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ABSTRACT
Recently, Jain et al. [IJCAI, 2019] studied the effect of project in-

teractions in participatory budgeting (PB) by assuming an existing

partition of the projects to interaction structures, namely a group-

ing of the projects into substitution and complementarity groups.

Motivated by their study, here we take voter preferences to find

such interaction structures. In our model, voters submit interaction

structures, and the goal is to find an aggregated structure. For-

mally, given a set 𝑃 of𝑚 projects, and 𝑛 partitions of 𝑃 , the task

is to aggregate these 𝑛 partitions into one aggregated partition.

We consider this partition aggregation task both for substitution

structures and for complementarity structures, studying several

aggregation methods for each, including utility-based methods and

Condorcet-based methods; we evaluate these methods by analyzing

their computational complexity and their behavior with respect to

certain relevant axiomatic properties.
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1 INTRODUCTION
In participatory budgeting (PB) [6] the task is to aggregate voter

preferences over a set of projects, to decide upon a bundle of those

projects to fund. It has received quite extensive recent attention

from the research community, resulting in some aggregation meth-

ods to be used for such settings [2, 3, 5, 10, 11]. One aspect of PB

which was neglected for long time, and recently studied by Jain et

al. [14], is project interactions; in particular, two important ways

by which projects can interact are by being substitutes or being

complementary.

Example 1.1. As an example of a substitution effect, consider a
toy PB instance consisting of 3 projects – one school, 𝑠 , and two

parks, 𝑝1 and 𝑝2; in many cases, it is natural to assume that, while

certain voters might wish to have one park built in their city, not

many voters would feel that funding two parks (especially if these

parks are geographically close to each other) is a good use of public

funds, as these two projects are substitutes of each other.

Proc. of the 20th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2021), U. Endriss, A. Nowé, F. Dignum, A. Lomuscio (eds.), May 3–7, 2021, Online.
© 2021 International Foundation for Autonomous Agents and Multiagent Systems

(www.ifaamas.org). All rights reserved.

Example 1.2. As an example of a complementarity effect, consider
a toy PB instance consisting of 3 projects – two schools, 𝑠1 and 𝑠2,

and another project 𝑝 that is a road leading from the city center to

𝑠1; in many cases, it is natural to assume that many of the voters

that wish to have the school 𝑠1 being built would only wish so if

also the road 𝑝 leading to it would be funded; put differently, it is

perhaps not a good use of public funds to fund only 𝑠1 or only 𝑝 , as

these two projects are complementary to each other.

In this paper we are interested in figuring out the so-called

interaction structure (we refer to interaction structure as both sub-

stitution structure and complementarity structure, whenever it is

clear from the context) of the set of projects in a PB instance. E.g., in

the toy examples described above, a natural corresponding substi-

tution structure of the substitution example would be the partition

{{𝑠}, {𝑝1, 𝑝2}} – each part (i.e., {𝑠} and {𝑝1, 𝑝2}) of this partition
is referred to a substitution class; where a natural corresponding
complementarity structure of the complementarity example would

be the partition {{𝑠1, 𝑝}, {𝑠2}} – each part (i.e., {𝑠1, 𝑝} and {𝑠2}) of
this partition is referred to a complementarity class.

Why are such interaction structures important? Here we take a

utilitarian approach, by assuming that each voter has a utility for

each set of projects selected for funding; say, the utility of voter

𝑢 from a possible bundle 𝑃 ′ is 𝑢 (𝑃 ′). Then, substitution effects

might correspond to saying that the utility function𝑢 is submodular

wrt. projects of the same part in the partition: e.g., in Example 1.1,

𝑢 ({𝑝1, 𝑝2}) ≤ 𝑢 ({𝑝1})+𝑢 ({𝑝2}). Similarly, complementarity effects

might correspond to supermodular utility functions. Thus, to be

able to find a feasible bundle as the winning bundle of a given

PB instance, it is useful to know the interaction structures of the

instance. There are several ways by which an organizer of a PB

instance might tackle this aspect of project interactions:

Dictatorial decision:One possibility would be for the orga-
nizer to decide herself upon the interaction structure – then,

she might, e.g., ask voters to approve projects, but does not

allow voters to approve more than one project in each substi-

tution class, and require voters that wish to approve projects

that are in a complementarity class together, to approve the

whole class as well.

Explicit Exponential Elicitation: Another possibility

would be for the organizer to allow each voter to explic-

itly specify her utility from each bundle of projects, however

this would mean an exponential explosion and thus is usually

not feasible.

Preliminary Election: A yet another possibility would be

for the organizer to perform a preliminary election, in which

she asks the voters – perhaps only a subset of the voters –

to provide their interaction structures. Then, the organizer
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can aggregate those partitions provided by the voters and

use the aggregated partition as the global interaction struc-

ture (and then proceed, say, by similar ways as the dictator

above uses – forbidding approving several projects from

the same substitution class and enforcing approving whole

complementarity classes together).

