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ABSTRACT
Mechanism design has traditionally assumed that the set of partici-
pants are fixed and known to the mechanism (the market owner) in
advance. However, in practice, the market owner can only directly
reach a small number of participants (her neighbours). Hence the
owner often needs costly promotions to recruit more participants
in order to get desirable outcomes such as social welfare or revenue
maximization. In this paper, we propose to incentivize existing
participants to invite their neighbours to attract more participants.
However, they would not invite each other if they are competitors.
We discuss how to utilize the conflict of interest between the par-
ticipants to incentivize them to invite each other to form larger
markets. We will highlight the early solutions and open the floor
for discussing the fundamental open questions in the settings of
auctions, coalitional games, matching and voting.
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1 INTRODUCTION
MechanismDesign studies how to implement desirable social choice
functions in a strategic environment where all participants act ratio-
nally in game theoretical sense. Auction as one of the key outputs of
mechanism design has been widely used in different markets for a
long history (dates back to 17th century) [41]. Vickrey auction is the
seminal work of Vickery [44] which inspired many auction theories
such as Vickrey-Clarke-Groves (VCG) auction [10, 16], Gibbard-
Satterthwaite theorem [15, 36], Myerson’s revenue-maximizing
auction [26] and Myerson-Satterthwaite theorem [27]. In addition
to the rich theoretical results, in the beginning of 21st century,
IT service providers like Google started to apply a modification
of Vickrey auction, called generalized second-price (GSP) auction,
to allocate ad impressions [12]. Although GSP does not have the
desirable property called truthfulness as Vickrey auction does, it
has been a golden mechanism for online advertising.

As the technology of smart devices keeps pushing the bound-
aries in the last decade, more and more IT services have been
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moved to smart devices such as online shopping and online games.
Many social networking applications like TikTok are purely built
on smart devices. This also pushed the online advertising mar-
ket shifting from traditional PC-based channels to smart-device-
based channels [1]. More importantly, we see many new forms of
mechanisms for online advertising/shopping utilising users’ con-
nections/interactions on social networks [25, 30].

As the Internet is moving from traditional PC-network to social
networks and in the near future to Internet of Things, we have more
personal information from the Internet than before. For example,
from a smart phone, with its owner’s permission, we can get the
owner’s social connections, preferences, locations, photos, reviews,
shopping history and etc.. This opens up a huge new space for
market design which, of course, is not just for advertising.

In a mechanism design setting, we model all the information that
a mechanism needs to elicit from the participants as their types. In
the literature, the types are typically cardinal or ordinal preferences
on outcomes. Moreover, the participants are mostly assumed to
be independent. However, in the modern economy underpinned
by social networks, people are well-connected. They can quickly
gather together online to share resources, distribute tasks or make
decisions, even though they are not physically together. Hence, it
is essential to explicitly model and utilize their connections in the
corresponding market design stage.

In this paper, we propose to utilize people’s social connections
to invite each other to build larger markets, which enables the
market to achieve better outcomes. However, people would not
invite each other when there is a competition among them, say, in
a limited resource allocation. We discuss how to resolve the conflict
of interest among the participants to incentivize them to invite
each other, especially, in the settings of resource allocation, task
allocation, matching and voting.

In the four mentioned settings, it is easy to see both the benefits
and challenges of attracting more participants.

• In resource allocation (auctions), a larger market will dis-
cover more participants’ valuations/demand and increase
social welfare or the seller’s revenue. The challenge is to ask
participants to invite other participants to compete for the
same resources.
• In task allocation (coalitional games), a larger group of par-
ticipants creates larger coalitions (better outcomes/utilities).
For example, in a research project, it is always good to add
someone with different skills to the team. However, the
newly added member might also have some skills which
the team already has, which creates a competition for the
reward sharing among the participants.
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• In matching, a larger group of participants makes more sat-
isfiable matchings, e.g., larger exchange cycles. The same
as in the resource allocation, newly invited participant may
compete with their inviters for the match.
• In voting, when we have more voters to vote, it will not only
increase the turnout rate but also make the voting results
harder to manipulate. The challenge is that a voter would
not invite someone with different preferences.

