 2021, May 3-7, 2021, Online

558

A1 B1 A2 B2 At Bt

Figure 2: Example of the graph G built in the reduction of
Theorem 3.1. t =m/2 for Case 1 and t = (m + 1)/2 for Case 2.

So, for every i ∈ [m/2],
∑

f (Ai) =
∑

f (Bi) =
∑
W /m. Thus, by

Observations 3 and 4, G = (m/2)K3,3 is S-fair.
Conversely, letG = (m/2)K3,3 be S-fair. Then, by Observations 3

and 4, there exists a bijection f : V (G) → S such that for ev-
ery i ∈ [m/2],

∑
f (Ai) =

∑
f (Bi) =

∑
S/m =

∑
W /m. Thus,

{ f (A1), f (A2), . . . , f (Am/2), f (B1), . . . , f (Bm/2)} is a partition of
W satisfying the required property, soW is a Yes instance of 3-
Partition.
Case 2 [When m is not a multiple of 2]: Without loss of gen-
erality, we can assume that every element inW is greater than 1
as otherwise we can get an equivalent instance of 3-Partition
by adding 1 to all the elements ofW . Let sum =

∑
W /m be the

required sum of every subset. As every element inW is greater than
1, sum ≥ 6. In this case, we create an instance (G, S) of Fair-NET
where G =

(
(m + 1)/2

)
K3,3 and S =W ⊎ {sum − 2, 1, 1}. Note that

G is a 3-regular graph and tw(G) = 3. Let V (G) =
⊎
i ∈[m+1/2]Vi

where Vi = Ai ∪ Bi is the vertex set of the i-th copy of K3,3 with
bipartition Ai and Bi . We now prove thatW is a Yes instance of
3-Partition if and only if G is S-fair.

Assume first thatW is a Yes instance of 3-Partition. LetW1,W2,
. . . ,Wm be the corresponding partition of W . Then, by Defini-
tion 2.4, for every i ∈ [m],

∑
Wi =

∑
W /m = sum. LetWm+1 =

{sum− 2, 1, 1}. Clearly,
∑
Wm+1 = sum. As S =W

⊎
{sum− 2, 1, 1},

S =
⊎
i ∈[m+1]Wi . Let f : V (G) → S be a bijective function de-

fined as follows. For every i ∈ [(m + 1)/2], let f (Ai) = Wi and
f (Bi) =W(m+1)/2+i (the internal labeling within Ai and Bi is ar-
bitrary). So, for every i ∈ [(m + 1)/2],

∑
f (Ai) =

∑
f (Bi) = sum.

Thus, by Observations 3 and 4, G =
(
(m + 1)/2

)
K3,3 is S-fair.

Conversely, let G = (m + 1)/2K3,3 be S-fair. Then, by Observa-
tions 3 and 4, there exists a bijection f : V (G) → S such that for
every i ∈ [(m + 1)/2],

∑
f (Ai) =

∑
f (Bi) =

∑
S/(m + 1) =

∑
W /m.

Without loss of generality, let As be the set containing sum − 2, for
some s ∈ [(m + 1)/2]. As

∑
As = sum, |As | = 3 and all the elements

inW are greater than 1, necessarily As = {sum − 2, 1, 1}. As S =
W

⊎
{sum − 2, 1, 1}, we get that { f (A1), . . . , f (As−1), f (As+1), . . . ,

f (A(m+1)/2), f (B1), . . . , f (B(m+1)/2)} is a partition ofW satisfying
the required property, soW is a Yes instance of 3-Partition. □

We now proceed with the para-NP-hardness result with param-
eter fvs + ∆.

Theorem 3.2. The Fair-NET problem is NP-hard for forests with
∆ = 3. Since forests have fvs = 0, Fair-NET is para-NP-hard param-
eterized by fvs + ∆.

Proof. We present a simple reduction from 3-Partition. Given
a multisetW of n = 3m positive integers, for somem ∈ N, let sum =∑
W /m be the required sum of every subset. We create an instances

(G, S) of Fair-NET where G =mK1,3 and S =W
⊎
{s1 = sum, s2 =

v1 v2 vm

B1 B2 Bm

Figure 3: Example of the graph G built in the reduction of
Theorem 3.2.

sum, . . . , sm = sum}. Note that G is a forest with ∆(G) = 3. Let
V (G) =

⊎
i ∈[m]Vi whereVi = {vi } ∪ Bi is the vertex set of the i-th

copy of K1,3 with Bi being the set of leaves. See Figure 3. We now
prove that ifW is a Yes instance of 3-Partition if and only if G is
S-fair.

Assume first thatW is a Yes instance of 3-Partition. LetW1,W2,
. . . ,Wm be the corresponding partition of W . Then, by Defini-
tion 2.4, for every i ∈ [m],

∑
Wi = sum. Let f : V (G) → S be a bijec-

tive function defined as follows. For every i ∈ [m], let f (Bi) =Wi
and f (vi) = sum (the internal labeling of Bi is arbitrary). So, for
every i ∈ [m], f (vi) =

∑
f (Bi) = sum. Thus, by Observations 3

and 4, G =mK1,3 is S-fair.
Conversely, let G = mK1,3 be S-fair. Then, by Observations 3

and 4, there exists a bijection f : V (G) → S such that for every i ∈
[m], f (vi) =

∑
f (Bi) =

∑
S/(m + 1) = sum. So, we get that { f (B1),

. . . , f (Bm)} is a partition ofW satisfying the required property, so
W is a Yes instance of 3-Partition. □

Finally, we give the para-NP-hardness result with parameter
α + ∆.

Theorem 3.3 (*). The Fair-NET problem in NP-hard for 6-regular
graphs with 3 distinct labels. In particular, it is para-NP-hard param-
eterized by α + ∆, even for regular graphs.