Here we choose the last option, thus concentrate on the subprob-

lem of aggregating partitions. Here, one would be wondering why

do wewant to conduct election in two phases, that is, first asking for

interaction structures from some voters, and then conduct standard

election. The first reason is that elicitation cost is high. Since this is

the preliminary step of participatory budgeting, it is natural that we

only ask some people to provide us with their interaction structures,

say only secretaries of different societies. Jain et al. [14] proposed

the methods of using the aggregated partition in the subsequent

participatory budgeting.

Here we do not study the problem of aggregating substitution

classes and complementarity classes together, but we study two re-

lated, but formally different problems: first we consider the problem

of aggregating substitution structures, and then, independently, we

consider the problem of aggregating complementarity classes. Note

that, indeed, these two problems regards aggregating partitions,

however, we formulate the aggregation objective differently, as

substitution effects differ greatly from complementarity effects.

Remark 1. We acknowledge one natural criticism of our approach,
namely that we assume that the interaction structures are “global”,
in the sense that it can be fixed to be the same for all voters. While,
indeed, this might not always be the case, we believe that in most PB
instances it is roughly global. Verifying this intuition and identifying
cases in which this intuition is true and other cases in which it is
violated is, again, an interesting avenue for future research.

Remark 2. In this paper we study how to aggregate partitions
where the aggregated partitions are to be used for deciding on in-
teraction structures for PB instances. Another PB scenario in which
aggregating partitions might be useful is the following: A PB organizer
shall distribute a pamphlet explaining the projects to the voters. On
each page only a certain number of projects can be explained, thus in
fact the pamphlet partitions the projects into pages. Using a partition
aggregation method might help here, in particular, as the presentation
affects the preferences.

1.1 Related Work
A special case of the partition aggregation problem is cluster en-
sembles [16] which is also known as cluster aggregation [13] and

consensus clustering [7]. In cluster aggregation, we are given a set

of clusterings, and the goal is to find a clustering which agrees

with the input clusterings as much as possible. Cluster aggrega-

tion is polynomial-time solvable when the input has two partitions,

while it is APX hard when we have three partitions [4]. Strehl and

Ghosh [16] proposed some techniques for cluster aggregation. In

one of their approaches, given a set of clustering, they construct

a hypergraph, and find a hyperedge separator that partitions the

hypergraph into 𝑘 unconnected components of approximately the

same size.

Gionis et al. [13] gave some approximation algorithms. They con-

sidered cluster aggregation problem and correlation clustering. In

cluster aggregation, theymeasure the dissimilarity between the clus-

terings. Let𝑉 be the given set of objects, and𝐶1, . . . ,𝐶𝑚 be the set of

clusterings. For two objects𝑢 and 𝑣 in𝑉 , and two clusterings𝐶1,𝐶2,

𝑑𝑢,𝑣 (𝐶1,𝐶2) = 1, if𝑢 and 𝑣 are in same part in𝐶1 and different parts

in 𝐶2, or vice-versa, otherwise 0. The dissimilarity between two

clusterings𝐶1 and𝐶2 is defined as 𝑑 (𝐶1,𝐶2) =
∑
𝑢,𝑣∈𝑉 𝑑𝑢,𝑣 (𝐶1,𝐶2).

The goal is to find a clustering 𝐶 such that the total dissimilarity,∑𝑚
𝑖=1 𝑑 (𝐶,𝐶𝑖 ), is minimized. This function is also known as total

Mirkin distance. They also studied the maximization version of con-

sensus clustering. Towards this, they defined similarity between

two partitions 𝐶1 and 𝐶2, denoted by 𝑠 (𝐶1,𝐶2), as the number of

objects which either belong to the same part in both the partitions

or in different parts in both partitions. The goal is to find a partition

𝐶 such that

∑𝑚
𝑖=1 𝑠 (𝐶𝑖 ,𝐶) is maximised.

Dornfelder et al. [7] proved that cluster aggregation is NP-hard

even when every partition contains at most two clusters. They

proposed an FPT algorithm for cluster aggregation with respect

to parameter average Mirkin distance. They also studied the local

search variant of the problem, and showed that the problem is

W[1]-hard when parameterized by radius of the Mirkin-distance

neighborhood.

We also mention work on aggregating graphs [8], as aggregating

partitions is equivalent to aggregating cluster graphs (graphs that

are a collection of disjoint cliques).

1.2 Contributions
Our contributions are as follows:

• We describe a model of partition aggregation that is mo-

tivated by project interactions in PB instances, where the

result of the aggregation process is an interaction structure,
namely either a substitution structure or a complementarity
structure.