In the rest of the paper, we will model the challenges and discuss
possible techniques to incentivize participants to invite their com-
petitors in the four settings. Although they share a similar challenge,
the methods to tackle it are very different. Other mechanism de-
sign settings such as facility allocation and public goods are not
discussed here, but they all can be studied under this framework.

2 THE GENERAL MODEL
Here we describe a general model of mechanism design on so-
cial networks. We consider a game with n players and they are
connected via their social connections to form a connected social
network. Let N be the set of all players. Each player i ∈ N has a
type θi = (ri ,pi ), where ri ⊂ N is i’s neighbours (with whom i can
directly communicate and i does not know the others N \ ri ) in
the network and pi is i’s other private information defined for the
specific game. For example, in a single item auction, pi is i’s valua-
tion for the item. In a house allocation, pi can be i’s preference on
all exchangeable houses. In all the different settings, one common
parameter of i’s type is her neighbours ri .

To execute amechanism in themodel, we need amechanism/market
owner. In this model, the owner can be a special player in the net-
work. For example, a seller for an item or a sponsor for a set of
tasks. Letω ∈ N be the mechanism owner. It is evident that without
attracting more participants, ω can only run the mechanism among
her neighbours rω . In addition to the traditional goals, the new goal
of the mechanism design here is to incentivize rω to invite their
neighbours to join the mechanism and the newly invited players
would further do the same. Eventually, everyone from the network
is invited and the owner can run the mechanism among all of them.

In the traditional mechanism design settings, i’s type is just
pi . One important property called incentive compatibility (a.k.a.
truthfulness) is defined as "if a mechanism is incentive compatible,
then for all i ∈ N \{ω}, reportingpi truthfully to the mechanism is a
dominant strategy". In our model, the type space is enlarged and we
need to extend the definition of incentive compatibility to cover the
action of inviting their neighbours. To model the invitation action
mathematically, we also ask them to report their neighbour sets to
the mechanism, which does not affect the actual implementation
in practice. Then the new definition becomes "for each i ∈ N \ {ω},
reporting both pi and ri truthfully is a dominant strategy".

In the traditional settings, when i misreports pi , it will not affect
the other players’ participation/reports. However, in our model,
if i misreports ri (i.e., i does not invite all her neighbours), some
players may not be able to participate any more. For example, if a
player j can only be invited by i and if i does not invite j, then j
and all the other players connected to j will not be able to join the
mechanism. Therefore, misreporting in this model will affect the
participation of the others, which is a key challenge in the design.

3 RESOURCE ALLOCATION
Resource allocation has been the mostly studied setting for mecha-
nism design. Auctions such as VCG mechanism have been devel-
oped for resource allocation to achieve the desirable properties
such as truthfulness, efficiency, and individual rationality. Another
important property of resource allocation is maximizing the seller’s
revenue. It has been shown that VCG mechanism cannot maximize
the revenue at the same time and especially, for combinatorial set-
tings, the revenue of the seller may decrease when there are more
buyers [29, 32]. This also explains why under VCG, a buyer can
create false ids to pretend to be multiple buyers to pay less for the
same set of items [45]. To further maximize the seller’s revenue,
Myerson [26] proposed the very first mechanism to achieve the
optimal revenue for selling a single item. The idea is to add a re-
serve price on top of the VCG and the reserve price requires buyers’
valuation distributions. However, in practice, the most efficient
way to increase the revenue is to seek more buyers to compete for
the item. This is also justified in theory by Bulow and Klemperer
[6] and they showed that in the single-item setting, the optimal
revenue with n buyers is not more than the revenue of VCG with
n + 1 buyers. In practice, attracting one more buyer is much easier
than finding the buyers’ valuation distributions, and therefore the
auctioneer prefers to spend more effort to attract more participants
than optimising the mechanisms.