Proof sketch. We present a reduction from 3-XSAT3+ . Given a 3-
XSAT3+ formula ρ with n variables and n clauses, we create an
instance (G, S) of Fair-NET as follows. Suppose that the variables
are indexed by 1, 2, . . . ,n and so do the clauses. For every i ∈ [n], the
variable gadget in G consists of a single vertex xi called a variable
vertex. For every i ∈ [n], the clause gadget in G consists of 15
vertices c1i , c

2
i , . . . , c

15
i . For every i ∈ [n], we add the edges among

clause vertices and between variable and clause vertices in G as
shown in Figure 4. This completes the construction of G . Note that
|V (G)| = n+15n = 16n. We now define S as the multiset containing
3 distinct labels 1, 2 and 4 with αS (1) = 2n/3,αS (2) = 15n and
αS (4) = n/3. From the above construction, it is easy to see thatG is
a 6-regular graph and S contains 3 distinct labels. We set a variable
to true if and only if the label of the corresponding variable vertex
is 4 and false otherwise. In [21], we prove that ρ is satisfiable if and
only if G is S-fair. □

4 FPT ALGORITHMS
In this section, we develop FPT algorithms for the Fair-NET prob-
lem with respect to several structural graph parameters. We begin
by giving the following observation for a graph G to be S-fair
when G contains isolated vertices. If G contains isolated vertices
(i.e., δ (G) = 0), then G is S-fair if and only if for every vertex
v ∈ V (G), degG (v) = 0 (i.e., G contains only isolated vertices). Due

Main Track AAMAS 2021, May 3-7, 2021, Online

559

xj xk xl

c1i c8i

c2i
c3i

c4i c9i
c10i

c11i

c5i
c6i

c7i c12i
c13i

c14i

c15i

Figure 4: Example of the clause gadget in G for a clause ci =
x j ∨ xk ∨ xl built in the reduction of Theorem 3.3.

to this observation, in the rest of this section, we assume that G
does not contain any isolated vertices. We now give conditions that
a graph G must satisfy to be S-fair when G is a cycle or δ (G) = 1.

Lemma 4.1 (*). Let G be a connected graph with δ (G) = 1 and S
be a multiset of positive integers. Then, G is S-fair only if G is a star.

Lemma 4.2 (*). Let G be a cycle graph on n vertices and S be a
multiset of positive integers. Let k be the required S-fairness constant.
Then:

• If n mod 4 = 0, then G is S-fair if and only if S contains 4
labels a,b,k − a,k − b with αS (a) = αS (b) = αS (k − a) =
αS (k − b) = n/4, for some a,b ∈ N such that a,b < k .

• If n mod 4 , 0, then G is S-fair if and only if S contains only
one label, k/2, with αS (k/2) = n.

We first prove that Fair-NET is FPT parameterized by fvs+α+∆.
The following two lemmas will be helpful in proving it.

Lemma 4.3. There exists an O(|V (G)|)-time algorithm that, given
(i) a graph G, (ii) a multiset of positive integers S , (iii) an induced
subgraph F of G such that its a forest, and (iv) a bijection f ′ from
the set V ′ = NG (F) ∪ leaves(F) to a subset S ′ of S , returns another
bijection f ′′ from NG (F) ∪V (F) to a set S ′′1 such that S ′ ⊆ S ′′ and
f ′ = f ′′ |V ′ . Moreover, if G is S-fair and f ′ = f |NG (F)∪leaves(F) for
some f ∈ M(G, S), then f ′′ = f |NG (F)∪V (F).

Proof. Let (G,k) be an instance of Fair-NET. Let k be the re-
quired S-fairness constant. Let F = {T1,T2, . . . ,Tt } be the set of
connected components of F . For every treeT ∈ F , we do the follow-
ing. Let r be an arbitrarily chosen non-leaf vertex of T . Then, con-
siderT as a rooted tree with r as the root vertex. Letd be the depth of
the treeT . We partition the vertex setV (T) = V1 ∪V2 . . .∪Vd , such
that Vi contains all the vertices of T at depth i . Note that V1 = {r }
and Vd ⊆ leaves(T). Now, consider a vertex v , r in T . We parti-
tion NG (v) = {pv } ∪

(
childrenT (v) ∩ leaves(T)

)
∪
(
childrenT (v) \

leaves(T)
)
∪

(
NG (v) \ V (T)

)
, where pv is the parent of v in T ,

childrenT (v) ∩ leaves(T) is the set of children of v in T that are
leaves of T , childrenT (v) \ leaves(T) is the set of children of v in T
that are non-leaf vertices ofT and NG (v) \T is the set of neighbors
of v not in T .

Given f ′, we define another function fT onV ′′ = V (T)\leaves(T)
recursively as follows.
(i) Base Case: For all v ∈ V ′′ such that v has a leaf child, let

w be an arbitrarily chosen leaf child of v . Then, fT (v) = k −∑
f ′(NG (w) \V (T)).

1S ′′ may not be a subset of S .

(i) Recursive Step: For all v ∈ V ′′ such that v does not have
any leaf child, let w be an arbitrarily chosen child of v . Then,
fT (v) = k−

∑
fT (childrenT (w)\leaves(T))−

∑
f ′(childrenT (w)

∩leaves(T)) −
∑

f ′(NG (w) \T).
Note that, if v ∈ Vi , then childrenT (v) ⊆ Vi+1. So, we compute fT
by processing vertices ofT in the orderVd−1, . . . ,V1. We now define
f ′′ from NG (F) ∪V (F) to S ′′ = S ′ ∪ fT1 ∪ fT2 . . . fTt as follows.
(i) For every v ∈ NG (F) ∪ leaves(F), f ′′(v) = f ′(v).
(i) For every i ∈ [t] and v ∈ V (Ti) \ leaves(Ti), f ′′(v) = fTi (v).
Clearly, f ′ = f ′′ |V ′ and therefore S ′ ⊆ S ′′. The above recursive
procedure visits every vertex of G at most once, so it runs in time
O(|V (G)|).