• We study both substitution structures and complementarity

structures. For each, we describe some axiomatic properties

desired from aggregation methods for them. Importantly, as

substitutions differ from complementarities, our axiomatic

properties are different for the two cases.

• We offer some natural aggregation methods for substitu-

tion structures and complementarity structures, study their

axiomatic properties, and investigate their computational

complexity.

We summarise our results in Table 1.

2 PRELIMINARIES
We discuss PB, partitions, and our general utilitarian approach.

2.1 Projects and Partitions
Formally, we have a set, 𝑃 = {𝑝1, . . . , 𝑝𝑚}, of projects, (In PB, there

is a cost 𝑐 (𝑝) for each 𝑝 ∈ 𝑃 ; we do not include these in our formal

model as they do not affect the substitution structure) and a set,

𝑉 = {𝑣1, . . . , 𝑣𝑛}, of voters, where voter 𝑣𝑖 corresponds to a parti-

tion 𝑃𝑣𝑖 of 𝑃 . A partition 𝑃𝑣 is a disjoint set of parts whose union
is 𝑃 ; i.e., 𝑃𝑣 = {𝑝1, . . . , 𝑝𝑧 }, where for every 𝑖, 𝑗 ∈ [𝑧], 𝑝𝑖 ∩ 𝑝 𝑗 = ∅
and ∪𝑗 ∈[𝑧 ]𝑝

𝑗 = 𝑃 . Each 𝑝 𝑗 is referred to as a part of the partition
𝑃𝑣 . A partition aggregation method is a function taking 𝑛 partitions
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of 𝑃 and returning a partition 𝑆 of 𝑃 , referred to as the aggre-
gated partition. (We ignore issues of tie-breaking as they clutter

the presentation without adding significant insights.) We denote

an instance of partition aggregation as (𝑃, C), where 𝑃 is the set of

projects and C is the collection of 𝑛 partitions of 𝑃 .

2.2 Utilitiarianism
The main question we are studying here is how to define a “good”

partition. Here we take a utilitiarian approach: We assume that each

voter 𝑣 , based on her partition 𝑃𝑣 , would derive a certain utility from

each possible aggregated partition 𝑆 . While these utilities are un-

known, they might be estimated (similarly to set extensions, which

are used to estimate utilities over committees based on utilities over

single candidates in multiwinner elections). Given a specific way

of estimating such utilities over the set of possible partitions, a nat-

ural partition aggregation method would return, as the aggregated

partition, a partition which maximizes the sum (or the minimum) –

over the voters – of these utilities. Such a utilitarian approach has

been applied successfully for many social choice settings, including

multiwinner elections [9] and participatory budgeting [10].

Example 2.1. Consider the set of projects 𝑃 = {𝑝1, 𝑝2, 𝑝3, 𝑝4}
and a voter 𝑣 with the partition 𝑃𝑣 = {{𝑝1, 𝑝2}, {𝑝3, 𝑝4}}. It
is natural to assume that the utility of voter 𝑣 from the parti-

tion 𝑆1 = {{𝑝1, 𝑝2}, {𝑝3}, {𝑝4}} would be fairly high, as 𝑃𝑣 and

𝑆1 are quite similar. Furthermore, the utility of 𝑣 from 𝑆2 =

{{𝑝1}, {𝑝2}, {𝑝3}, {𝑝4}} might be less than her utility from 𝑆1, as

𝑆2 seems to be less similar to 𝑃𝑣 than 𝑆1 is.

Our utilitarian approach is formally defined below.

Definition 2.2 (Utility function). Let 𝑃 be a set of𝑚 projects and

let P be the set of all partitions of 𝑃 . A utility function is a function

𝑓 : P × P → N. For a voter 𝑣 and a possible aggregated partition

𝑆 , 𝑓 (𝑣, 𝑆) is understood as the utility that voter 𝑣 gets from 𝑆 ; the

higher the better.

We will define different utility functions for when we study sub-

stitution structures and complementarity structures. In particular,

in Section 3 we will define utility functions relevant for substitu-

tion structures, while in Section 4 we will define utility functions

relevant for complementarity structures.

2.3 Aggregation Goals
Given a utility function 𝑓 , we consider two partition aggregation

goals: Maximizing the sum of utilities (Total) and maximizing the

minimum utility (Egal).

Definition 2.3 (Total Utility (Total)). Given a set of𝑚 projects,

a collection of 𝑛 voters, 𝑉 , along with their partitions, and a utility

function 𝑓 , the goal in Total Utility aggregation is to find a partition

𝑆 such that

∑
𝑣∈𝑉 𝑓 (𝑣, 𝑆) is maximized.

That is, in Total Utility aggregation we look for a partition that

maximizes the total utility (i.e.,

∑
𝑣∈𝑉 𝑓 (𝑣, 𝑆)). In the decision ver-

sion of the problem, given an integer 𝑘 additionally, we look for a

partition that has total utility at least 𝑘 . We use the same problem

name for optimisation as well as decision version of the problem

as it will be clear from the context.