In order to seek more participants, traditionally, the seller would
spend some cost via search engines or social media to promote the
auction. However, the return of the promotion is unpredictable, and
it is possible that the promotion does not bring any valuable partic-
ipants. Under social networks, we could instead use participants’
social connections to promote the auction. More importantly, we
want to make sure the promotion will increase the seller’s revenue.
However, participants are competitors for the auctioned resources
and they have no incentive to invite each other by default. There-
fore, the challenge is that the auctioneer does not want to lose
from the promotion and the participants do not want to do free
promotions. This is a new design problem which contains both
promotion and auction together and it has not been well studied
in the literature. Recent studies discovered that this is a promising
research direction worth further investigation [20–24, 47, 48, 51].

The problem can be framed as follows. A seller sells a set of
items and the potential buyers are willing to buy the items (a com-
binatorial setting). Then a participant’s type pi in this setting is
a valuation function for all bundles of the items. The goal for the
seller is to design a mechanism such that participants are incen-
tivized to both report their valuation function truthfully and invite
all their neighbours to join the sale. Also the seller’s revenue should
not be smaller than directly selling the items to her neighbours
only (an incentive for the seller to apply the mechanism).

Given the above setting, some novel mechanisms have recently
been proposed for single-item settings and multiple identical items
settings [23, 51]. The intuition behind their mechanisms is that a
buyer can potentially benefit from inviting her neighbours. If a
buyer does not invite anyone and wins the item, he will get a utility
say x . If the buyer invited all her neighbours, then the buyer may
lose the item, but the mechanism guarantees that the buyer’s new
utilityy is not less than x . This could be understood as that the buyer
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first buys the item and then resells it to her neighbours with a higher
price. If the reselling price is not higher than the current buyer’s
valuation, then the buyer will keep the item. This also explains
that why their mechanisms are not efficient (not maximizing social
welfare). One important property of their mechanisms is that the
seller’s revenue is guaranteed to be non-decreasing, which means
that the seller is incentivized to use the diffusion mechanisms to
increase her revenue.

To get complete efficiency, VCG can be extended to incentivize
buyers to invite each other, but the revenue of the seller will be
negative [23]. It is not hard to prove that under the network setting,
it is impossible to achieve truthfulness, individual rationality and
efficiency together with non-negative revenue for the seller (which
can be proved by converting a simplemodel (where a seller connects
to buyer A and buyer A further connects to buyer B) into a bilateral
trading case [21, 47]). One interesting open question is how much
efficiency we can approximate given that the seller’s revenue is non-
negative.We believe that this largely depends on the structure of the
network and the buyers’ valuation distributions. The mechanisms
cited above, except for the VCG, has no guarantee in terms of
approximating efficiency.

Another more challenging open question is to design similar
mechanisms for multiple heterogeneous items settings. It has been
shown that the problem becomes extremely difficult when we move
just one step forward from single-item to multiple homogeneous
items cases [20, 51]. The difficulty comes from the fact that the
allocation and price of one participant can be easily influenced
by its invitees and siblings [51]. In order to get the property of
truthfulness, we need to maximize everyone’s utility, which leads
to a super complex multiagent optimization problem. One possible
breakthrough is to restrict the action space of the participants
to simplify the optimization. Also there is a hierarchy problem
following their invitations, where an inviter has a higher priority
in the optimization than her invitees.

4 TASK COLLABORATION
Task allocation is another important field of mechanism design.
One setting is where there is one task to be finished and there
are a number of workers who can perform the task with different
(privately known) costs, and the goal is to find a suitable worker [40].
This setting can be transferred to the resource allocation setting
(the task can be treated as a resource). What we consider here are
cooperative games such as coalitional games and crowdsrourcing
games. In a coalitional game, players can form groups to achieve
different rewards and the goal is to design a reward distribution
mechanism to incentivize them to work together as one group (a.k.a.
grand coalition) [8]. In a crowdsourcing game, we have a set of
tasks to do and the goal is to find the best set of workers to perform
them such as tasks on Amazon Mechanical Turk and Google Image
Labeler [11, 17]. Different from the resource allocation settings, we
have both collaboration and competition here. The collaboration
comes from the fact they need to work together to accomplish the
tasks and the competition is due to the reward distribution.