Now, suppose thatG is an S-fair graph and f ′ = f |NG (F)∪leaves(F)
for some f ∈ M(G, S). As f ∈ M(G, S), for every T ∈ F and
v ∈ V (T),

∑
f (N (v)) = k . Consider a tree T ∈ F . Let v be a non-

leaf vertex of T . Then, for all w ∈ childrenT (v),
∑

f (NG (w)) =

k ⇒ f (v) +
∑

f (childrenT (w) \ leaves(T)) +
∑

f (childrenT (w) ∩

leaves(T)) +
∑

f (NG (w) \ V (T)) = k . As f ′ = f |NG (F)∪leaves(F),
for all v ∈ V (T) \ leaves(T) and w ∈ childrenT (v), f (v) = k −∑

f (childrenT (w) \ leaves(T)) −
∑

f ′(childrenT (w) ∩ leaves(T)) −∑
f ′(NG (w) \V (T)). Ifw is a leaf node, then childrenT (w) = ∅. So,

we can write f ′′′ = f |NG (F)∪V (F) as follows.
(i) For every v ∈ NG (F) ∪ leaves(F), f ′′′(v) = f ′(v).
(i) For every i ∈ [t] and v ∈ V (Ti) \ leaves(Ti),

– ifv has a leaf childw , then f ′′′(v) = k −
∑

f ′(NG (w) \V (T)).
– else, letw be a child ofv , then f ′′′(v) = k−

∑
f (childrenT (w)\

leaves(T)) −
∑

f ′(childrenT (w) ∩ leaves(T)) −
∑

f ′(NG (w) \

V (T)).
As f ′′ and f |NG (F)∪V (F) have same base case and recursive step,
f ′′ = f |NG (F)∪V (F). This also implies that S ′′ ⊆ S . □

The following corollary directly follows from the above lemma.

Corollary 4.4 (*). Let G be a graph and S be multiset of positive
integers. Let F be an induced subgraph of G that is a forest. Then, in
time O(α(S) |NG (F) |+ |leaves(F) | · |V (G)|), we can compute a superset
of the set G of functions from NG (F) ∪V (F) to S such that for every
f ∈ M(G, S), there exists a д ∈ G such that д = f |NG (F)∪V (F).

Lemma 4.5. The Fair-NET problem is FPT parameterized by α +∆
for disjoint union of stars.

Proof. The FPT algorithm is based on ILP. We first give the
algorithm and then prove its correctness.
Algorithm: Let (G,k) be an instance of Fair-NET for disjoint
union of stars. Thus, G = K1,n1 + K1,n2 + . . . + K1,nt for some
t ,n1,n2, . . . ,nt ∈ N. Note that ∆ = ∆(G) = max(n1,n2, . . . ,nt).
Denote V (K1,ni) = {vi } ∪ Bi where vi is the highest degree vertex
in K1,ni and Bi is the set of all other vertices in K1,ni , for every
i ∈ [t]. Let k be the required S-fairness constant of G. By Obser-
vations 3 and 4, G is S-fair if and only if there exists a bijection
f : V (G) → S such that for all i ∈ [t], f (vi) =

∑
f (Bi) = k . So, G

is S-fair only if αS (k) ≥ t . Let S ′ = S \ {s1 = k, s2 = k, . . . , st = k}
and let α̂ = α(S ′). Let ℓ1, ℓ2, . . . , ℓα̂ be the unique labels in S ′. Let
D = {B1,B2, . . . ,Bt }. We partition D into D1,D2, . . . ,D∆ such
that for every i ∈ [∆], every set B ∈ Di is of size i . As the number
of unique labels are α̂ , for every i ∈ [∆], any set in Di can have at

Main Track AAMAS 2021, May 3-7, 2021, Online

560

most α̂ i different label assignments. For every i ∈ [∆], let Li be the
set of feasible label assignments for Di , i.e., the label assignments
for any set in Di for which the sum of the labels is k . For every
i ∈ [∆], every label assignment la ∈ Li is a set {t1la , t

2
la , . . . , t

α̂
la },

where, for every j ∈ [α̂], t jla denoted the number of times label ℓj
is used in the label assignment la. For every i ∈ [∆] and la ∈ Li ,
we have a variable ni,la . For any i ∈ [∆], la ∈ Li and a function
f ∈ M(G, S),ni,la represents the number of times label assignment
la is used in Di for f . Then, the algorithm works as follows.

• If αS (k) < t , then return False.
• Solve the following ILP to find ni,la , for every i ∈ [∆] and
la ∈ Li .

∀i ∈ [∆],
∑

la∈Li

ni,la = |Di |. (1)

∀j ∈ [α̂],
∑
i ∈[∆]

∑
la∈Li

ni,la · t
j
la = αS ′(ℓj). (2)

∀i ∈ [∆],∀la ∈ Li ;ni,la ≥ 0. (3)
• If the ILP returns a feasible solution, then return True; oth-
erwise, return False.

Correctness: Equation 1 ensures that for every i ∈ [∆], the number
of label assignments used in Di is equal to the number of sets Di
has. Equation 2 ensures that for every j ∈ [α̂], the number of times
label ℓj is used is equal to the number of times it appears in S ′.
For every i ∈ [∆] and for every B ∈ Di , all the vertices in B
have the same neighborhood which is just a single vertex. Thus by
Observation 2, it is sufficient to know the label assignment for B;
we can arbitrarily assign labels to the vertices in B once we have
decided which labels to use for B. Keeping this interpretation in
mind, we now prove the correctness.

Assume first that the algorithm returns True. It means the ILP
assigned non-negative integer values for the variables ni,la , i ∈ [∆]
and la ∈ Li such that Equations 1 and 2 are satisfied. As for every
i ∈ [∆], Li is the set of feasible label assignments, this implies that
we got a label assignment for every B ∈ D such that sum of the
labels of the vertices in B is k . Thus, G is S-fair.