We also consider egalitarian aggregation methods, in which we

care for the least satisfied voter (similarly in spirit to egalitarian

committee scoring rules [1]).

Definition 2.4 (Egalitarian Utility (Egal)). Given a set of 𝑚

projects, a collection of𝑛 partitions, 𝑃1, . . . , 𝑃𝑛 , and a utility function

𝑓 , in Egalitarian Utility aggregation the goal is to find a partition 𝑆

such that min𝑣∈𝑉 𝑓 (𝑣, 𝑆) is maximized.

In the decision version of the problem, given an integer 𝑘 ad-

ditionally, we look for a partition that has Egalitarian Utility at

least 𝑘 .

Given a specific utility function 𝑓 , by Total-𝑓 (Egal-𝑓 ) we refer to

the aggregation method aiming at maximizing the sum (minimum)

of voter utility, where voter utility is defined via 𝑓 .

3 SUBSTITUTION STRUCTURES
Below we study aggregating partitions for substitution structures.

We define two utility functions that are relevant for substitution

structures; we then study the computational complexity of the ag-

gregation methods corresponding to these utility functions. Lastly,

we define several axiomatic properties relevant for substitution

structures and study them wrt. the aggregation methods.

3.1 Two Utility Functions
We consider two utility functions. The PA utility function is perhaps

the first utility function one might think of: The utility of a voter

equals the number of pairs for which her vote agrees with the

aggregated vote. The PAM utility function is slightly less natural

as the utility is the number of pairs for which the voter agrees

with the aggregated vote, minus the number of pairs not in the

same partition in the voter’s partition but in the same partition in

the aggregated vote. Thus, in essence, we define a larger fine for

merging a pair of projects unnecessarily (a fine of −1), than for

splitting a pair of projects unnecessarily (a fine of 0). The reason for

this asymmetry is our motivation from substitution structures: We

believe that an aggregated partition that defines a set of projects as

substitutions to each other, while most voters prefer not to have

them defined as such is more harmful than an aggregated partition

that simply fails to define a substitution in cases in which it should.

Number of pairwise agreements (PA): Let 𝑝1, 𝑝2 be two projects
in 𝑃 . For a voter 𝑣 , and an aggregated partition 𝑆 , let

𝛿PA𝑣,𝑆 (𝑝1, 𝑝2) =


1 if 𝑝1, 𝑝2 are in same (different) part(s)

in both 𝑃𝑣 and 𝑆 ;

0 otherwise .

We define theNumber of pairwise agreements (PA) utility function
for voter 𝑣 from 𝑆 to be as follows:

𝑓 PA (𝑣, 𝑆) =
∑

𝑝1,𝑝2∈𝑃
𝛿PA𝑣,𝑆 (𝑝1, 𝑝2) .

Number of pairwise agreementsminus number ofmergings
(PAM): Let 𝑝1, 𝑝2 be two projects in 𝑃 . For a voter 𝑣 , and aggregated
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partition 𝑆 , let

𝛿PAM𝑣,𝑆 (𝑝1, 𝑝2) =



1 if 𝑝1, 𝑝2 are in same(different) part(s)

in both 𝑃𝑣 and 𝑆 ;

0 if 𝑝1 and 𝑝2 are in same part in 𝑃𝑣

but in different parts in 𝑆 ;

−1 if 𝑝1 and 𝑝2 are in different parts in 𝑃𝑣

but in same part in 𝑆 .

We define the Number of pairwise agreements minus number of
mergings (PAM) utility function for voter 𝑣 from 𝑆 to be:

𝑓 PAM (𝑣, 𝑆) =
∑

𝑝1,𝑝2∈𝑃
𝛿PAM𝑣,𝑆 (𝑝1, 𝑝2) .

Example 3.1. Our two utility functions and two aggregation

types define four aggregation methods: Total-PA, Egal-PA, Total-

PAM, and Egal-PAM. Consider the following set of partitions to illus-

trate the difference between these methods. Let 𝑃𝑣1 = {{𝑝1, 𝑝2, 𝑝3}},
𝑃𝑣2 = {{𝑝1}, {𝑝2, 𝑝3}}, and 𝑃𝑣3 = {{𝑝1}, {𝑝2}, {𝑝3}}.