In order to incentivize the players to collaborate in a coalitional
game, the literature has focused on designing proper reward dis-
tribution mechanisms [8]. Shapley value is one of the well-known

distribution mechanisms satisfying many desirable properties [39].
Core is another important property which says a distribution is
a core if no subset of players can deviate from the grand coali-
tion to receive better rewards [37]. Shapley value is computable
for all coalitional games, but core may not exist for all the games.
Since a larger group of players work together can achieve more,
we consider how to incentivize players to invite others (via their
social connections) to join the game, which is widely applicable in
practice. This is not well-considered in the literature and cannot be
solved with the existing solutions.

Consider a simple example where initially only player P1 is in
the game and P1 can achieve a utility x alone. If P1 has a neighbour
P2 whose ability is the same as P1, i.e., they together cannot achieve
more than x . If we apply Shapley value, P1 receives x without
inviting P2, but it is reduced to x/2 after inviting P2. Thus, P1 is
not incentivized to invite P2 if the reward is distributed by Shapley
value. Actually, in this simple example, the reward distributed to
P1 should be at least x in order to incentivize P1 to invite others.

Therefore, our goal is to design new reward distribution mech-
anisms to incentivize them to not only work together, but also
invite more players to cooperate together to receive better rewards.
We assume that the players are connected to form a network and
initially only a subset of them are in the game. The challenge is
that we cannot treat inviters and invitees the same and in principle
inviters have higher priorities/weights than invitees. The question
is how to use this priority to define the reward distribution.

Zhang et al. [46] studied a data acquisition setting by modifying
Shapley value such that the join of invitees may only increase the
Shapley value that the inviters can get before the invitation. By
doing so, they group all players by layers, the first layer contains all
the initial players, the second layer contains all the players directly
invited by the first layer and so on. If we treat each layer as one
group, then the reward distributed to the k-th layer is the marginal
contribution when the k-th layer join after the first k − 1 layers.
However, the participation of the higher layers would not bring any
benefit to the lower layers, so they proposed to take some portion
of each layer’s reward to be shared with its parent layers for the
strong invitation incentive.

Incentivizing participants to invite others to join a challenging
task has appeared in practice since the 2009 DARPA Network Chal-
lenge [43]. It was a competition for first finding the red weather
balloons at 10 previously undisclosed locations in the continental
United States. A team from MIT won the competition and they
proposed a novel reward distribution mechanism to attract more
than 5000 participants to join the team via social platforms [31].
The intuition of their solution is that the reward is not just given to
the participants who find the balloons first, but also to the people
who invited them (until the root of the invitation chain). In the-
ory, their mechanism satisfies the invitation incentive we want to
achieve here, which has been proved by Zhang and Zhao [50]. They
further showed that any combination of weighted Shapley value
and permission structure can give us invitation incentives and the
solution from the winning team is a special example. One inter-
esting open question is to further characterize all the mechanisms
under coalitional games to satisfy invitation incentives.

As mentioned above, a player is incentivized to invite others
because she will be rewarded for the invitation. This, however,
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can lead to another challenge where a player creates multiple fake
nodes in the network to gain more benefit, which is known as
false-name attack [45]. It is easy to check that the MIT winning
solution cannot prevent false-name attacks. Chen et al. [9] proposed
a solution for false-name proof in expectation in a single question
answering scenario. For the deterministic setting, Zhang et al. [49]
showed that requiring both invitation incentive and false-name
proofness leaves us very limited design space. They also considered
the manipulation of merging multiple nodes into one node. It is still
open what mechanisms we can get under different combinations
of all the desirable properties in coalitional games.

5 MATCHING
In both resource and task allocation, we often use utility transfer
(monetary payment) to achieve the design goals. However, in some
settings like matching, monetary payment is not an option. Match-
ing is a well-studied field consisting of problems like house alloca-
tion, stable marriage problem and kidney exchange [18, 33, 34, 42].
In a matching setting, players have mainly ordinal preferences
among different matchings, e.g. a player prefers house a to house
b but does not have an exact value for each house. Also in kidney
exchange, a donor cannot charge the patient who received the dona-
tion. Without the tool of utility transfer, the literature has focused
on making optimal or stable matching such as the top trading cycle
algorithm for house allocation and the Gale-Shapley algorithm for
stable marriage problem [14, 38].