Conversely, let G be S-fair. Then, by Observations 3 and 4, there
exists a bijection f : V (G) → S such that for all i ∈ [t], f (vi) =∑

f (Bi) = k . So, αS (k) ≥ t . Moreover, every B ∈ D has a feasible
label assignment so the ILP admits a feasible solution. Thus, the
algorithmwill return True. As the number of variablesni,la isO(∆·

α̂∆), by Theorem 2.7, the Fair-NET problem is FPT parameterized
by α + ∆ for disjoint union of stars. □

Theorem 4.6. Fair-NET is FPT parameterized by fvs + α + ∆.

Proof. Let (G,k) be an instance of Fair-NET. Let k be the re-
quired S-fairness constant. Then, we compute a minimum feedback
vertex set FVS ofG in timeO(5 |FV S | ·|FVS |·|V (G)|2), using the algo-
rithms given by Chen et al. [9]. Let fvs = |FVS | and F = V (G)\FVS .
Then by definition of feedback vertex set,G[F] is a forest. Let F be
set of connected components of G[F]. So, F is a collection of trees.

LetT be a tree in F . Let v be a leaf vertex ofT such that v is not
connected to any vertex in FVS , then degG (v) = 1. If degG (v) = 1,
then by Lemma 4.1, either G is a star and G = T or G is a disjoint
union of T and G[V (G) \ V (T)]. By this argument, for any tree

T ∈ F , either all the leaves of T have at least one neighbor in FVS
or none of the leaves are connected to any vertex in FVS . So, we
can partitionG = G1+G2, whereG1 is a connected graph where all
the leaves of the forestG1[F] have at least one neighbor in FVS and
G2 is a disjoint union of stars. Note that,G2 is an induced subgraph
ofG[F]. By Observation 3,G is S-fair if any only ifG1 is S1-fair and
G2 is S \ S1-fair, for some S1 ⊆ S .

Let L be the set of leaves of G1[F]. As ∆(G1) ≤ ∆, |L| ≤ ∆ · fvs.
By Corollary 4.4, we can compute in time O(α (∆+1)fvs · |V (G)|),
a superset H of the set G of functions from V (G1) to S such that
for every f ∈ M(G, S), there exists a д ∈ G such that д = f |V (G1).
We can compute G from H by going over every set h ∈ H and
checking whether G1 is fair under h. If G , ∅, then G1 is д(V (G1))-
fair for every function д ∈ G. Then, for every function д ∈ G, check
whether G2 is

(
S \ д(V (G1))

)
-fair, using Lemma 4.5. If for some

function д ∈ G, G2 is
(
S \ д(V (G1))

)
-fair, then by Observation 3,

G is S-fair. Also, by Corollary 4.4 and Lemma 4.5, the Fair-NET
problem is FPT parameterized by fvs + α + ∆. □

We now prove that Fair-NET is FPT parameterized by vc + α .

Theorem 4.7. Fair-NET is FPT parameterized by vc + α .

Proof. The FPT algorithm is based on ILP. We first give the
algorithm and then prove its correctness.
Algorithm: Let (G,k) be an instance of Fair-NET. Let k be the
required S-fair sum. Let S ′ be the set of unique labels in S . Note that
|S ′ | = α(S). Let VC ⊆ V (G) be a vertex cover of G of size vc. Let
I = V (G)\VC . By the definition of vertex cover, I is an independent
set of G, i.e., no two vertices in I have an edge between them. We
partition I into I1, I2, . . . , Im such that for every i ∈ [m], Ii is an
inclusion-wise maximal set of vertices in I which have the same
neighborhood in G. As I is a independent set,m ≤ 2vc. For every
v ∈ VC , we define a binary indicator set {tv1 , t

v
2 , . . . , t

v
m }, where

tvj = 1 if v is adjacent to the vertices in Ij , otherwise tvj = 0, for
every j ∈ [m].

By Observation 2, if G is S-fair and if we know the labels of
VC under some function f ∈ M(G, S), then for every i ∈ [m], it is
sufficient to know the number of times every label is used in Ii under
f to get a bijective function f ′ : V (G) → S such that f ′ ∈ M(G, S).
Keeping this insight in mind, let ni, ℓ be a variable whose value
(to be computed below) will be interpreted as the number of times
label ℓ is used in Ii for some function f : V (G) → S , for every
ℓ ∈ S ′, i ∈ [m]. Then, the algorithm works as follows.

• Construct the set G containing all possible functions д :
VC → S . Note that |G| ≤ αvc.

• For every д ∈ G and ℓ ∈ S ′, let αд(ℓ) denote the number of
times ℓ appears in д(VC).

• For every д ∈ G:
– Solve the following ILP to find an assignment to the vari-
ables ni, ℓ , for every i ∈ [m], ℓ ∈ S ′.

∀v ∈ VC,
∑
i ∈[m]

tvi

∑
ℓ∈S ′

ni, ℓ · ℓ = k (4)

∀i ∈ [m],
∑
ℓ∈S ′

ni, ℓ = |Ii | (5)

Main Track AAMAS 2021, May 3-7, 2021, Online

561

∀ℓ ∈ S ′,
∑
i ∈[m]

ni, ℓ = αS (ℓ) − αд(ℓ) (6)

∀i ∈ [m],∀ℓ ∈ S ′;ni, ℓ ≥ 0. (7)
– If the ILP returns a feasible solution, then return True if
the following statement holds.

∀i ∈ [m],
∑

v ∈VC
tvi · f (v) = k (8)

• Return False.

Correctness: Equation 4 ensures that for every vertex in VC , the
neighborhood sum is k . Equation 5 ensures that for every i ∈

[m], the total number of labels used in Ii is equal to the size of Ii .
Equation 6 ensures that for every unique label ℓ ∈ S ′, the total
number of times it is used is equal to the number of times it appear
in S . Finally, Equation 8 ensures that for every vertex in IS , the
neighborhood sum is k . As for every i ∈ [m], all the vertices in Ii
have the same neighborhood, we only check the sum once per Ii .
Keeping this interpretation in mind, we now prove the correctness,
i.e. the algorithm returns True if and only if G is S-fair.