Let 𝑆 = {{𝑝1, 𝑝2}, {𝑝3}} be an aggregated partition. We first

describe Total-PA. For the pair of projects 𝑝1, 𝑝2, 𝛿
PA
𝑣1,𝑆

(𝑝1, 𝑝2) =

1 as 𝑝1 and 𝑝2 are in same part in both the partitions; however

𝛿PA
𝑣1,𝑆

(𝑝1, 𝑝3) = 0 as 𝑝1 and 𝑝3 are in same part for 𝑣1 and in different

parts in 𝑆 . Similarly, 𝛿PA
𝑣1,𝑆

(𝑝2, 𝑝3) = 0. Hence, the PA utility for voter

𝑣1 from 𝑆 , 𝑓 PA (𝑣1, 𝑆), is 1. Similarly, the PA utility for voter 𝑣2 and

𝑣3 from 𝑆 are 1 and 2, respectively. The Total-PA utility from 𝑆 is 4.

The Egal-PA utility is 1. Next, we describe Total-PAM utility. For the

pair of projects 𝑎, 𝑏, 𝛿PAM
𝑆,𝑣1

(𝑝1, 𝑝2) = 1; however 𝛿PAM
𝑆,𝑣1

(𝑝1, 𝑝3) = 0 and

𝛿PAM
𝑆,𝑣1

(𝑝2, 𝑝3) = 0. Hence, the PAM utility for 𝑣1 from 𝑆 , 𝑓 PAM (𝑣1, 𝑆),
is 1. Furthermore, 𝛿PAM

𝑆,𝑣2
(𝑝1, 𝑝2) = −1 as 𝑝1 and 𝑝2 are in different

parts for 𝑣2, while they are in the same part in 𝑆 ; 𝛿PAM
𝑆,𝑣2

(𝑝1, 𝑝3) = 1

and 𝛿PAM
𝑆,𝑣2

(𝑝2, 𝑝3) = 0. Hence, the PAM utility for 𝑣2 from 𝑆 is 0.

Similarly, the PAM utility for 𝑣3 from 𝑆 is 1. Therefore, the Total-

PAM utility from 𝑆 is 2, and the Egal-PAM utility is 0.

3.2 Computational Complexity
Recall that the problem of finding an aggregated partition with

maximum Total-PA is equivalent to the Consensus Clustering prob-

lem. Since Consensus Clustering is known to be NP-hard even for

three partitions [7], we have the following result.

Proposition 3.2. Total-PA is NP-hard even for three voters.

Consensus Clustering is also known to be NP-hard when every

input partition has at most two parts [7]. Hence, we have following

result.

Proposition 3.3. Total-PA is NP-hard even when every voter has
at most two parts.

We next present our intractability result for Total-PAM.

Theorem 3.4. Total-PAM is NP-hard even when each partition
contains at most two parts.

Proof. We describe a polynomial-time reduction from the known

NP-hard problem Cluster Deletion (Given a graph 𝐺 , and an in-

teger 𝑘 ; we shall decide the existence of at most 𝑘-sized set of

edges whose deletion from 𝐺 results into a cluster graph (i.e., a

disjoint union of cliques) [15]. Let (𝐺,𝑘) be an instance of the Clus-

ter Deletion problem. Let |𝑉 (𝐺) | = 𝑛, |𝐸 (𝐺) | = 𝑚. Without loss

of generality, assume that 𝑛 − 2 = 2
ℓ
, for some positive integer ℓ .

We first construct the set of projects 𝑃 . For each vertex 𝑢 ∈ 𝑉 (𝐺),
we add a project 𝑢 in the set 𝑃 . Now, we construct a collection of

partitions, C, of projects. For every pair of vertices 𝑢, 𝑣 ∈ 𝑉 (𝐺), we
create a collection of partitions C𝑢𝑣 as follows. If 𝑢𝑣 ∈ 𝐸 (𝐺), then
|C𝑢𝑣 | = 3 · 22ℓ−1, otherwise |C𝑢𝑣 | = 3 · 24ℓ−1. If 𝑢𝑣 ∈ 𝐸 (𝐺), then
in every partition in C𝑢𝑣 , 𝑢 and 𝑣 are in same part; otherwise 𝑢

and 𝑣 are in different parts in every partition in C𝑢𝑣 . For every pair

of vertices 𝑥,𝑦 ∈ 𝑉 (𝐺) \ {𝑢, 𝑣}, there are |C𝑢𝑣 |/3 partitions in C𝑢𝑣
in which 𝑥 and 𝑦 are in different parts, and 2· |C𝑢𝑣 |/3 partitions in
which 𝑥 and 𝑦 are in same part. This collection of partitions C can

be construed in polynomial time, however we skip the justification

due to space constraint. The intuitive idea for such a collection of

partitions is that for a pair of project 𝑥,𝑦, the total PAM utility due

to partitions in C𝑢𝑣 , where 𝑢, 𝑣 are distinct from 𝑥,𝑦, is 22ℓ−1 for
any aggregated partition, as if 𝑥,𝑦 are in different parts in the aggre-

gated partition, then the total PAM utility due to these partitions is

2· |C𝑢𝑣 |/3 − |C𝑢𝑣 |/3 = |C𝑢𝑣 |/3, otherwise |C𝑢𝑣 |/3. In essence, the utility

of pair of project for C𝑢,𝑣 does not depend on the parts to which

𝑥,𝑦 belongs in the aggregated partition. However, for project 𝑢, 𝑣 ,

total PAM utility for C𝑢,𝑣 depends on their parts in the aggregated

partition. The set of partitions in our instance is C = ∪𝑢,𝑣∈𝑉 (𝐺)C𝑢𝑣 .
We set total PAM utility as