We further study the matching problem from the perspective
of attracting more participants. For example, in a house allocation
or stable marriage problem, more participants will create better
exchanges and make participants more satisfied. Again, in kidney
exchange, if we have more donors and patients, we will be able to
form more exchanges and benefit more patients [35, 42].

The challenge we tackle here is how to incentivize existing par-
ticipants to invite others who are not in the matching game yet.
Existing solutions cannot solve this. Consider the top trading cycle
algorithm for house exchange, if a participant P1 invited another
participant P2, P2 may compete with P1 for the same house. For the
Gale-Shapley algorithm in a stable marriage problem, if a manM1
invited another manM2 who has the same preference asM1 does,
then M2 will compete with M1 for the same women. Even if M1
invites a womanW2,W2 could again inviteM2 to compete withM1.
Thus, both men and women would not invite others by default.

Therefore, we need to investigate new matching mechanisms to
incentivize existing participants to invite new participants. Similar
to the resource and task allocation, the key is that an inviters’ match
should not be sacrificed by their invitees. In traditional settings, we
allow participants to have a full preference among all participants
without any constraints, but in the network setting, we need to
add constraints on their preferences in order to incentivize them to
invite each other. For the example mentioned above, if P2 competes
with P1 for the same house, assume their preferred house is with
P3 and P3 does not know P2, even if P3 prefers P2’s house to P1’s
house, we cannot allow P2 and P3 exchange directly (otherwise,
P1 would not invite P2 to the game). The challenge here is how to
interpret this kind of constraint in the matching process. Zheng
et al. [52] proved that to incentivize participants to invite each

other, we cannot further have the traditional optimality. Thus, the
existing matching mechanisms cannot work in the new setting.

6 VOTING
Voting is another important field in mechanism design where mon-
etary transfer is not possible [5, 28]. Due to the development of
social networks, more and more pools/votings are conducted online
by inviting participants on social media [3, 4, 13]. On one hand, we
hope more participants can join a voting to make the results reflect
the opinions of the majority. On the other hand, the invited partic-
ipants are often the candidates’ friends, which makes the results
unfair/biased to some extent. To combat this challenge, we propose
to design new voting rules such that more participants are invited
by the existing participants even if they have different preferences.
More importantly, we hope the voting results are not far from the
results we can get when they all can participate without invitation.
Intuitively, if it is a voting for choosing one winner, assume that
the winner is a when all participants vote under a classical voting
rule. Then, under the new voting rule, except for attracting more
voters, we also hope that the final voting result is not far from
a. If such mechanism exists, we can always start a voting with a
small number of voters in the community. The initial voters will
spread the voting to their network and eventually all the voters
in the community will be invited and the results still reflect the
preferences of the majority.

The challenge here is that a voter preferring outcome a to b
does not have incentives to invite voters preferring b to a. This also
explains why online votings are eventually a competition of the
number of friends they have invited between the candidates. We
need to change this by incentivizing the voters to invite all voters
they know, even though they may have different preferences. To
the best of our knowledge, no solution has been found for this.

One possible way to tackle the bias in online voting is liquid
democracy (proxy voting). Voting via social network can easily
realize the delegation process. Besides, those who are indifferent
can transfer their voting right to knowledgeable people [2, 19].
However, existing mechanisms satisfying the delegation process
cannot achieve a better outcome than each voter votes directly [7].

7 CONCLUSION
We have highlighted a new mechanism design challenge under
the social network environment where each player is connected
with some players (her neighbours) and the player does not know
the others on the network. The design goal is to incentivize the
players who are already in the game to further invite their neigh-
bours to join the game, even though they are competing for the
same resources, tasks or matches. We have emphasized four do-
mains: auctions, coalitional games, matching and voting. They all
have different goals and face different challenges, but in terms of
incentivizing the players to invite each other, they share the same
principle that invitees cannot sacrifice their inviters’ utilities. We
have seen some progress in this direction on auctions and coali-
tional games, but there are still many fundamental open questions
to be answered. Of course, the diffusion study is not limited to the
four domains. Any mechanism design settings where there is a
need to attract more players can be studied under this framework.
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