Assume first that the algorithm returns True. It means the ILP
assigned non-negative integer values to ni, ℓ , for every i ∈ [m] and
ℓ ∈ S ′, such that Equations 4, 5 and 6 are satisfied as well as that
Equation 8 returned True. As explained above, that implies that for
every vertex in G , the neighborhood sum is the same and equals to
k . Thus, G is S-fair.

Conversely, let G be S-fair. Then, there exists a bijection f :
V (G) → S such that for every v ∈ V (G),

∑
f (N (v)) = k . As G

is the set of all possible functions from VC to S , f |VC ∈ G, and
hence there exists an iteration where the algorithm examines д =
f |VC . For д = f |VC , the ILP admits a feasible solution. Moreover,
Equation 8 then holds. Thus, the algorithm will return True. As
|G| ≤ αvc and the number of variables ni, ℓ is at most 2vc · α , by
Theorem 2.7, Fair-NET is FPT parameterized by vc + α . □

We now prove that the Fair-NET problem is FPT parameterized
by fvs for regular graphs.

Theorem 4.8. The Fair-NET problem is FPT parameterized by
fvs for regular graphs.

Proof. Let r ∈ N. Let (G,k) be an instance of Fair-NET for
r -regular graphs. Let k be the required S-fairness constant. Then,
we compute a minimum feedback vertex set FVS of G in time
O(5 |FV S | · |FVS | · |V (G)|2), using the algorithms given by Chen
et al. [9]. Let fvs = |FVS | and F = V (G) \ FVS . Then, G[F] is a
forest. We distinguish G into the following three cases.
Case 1 [r = 1]: In this case, G is a collection of edges, i.e., G = tP2
for some t ∈ N. Then, by Observation 3 and by the definition of
S-fair labeling, G is S-fair if and only if S =

⊎
i ∈[t]{ai ,k − ai }

where for all i ∈ [t],ai ∈ {1, 2, . . . ,k}. So, we can solve Fair-NET
problem in O(|S | log S) = O(|V (G)| log |V (G)|) time by sorting S
and checking whether S satisfies the above property.
Case 2 [r = 2]: In this case, G is a collection of cycles, i.e. G =
Cn1 +Cn2 + . . . +Cnt for some t ∈ N. By the definition of feedback
vertex set and the minimality of FVS , every cycle contains exactly
one vertex from FVS . So, t = fvs. Also, by Observation 3 and by
Lemma 4.2, for every f ∈ M(G, S), every cycle is assigned at most

4 distinct labels, by f . So, α(S) ≤ 4fvs. As ∆(G) = 2 and α ≤ 4fvs,
by Theorem 4.6, Fair-NET is FPT parameterized by fvs in this case.
Case 3 [r ≥ 3]: AsG[F] is a forest, |E(F)| ≤ |V (F)| −1 ≤ |V (G)| −1.
Also, G is a r -regular graph so |E(G)| = r · |V (G)|/2. This implies
that, at least (r/2−1)· |V (G)|+1 edges are incident to vertices of FVS .
As every vertex of FVS is incident to r edges, (r/2−1) · |V (G)|+1 ≤

r · fvs. Since r ≥ 3, we get that |V (G)| = O(f vs). As the Fair-NET
problem can always be solved in time O(|V (G)|!) using brute-force
approach by going over all the permutations of labels, the Fair-NET
problem is FPT parameterized by fvs in this case as well. □

Finally, we give a simple lemma proving that the Fair-NET
problem is FPT parameterized by vc + ∆.

Lemma 4.9. Fair-NET is FPT parameterized by vc + ∆.

Proof. Let G be a graph of maximum degree ∆ and let VC ⊆

V (G) be a vertex cover of G of size vc. Then, by the definition of
vertex cover, it is easy to see that |V (G)| ≤ vc · (∆ + 1). As the
Fair-NET problem can always be solved in time O(|V (G)|!) using
brute-force approach by going over all the permutations of labels,
the Fair-NET problem is FPT parameterized by vc + ∆. □

5 CONCLUSION AND FUTURE RESEARCH
In this paper, we initiated a systematic algorithmic study of Fair-
NET and presented a comprehensive picture of the parameterized
complexity of the problem. We showed NP-hardness results on spe-
cial graph classes, which implied that the problem is para-NP-hard
with respect to several combinations of structural graph parameters.
We also showed that the problem is FPT for some combinations of
structural graph parameters.

While our work is comprehensive, we stress that it also opens a
whole new world of research questions within computational social
choice. For illustration, let us mention a few such questions:
(1) Establishing the parameterized complexity of Fair-NET with

respect to tw + ∆.
(2) Establishing the parameterized complexity of Fair-NET with

respect to tw+∆+α . By employing standard technique over tree
decomposition, the problem can be shown FPT with respect to
tw+∆, when α is a constant. But, the parameterized complexity
when α is not a constant is still open.

(3) Establishing the classical complexity of Fair-NET where S =
[n], ,where n denotes the number of vertices in the input graph.

(4) Studying the scenario where there is no input infrastructure
graph and the objective is to construct one which is S-fair.

(5) Analysis of related labellings such as {0,1}-Fair-NET [6] and
vertex-bimagic labeling [4].

(6) Introducing additional fairness notions for non-eliminating
tournaments, perhaps by refining/extending/modifying the no-
tion of S-fairness.

(7) Introducing manipulation and bribery to Fair-NET.

ACKNOWLEDGMENTS
The first author is supported in part by the Zuckerman STEM
Leadership Program. The second author is supported in part by the
Israel Science Foundation grant no. 1176/18, and Binational Science
Foundation (BSF) grant no. 2018302.