𝑘 ′ =24ℓ−1
(𝑛(𝑛 − 1)

2

−𝑚

) (𝑛(𝑛 − 1)
2

+ 2

)
+ 2

2ℓ−1
(
𝑚

(𝑛(𝑛 − 1)
2

−𝑚 + 𝑛 + 2

)
− 3𝑘

)
.

□

We proceed to the egalitarian rules.

Theorem 3.5. Egalitarian-{PA, PAM} are NP-hard.

Proof. Due to space constraints, we describe a sketch of the

reduction. We reduce from Unary Bin Packing, seen as a parti-

tion problem (one seeks a partition of [𝑘𝐵] into 𝑘 parts of size 𝐵

where items, represented as disjoint subsets, must be included in

single parts). We use [𝑘𝐵] as the set of projects, and first build

two voters: 𝑅 := {[𝑘𝐵]} and 𝑆 := {{1}, . . . , {𝑘𝐵}}. We can enforce

that the solution must have utility at least 𝑡𝑅 := 𝑘
(𝐵
2

)
with 𝑅 and

𝑡𝑆 :=
(𝑘𝐵
2

)
− 𝑡𝑅 with 𝑆 (𝑡𝑆 :=

(𝑘𝐵
2

)
− 2𝑡𝑅 in the PAM model). These

two thresholds yield a partition with 𝑘 blocks of size 𝐵. Then, for

each pair of elements 𝑒 = (𝑥,𝑦) from the same item, we enforce

that both elements are in the same part using a partition 𝑄𝑒 =

{{𝑥}, {𝑦}, [𝑘𝐵]\{𝑥,𝑦}}with utility threshold 𝑡𝑄 := 𝑡𝑅+2(𝑚−2𝐵)+3
(or 𝑡𝑄 := 𝑡𝑅 + 4(𝑚 − 2𝐵) + 6 in the PAM model). Together, these

constraints ensure that the target solution is a valid bin packing of

the original instance (we achieve distinct utility thresholds with

additional gadgets appended to each partition). □

3.3 Axiomatic Properties
Here we consider various axiomatic properties that are relevant

for substitution aggregation methods, and test our aggregation

methods against them.While it is possible to define many axiomatic
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Method Complexity Unanimity Majority-based IIP
Total-PA NP-h even for 𝑛 = 3 (Prop. 3.2) or ℓ ≤ 2 (Prop. 3.3) Yes Yes No

Egal-PA NP-h (Thm. 3.5) No No No

Total-PAM NP-h even for ℓ ≤ 2 (Thm. 3.4) Yes No Open
Egal-PAM NP-h (Thm. 3.5) Open No Open

Total-COMP NP-h (Thm. 4.2) Yes No N/A

Egal-COMP NP-h (Thm. 4.3) Yes No N/A

Table 1: Summary of our results. We denote the maximum number of parts in any partition by ℓ .

properties, we chose axioms that seem especially relevant, with the

application of aggregating substitution structures in mind.

The axiom of Unanimity, defined next, says that if all voters

agree on whether some two projects shall be in the same part or

in different parts (i.e., all voters are unanimous wrt. to this pair of

projects), then the aggregated partition shall also agree with the

voters regarding these two projects.

Definition 3.6 (Unanimity). A partition aggregation method R
satisfies Unanimity if the following hold: Let 𝑃1, . . . , 𝑃𝑛 be the set

of partitions of projects 𝑃 = {𝑝1, . . . , 𝑝𝑚}. If two projects 𝑝𝑖 and

𝑝 𝑗 , 𝑖, 𝑗 ∈ [𝑚], belong to the same part in 𝑃𝑖 , for all 𝑖 ∈ [𝑛], then
𝑝𝑖 , 𝑝 𝑗 belong to the same part in the aggregated partition. Similarly,

if 𝑝𝑖 , 𝑝 𝑗 belong to different parts in 𝑃𝑖 , for all 𝑖 ∈ [𝑛], then 𝑝𝑖 , 𝑝 𝑗
belong to different parts in the aggregated partition.

While Unanimity requires that the aggregated partition agrees

with the voters on those pairs of projects for which all voters are in

complete agreement, majority-based aggregation considers pairs of

projects with majority agreement among the voters. As we show,

such aggregated partitions need not exist; thus, we require an ag-

gregation method to output such partitions only when they exist.