Main Track AAMAS 2021, May 3-7, 2021, Online

562

REFERENCES
[1] S Arumugam, Dalibor Froncek, and N Kamatchi. 2012. Distance magic graphs-a

survey. Journal of the Indonesian Mathematical Society (2012), 11–26.
[2] S Arumugam, Aloysius Godinho, and Tarkeshwar Singh. 2017. The Distance

Magic Index of a Graph. Discussiones Mathematicae Graph Theory 38 (08 2017).
https://doi.org/10.7151/dmgt.1998

[3] Haris Aziz, Serge Gaspers, Simon Mackenzie, Nicholas Mattei, Paul Stursberg,
and Toby Walsh. 2014. Fixing a Balanced Knockout Tournament. In Proceedings
of the Twenty-Eighth AAAI Conference on Artificial Intelligence, July 27 -31, 2014,
Québec City, Québec, Canada. 552–558. http://www.aaai.org/ocs/index.php/
AAAI/AAAI14/paper/view/8352

[4] Baskar J Babujee and S Babitha. 2014. On 1-vertex bimagic vertex labeling.
Tamkang journal of mathematics 45, 3 (2014), 259–273.

[5] Siddharth Barman, Ganesh Ghalme, Shweta Jain, Pooja Kulkarni, and Shivika
Narang. 2019. Fair Division of Indivisible Goods Among Strategic Agents. In
Proceedings of the 18th International Conference on Autonomous Agents and Multi-
Agent Systems, AAMAS ’19, Montreal, QC, Canada, May 13-17, 2019. 1811–1813.
http://dl.acm.org/citation.cfm?id=3331927

[6] S Beena. 2009. On
∑

and
∑′ labelled graphs. Discrete Mathematics 309, 6 (2009),

1783–1787.
[7] Nawal Benabbou, Mithun Chakraborty, Edith Elkind, and Yair Zick. 2019. Fairness

Towards Groups of Agents in the Allocation of Indivisible Items. In Proceedings
of the Twenty-Eighth International Joint Conference on Artificial Intelligence, IJCAI
2019, Macao, China, August 10-16, 2019. 95–101. https://doi.org/10.24963/ijcai.
2019/14

[8] Aurélie Beynier, Sylvain Bouveret, Michel Lemaître, Nicolas Maudet, Simon
Rey, and Parham Shams. 2019. Efficiency, Sequenceability and Deal-Optimality
in Fair Division of Indivisible Goods. In Proceedings of the 18th International
Conference on Autonomous Agents and MultiAgent Systems, AAMAS ’19, Montreal,
QC, Canada, May 13-17, 2019. 900–908. http://dl.acm.org/citation.cfm?id=3331783

[9] Jianer Chen, Fedor V. Fomin, Yang Liu, Songjian Lu, and Yngve Villanger. 2007.
Improved Algorithms for the Feedback Vertex Set Problems. In Algorithms and
Data Structures, 10th International Workshop, WADS 2007, Halifax, Canada, August
15-17, 2007, Proceedings. 422–433. https://doi.org/10.1007/978-3-540-73951-7_37

[10] Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx,
Marcin Pilipczuk, Michal Pilipczuk, and Saket Saurabh. 2015. Parameterized
Algorithms. Springer. https://doi.org/10.1007/978-3-319-21275-3

[11] Reinhard Diestel. 2012. Graph Theory, 4th Edition. Graduate texts in mathematics,
Vol. 173. Springer.

[12] Rodney G. Downey and Michael R. Fellows. 2013. Fundamentals of Parameterized
Complexity. Springer. https://doi.org/10.1007/978-1-4471-5559-1

[13] Duncan K Foley. 1967. Resource Allocation and the Public Sector. Yale Economic
Essays 7 (1967), 45–98.

[14] András Frank and Éva Tardos. 1987. An application of simultaneous Diophantine
approximation in combinatorial optimization. Combinatorica 7, 1 (1987), 49–65.
https://doi.org/10.1007/BF02579200

[15] Joseph A. Gallian. 2018. A Dynamic Survey of Graph Labeling. The Electronic
Journal of Combinatorics (2018).

[16] M. R. Garey and David S. Johnson. 1979. Computers and Intractability: A Guide to
the Theory of NP-Completeness. W. H. Freeman.

[17] Mohammad Ghodsi, Mohammad Taghi Hajiaghayi, Masoud Seddighin, Saeed
Seddighin, and Hadi Yami. 2018. Fair Allocation of Indivisible Goods: Im-
provements and Generalizations. In Proceedings of the 2018 ACM Conference
on Economics and Computation, Ithaca, NY, USA, June 18-22, 2018. 539–556.
https://doi.org/10.1145/3219166.3219238

[18] Aloysius Godinho, Tarkeshwar Singh, and S. Arumugam. 2015. On S-Magic
Graphs. Electronic Notes in Discrete Mathematics 48 (2015), 267–273. https:
//doi.org/10.1016/j.endm.2015.05.040

[19] Marc Goerigk, Richard Hoshino, Ken-ichi Kawarabayashi, and Stephan Westphal.
2014. Solving the Traveling Tournament Problem by Packing Three-Vertex Paths.
In Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence,
July 27 -31, 2014, Québec City, Québec, Canada. 2271–2277. http://www.aaai.org/
ocs/index.php/AAAI/AAAI14/paper/view/8345

[20] Sushmita Gupta, Sanjukta Roy, Saket Saurabh, and Meirav Zehavi. 2018. When
Rigging a Tournament, Let Greediness Blind You. In Proceedings of the Twenty-
Seventh International Joint Conference on Artificial Intelligence, IJCAI 2018, July
13-19, 2018, Stockholm, Sweden. 275–281. https://doi.org/10.24963/ijcai.2018/38

[21] Siddharth Gupta and Meirav Zehavi. 2021. Multivariate Analysis of Scheduling
Fair Competitions. arXiv:2102.03857 [cs.DS]

[22] Richard Hoshino and Ken-ichi Kawarabayashi. 2011. The Inter-League Extension
of the Traveling Tournament Problem and its Application to Sports Scheduling.
In Proceedings of the Twenty-Fifth AAAI Conference on Artificial Intelligence, AAAI
2011, San Francisco, California, USA, August 7-11, 2011. http://www.aaai.org/ocs/
index.php/AAAI/AAAI11/paper/view/3459