Definition 3.7 (Majority based aggregation). An aggregated

partition 𝑃 is majority-based if any two projects 𝑝1, 𝑝2 are in the

same part in 𝑃 if and only if 𝑝1 and 𝑝2 are placed in the same part

for more than half of the voters. A partition aggregation method R
satisfies Majority-based aggregation if it always outputs majority-

based aggregated partitions, whenever such exists.

Remark 3. One might consider a continuum of axioms between
Majority-based aggregation and Unanimity, by employing superma-
jorities: An aggregated partition 𝑝 would place a pair of projects in
the same partition iff at least a 𝛿-Supermajority among the voters
does so.

We also consider an adaptation of the fundamental axiom of

Independent of Irrelevant Alternatives to our setting of aggregating

partitions: We refer to our adaptation as Independent of Irrelevant
Projects. In essence, it means that if the restriction of some two

profiles to a pair of projects is the same, then the restriction to this

pair of projects of both aggregated partition shall be the same.

Definition 3.8 (Independent of Irrelevant Projects). A par-

tition aggregation method R satisfies Independent of Irrelevant
Projects if the following holds: Let P and P′ be two partition profiles

and let 𝑆 and 𝑆 ′ be their aggregated partitions according to R. Let
𝑝1 and 𝑝2 be two projects such that the number of voters that places

them in the same part in P and in P′ are the same. Then, 𝑆 and 𝑆 ′

shall either both place 𝑝1 and 𝑝2 in the same part or in different

parts.

3.4 Rules vs Axioms
Next, we compare our four aggregation methods wrt. to the axiom

of Unanimity: We wish to identify which of our methods are Unan-

imous and which are not. First, we note that a unanimous partition

always exists, and can be found in polynomial time:

Observation 1. A unanimous partition always exists, and can be
found in polynomial time.

The proof follows from the fact that we can output any partition

that is provided by some voter. Note that it is unanimous.

Next we show that Total-PA is also Unanimous. This is intuitively

appealing, as, to maximize the total utility, it seems natural for the

aggregated partition to agree with the voters at least on those

pairs of projects for which the voters are in total agreement among

themselves.

Theorem 3.9. Total-PA is unanimous.

In contrast, Egal-PA is not Unanimous. This is also intuitively

appealing, as egalitarian methods care for the least satisfied voter.

Proposition 3.10. Egalitarian-PA is not unanimous.

Proof. We show this by an example. Suppose that we have 2 vot-

ers and 5 projects, 𝑝1, 𝑝2, 𝑝3, 𝑝4, 𝑝5. Let the partition for first voter be

{{𝑝1, 𝑝2, 𝑝3, 𝑝4, 𝑝5}}, and for second voter it is {{𝑝1, 𝑝2}, {𝑝3, 𝑝4, 𝑝5}}.
Let us consider some possible aggregated partition. In particular, we

consider all partitions in which 𝑝1 and 𝑝2 are in the same part, and

one partition in which 𝑝1 and 𝑝2 are in different parts to show that

any partition containing 𝑝1 and 𝑝2 in same part can not be optimal

solution of Egal-PA. Note that partitions {{𝑝1, 𝑝2, 𝑝3, 𝑝4}, {𝑝5}},
{{𝑝1, 𝑝2, 𝑝3, 𝑝4}, {𝑝4}}, and {{𝑝1, 𝑝2, 𝑝4, 𝑝5}, {𝑝3}} have same PA

utility for both the voters; therefore in Table 2, we only mention

one of these. Similarly, we omit some partitions in the table that

contains 𝑝1, 𝑝2 in same part but have same utilities as some partition

in the table. □

Next we consider Total-PAM. While we show that, similarly to

Total-PA, Total-PAM also satisfies Unanimity, we conjecture that

Egal-PAM, similarly to Egal-PA, does not satisfy Unanimity.

Theorem 3.11. Total-PAM is unanimous.

Next we consider Majority-based partitions. First, we show that,

contrary to Unanimous partitions, Majority-based partitions do not

always exist.
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Aggregated Partition

PA utility

1st voter 2nd voter

𝑆 = {{𝑝1, 𝑝2, 𝑝3, 𝑝4, 𝑝5}} 10 4

𝑆 = {{𝑝1, 𝑝2, 𝑝3, 𝑝4}, {𝑝5}} 6 4

𝑆 = {{𝑝1, 𝑝2, 𝑝3}, {𝑝4}, {𝑝5}} 3 5

𝑆 = {{𝑝1, 𝑝2, 𝑝3}, {𝑝4, 𝑝5}} 4 6

𝑆 = {{𝑝1, 𝑝2}, {𝑝3}, {𝑝4, 𝑝5}} 2 7

𝑆 = {{𝑝1, 𝑝2}, {𝑝3}, {𝑝4}, {𝑝5}} 1 7

𝑆 = {{𝑝1, 𝑝2}, {𝑝3, 𝑝4, 𝑝5}} 4 10

𝑆 = {{𝑝1, 𝑝3, 𝑝4, 𝑝5}, {𝑝2}} 6 6

Table 2: Example for non-unanimity of Egalitarian PA
(Proposition 3.10).