[23] Richard Hoshino and Ken-ichi Kawarabayashi. 2012. The Linear Distance
Traveling Tournament Problem. In Proceedings of the Twenty-Sixth AAAI Con-
ference on Artificial Intelligence, July 22-26, 2012, Toronto, Ontario, Canada.

http://www.aaai.org/ocs/index.php/AAAI/AAAI12/paper/view/4862
[24] FK Hwang. 1982. New concepts in seeding knockout tournaments. The American

Mathematical Monthly 89, 4 (1982), 235–239.
[25] Hendrik W. Lenstra Jr. 1983. Integer Programming with a Fixed Number of

Variables. Math. Oper. Res. 8, 4 (1983), 538–548. https://doi.org/10.1287/moor.8.4.
538

[26] V. Vilfred Kamalappan. 2006. SIGMA PARTITION AND SIGMA LABELED
GRAPHS. J. of Decision and Math. Sci. 10 (01 2006), 1–12.

[27] Ravi Kannan. 1987. Minkowski’s Convex Body Theorem and Integer Program-
ming.Math. Oper. Res. 12, 3 (1987), 415–440. https://doi.org/10.1287/moor.12.3.415

[28] Michael P. Kim, Warut Suksompong, and Virginia Vassilevska Williams. 2016.
Who Can Win a Single-Elimination Tournament?. In Proceedings of the Thirtieth
AAAI Conference on Artificial Intelligence, February 12-17, 2016, Phoenix, Arizona,
USA. 516–522. http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/
12194

[29] Michael P. Kim and Virginia Vassilevska Williams. 2015. Fixing Tournaments
for Kings, Chokers, and More. In Proceedings of the Twenty-Fourth International
Joint Conference on Artificial Intelligence, IJCAI 2015, Buenos Aires, Argentina, July
25-31, 2015. 561–567. http://ijcai.org/Abstract/15/085

[30] Christine Konicki and Virginia Vassilevska Williams. 2019. Bribery in Balanced
Knockout Tournaments. In Proceedings of the 18th International Conference on
Autonomous Agents and MultiAgent Systems, AAMAS ’19, Montreal, QC, Canada,
May 13-17, 2019. 2066–2068. http://dl.acm.org/citation.cfm?id=3332012

[31] Rafael A. Melo, Sebastián Urrutia, and Celso C. Ribeiro. 2009. The traveling
tournament problem with predefined venues. J. Scheduling 12, 6 (2009), 607–622.
https://doi.org/10.1007/s10951-008-0097-1

[32] Mirka Miller, Chris Rodger, and Rinovia Simanjuntak. 2003. Distance magic
labelings of graphs. Australasian J. Combinatorics 28 (2003), 305. http://ajc.maths.
uq.edu.au/pdf/28/ajc_v28_p305.pdf

[33] Allen O’Neal and Peter J. Slater. 2013. Uniqueness of Vertex Magic Constants.
SIAM J. Discrete Math. 27, 2 (2013), 708–716. https://doi.org/10.1137/110834421

[34] Stefan Porschen, Tatjana Schmidt, Ewald Speckenmeyer, and Andreas Wotzlaw.
2014. XSAT and NAE-SAT of linear CNF classes. Discrete Applied Mathematics
167 (2014), 1–14. https://doi.org/10.1016/j.dam.2013.10.030

[35] M. S. Ramanujan and Stefan Szeider. 2017. Rigging Nearly Acyclic Tournaments Is
Fixed-Parameter Tractable. In Proceedings of the Thirty-First AAAI Conference on
Artificial Intelligence, February 4-9, 2017, San Francisco, California, USA. 3929–3935.
http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14706

[36] Celso C. Ribeiro and Sebastián Urrutia. 2006. Scheduling the Brazilian Soccer
Tournament with Fairness and Broadcast Objectives. In Practice and Theory
of Automated Timetabling VI, 6th International Conference, PATAT 2006, Brno,
Czech Republic, August 30 - September 1, 2006, Revised Selected Papers. 147–157.
https://doi.org/10.1007/978-3-540-77345-0_10

[37] Rachel Rupnow. 2014. A survey of distance magic graphs. Master’s report,
Michigan Technological University (2014). https://digitalcommons.mtu.edu/etds/
829

[38] Philip A. Scarf, Muhammad Mat Yusof, and Mark Bilbao. 2009. A numerical study
of designs for sporting contests. European Journal of Operational Research 198, 1
(2009), 190–198. https://doi.org/10.1016/j.ejor.2008.07.029

[39] Allen J. Schwenk. 2000. What is the CorrectWay to Seed a Knockout Tournament?
The American Mathematical Monthly 107, 2 (2000), 140–150. http://www.jstor.
org/stable/2589435

[40] Peter J. Slater. 2016. It Is All Labeling. Springer International Publishing, Cham,
231–252. https://doi.org/10.1007/978-3-319-31940-7_14

[41] Isabelle Stanton and Virginia Vassilevska Williams. 2011. Manipulating Stochas-
tically Generated Single-Elimination Tournaments for Nearly All Players. In
Internet and Network Economics - 7th International Workshop, WINE 2011, Singa-
pore, December 11-14, 2011. Proceedings. 326–337. https://doi.org/10.1007/978-3-
642-25510-6_28

[42] Isabelle Stanton and Virginia Vassilevska Williams. 2011. Rigging Tournament
Brackets for Weaker Players. In IJCAI 2011, Proceedings of the 22nd International
Joint Conference on Artificial Intelligence, Barcelona, Catalonia, Spain, July 16-22,
2011. 357–364. https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-069

[43] KA Sugeng, D Fronček, M Miller, J Ryan, and J Walker. 2009. On distance magic
labeling of graphs. Journal of Combinatorial Mathematics and Combinatorial
Computing 71 (2009), 39–48.

[44] David C. Uthus, Patricia J. Riddle, and Hans W. Guesgen. 2012. Solving the
traveling tournament problem with iterative-deepening A∗ . J. Scheduling 15, 5
(2012), 601–614. https://doi.org/10.1007/s10951-011-0237-x

[45] Pim van ’t Hof, Gerhard F. Post, and Dirk Briskorn. 2010. Constructing fair round
robin tournaments with a minimum number of breaks. Oper. Res. Lett. 38, 6 (2010),
592–596. https://doi.org/10.1016/j.orl.2010.08.008

[46] Thuc Vu, Alon Altman, and Yoav Shoham. 2009. On the complexity of schedule
control problems for knockout tournaments. In 8th International Joint Conference
on Autonomous Agents and Multiagent Systems (AAMAS 2009), Budapest, Hungary,
May 10-15, 2009, Volume 1. 225–232. https://dl.acm.org/citation.cfm?id=1558044

[47] Thuc Vu and Yoav Shoham. 2010. Optimal seeding in knockout tournaments.
In 9th International Conference on Autonomous Agents and Multiagent Systems

Main Track AAMAS 2021, May 3-7, 2021, Online

563

https://doi.org/10.7151/dmgt.1998
http://www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/view/8352
http://www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/view/8352
http://dl.acm.org/citation.cfm?id=3331927
https://doi.org/10.24963/ijcai.2019/14
https://doi.org/10.24963/ijcai.2019/14
http://dl.acm.org/citation.cfm?id=3331783
https://doi.org/10.1007/978-3-540-73951-7_37
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-1-4471-5559-1
https://doi.org/10.1007/BF02579200
https://doi.org/10.1145/3219166.3219238
https://doi.org/10.1016/j.endm.2015.05.040
https://doi.org/10.1016/j.endm.2015.05.040
http://www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/view/8345
http://www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/view/8345
https://doi.org/10.24963/ijcai.2018/38
https://arxiv.org/abs/2102.03857
http://www.aaai.org/ocs/index.php/AAAI/AAAI11/paper/view/3459
http://www.aaai.org/ocs/index.php/AAAI/AAAI11/paper/view/3459
http://www.aaai.org/ocs/index.php/AAAI/AAAI12/paper/view/4862
https://doi.org/10.1287/moor.8.4.538
https://doi.org/10.1287/moor.8.4.538
https://doi.org/10.1287/moor.12.3.415
http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12194
http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12194
http://ijcai.org/Abstract/15/085
http://dl.acm.org/citation.cfm?id=3332012
https://doi.org/10.1007/s10951-008-0097-1
http://ajc.maths.uq.edu.au/pdf/28/ajc_v28_p305.pdf
http://ajc.maths.uq.edu.au/pdf/28/ajc_v28_p305.pdf
https://doi.org/10.1137/110834421
https://doi.org/10.1016/j.dam.2013.10.030
http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14706
https://doi.org/10.1007/978-3-540-77345-0_10
https://digitalcommons.mtu.edu/etds/829
https://digitalcommons.mtu.edu/etds/829
https://doi.org/10.1016/j.ejor.2008.07.029
http://www.jstor.org/stable/2589435
http://www.jstor.org/stable/2589435
https://doi.org/10.1007/978-3-319-31940-7_14
https://doi.org/10.1007/978-3-642-25510-6_28
https://doi.org/10.1007/978-3-642-25510-6_28
https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-069
https://doi.org/10.1007/s10951-011-0237-x
https://doi.org/10.1016/j.orl.2010.08.008
https://dl.acm.org/citation.cfm?id=1558044

(AAMAS 2010), Toronto, Canada, May 10-14, 2010, Volume 1-3. 1579–1580. https:
//dl.acm.org/citation.cfm?id=1838490

[48] Thuc Vu and Yoav Shoham. 2011. Fair Seeding in Knockout Tournaments. ACM
TIST 3, 1 (2011), 9:1–9:17. https://doi.org/10.1145/2036264.2036273

[49] Wikipedia contributors. 2020. Magic square —Wikipedia, The Free Encyclopedia.
https://en.wikipedia.org/w/index.php?title=Magic_square&oldid=936094943

[50] Virginia Vassilevska Williams. 2010. Fixing a Tournament. In Proceedings of
the Twenty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2010, At-
lanta, Georgia, USA, July 11-15, 2010. http://www.aaai.org/ocs/index.php/AAAI/

AAAI10/paper/view/1726
[51] Mingyu Xiao and Shaowei Kou. 2016. An Improved Approximation Algorithm

for the Traveling Tournament Problem with Maximum Trip Length Two. In 41st
International Symposium on Mathematical Foundations of Computer Science, MFCS
2016, August 22-26, 2016 - Kraków, Poland. 89:1–89:14. https://doi.org/10.4230/
LIPIcs.MFCS.2016.89

[52] Lishun Zeng and Shinji Mizuno. 2013. Constructing fair single round robin
tournaments regarding strength groups with a minimum number of breaks. Oper.
Res. Lett. 41, 5 (2013), 506–510. https://doi.org/10.1016/j.orl.2013.06.007

Main Track AAMAS 2021, May 3-7, 2021, Online

564

https://dl.acm.org/citation.cfm?id=1838490
https://dl.acm.org/citation.cfm?id=1838490
https://doi.org/10.1145/2036264.2036273
https://en.wikipedia.org/w/index.php?title=Magic_square&oldid=936094943
http://www.aaai.org/ocs/index.php/AAAI/AAAI10/paper/view/1726
http://www.aaai.org/ocs/index.php/AAAI/AAAI10/paper/view/1726
https://doi.org/10.4230/LIPIcs.MFCS.2016.89
https://doi.org/10.4230/LIPIcs.MFCS.2016.89
https://doi.org/10.1016/j.orl.2013.06.007

	Abstract
	1 Introduction
	1.1 Our Contribution and Methods

	2 Preliminaries
	3 Para-NP-hardness Results
	4 FPT Algorithms
	5 Conclusion and Future Research
	Acknowledgments
	References