Proposition 3.12. A majority based aggregated partition need
not exist.

Proof. Consider three voters, 𝑣1, 𝑣2, 𝑣3, and three projects

𝑝1, 𝑝2, 𝑝3. Let the partitions corresponding to 𝑣1, 𝑣2, and 𝑣3 be 𝑃𝑣1 =

{{𝑝1, 𝑝2}, {𝑝3}}, 𝑃𝑣2 = {{𝑝1, 𝑝2, 𝑝3}}, and 𝑃𝑣3 = {{𝑝1, 𝑝3}, {𝑝2}}.
According to the property of Majority-based aggregation, we shall

have the following: (1) 𝑝1, 𝑝3 shall be in the same part; (2) 𝑝1, 𝑝2
shall be in the same part; and (3) 𝑝2, 𝑝3 shall be in different parts.

As the three constraints above cannot be simultaneously satisfied,

we conclude that there is no Majority-based partition for this pro-

file. □

In a sense, the counterexample in the above proof is similar to

the canonical counterexample showing the existence of Condorcet-

cycles in single-winner elections (i.e., voters 𝑎 > 𝑏 > 𝑐 , 𝑏 > 𝑐 > 𝑎,

and 𝑐 > 𝑎 > 𝑏, requiring the contradicting requirements of 𝑎 > 𝑏,

𝑏 > 𝑐 , and 𝑐 > 𝑎 as the canonical example of Condorcet paradox.

Nevertheless, Majority-based aggregation exists for some pro-

files; for these profiles, it can be found in polynomial time.

Theorem 3.13. A majority based aggregated partition can be
found in polynomial time, if it exists.

Proof. Let 𝑃 be the set of projects. Let𝑉 be the set of voters. We

construct an aggregated partition 𝑆 iteratively as follows. Initially,

let 𝑆 = ∅. In each iteration 𝑖 , we add a part 𝑆𝑖 in 𝑆 as follows:

consider a project 𝑥 ∈ 𝑃 \ (∪𝑖−1
𝑗=1

𝑆 𝑗 ) (that is a project that has not
been added in any part in previous iterations); add it in the part 𝑆𝑖 ,

and add all the projects 𝑥 ′ ∈ 𝑃 \ (∪𝑖−1
𝑗=1

𝑆 𝑗 ∪ {𝑥}), such that 𝑥 and

𝑥 ′ are in same part for more than half of the voters, in 𝑆𝑖 . Now, we

check whether every two projects in 𝑆𝑖 are in same part for more

than half of the voters. If not, then the algorithm returns No. We

also check whether there exists projects 𝑦 ∈ 𝑆𝑖 and 𝑦
′ ∈ 𝑆 𝑗 , where

𝑖 ≠ 𝑗 , such that 𝑦 and 𝑦′ are in different parts for at least half of the

voters. If not, then the algorithm returns No. We repeat until there

is a project which is not placed in any part in 𝑆 ; and return set 𝑆 .

Clearly, the algorithm runs in polynomial time.

Next we prove the correctness of the algorithm. Indeed, if the al-

gorithm returns a partition 𝑆 , then it is a majority based aggregated

partition, as at every step the algorithm checks this property. Now,

we show that if the algorithm returns No, then there is no majority

based aggregated partition for 𝑉 . Towards the contradiction, let

𝑆 ′ be a majority based aggregation for 𝑉 . Note that the algorithm

returns No in two cases: (1) there are two projects, say 𝑦, 𝑧, in a

part, say 𝑆𝑖 , in 𝑆 that are not in same part for more than half of the

voters, or (2) there are two projects, say 𝑦, 𝑧, in different parts, say

𝑆𝑖 , 𝑆 𝑗 , respectively, of 𝑆 that are in same part for more than half of

the voters. Consider the case (1). Clearly, 𝑦 and 𝑧 are in different

parts in 𝑆 ′. Let the algorithm first added project 𝑥 to 𝑆𝑖 . Thus, 𝑥,𝑦

and 𝑥, 𝑧 are in same part for more than half of the voters, as the

algorithm added 𝑦, 𝑧 in 𝑆𝑖 , a contradiction that 𝑆 ′ is majority based

aggregation. Next, consider case (2). Clearly, 𝑦, 𝑧 are in same part

in 𝑆 ′. Let the algorithm first added project 𝑥 to 𝑆𝑖 . Then, algorithm

added 𝑦 to 𝑆𝑖 but not 𝑧. This implies that 𝑥,𝑦 are in same part for

more thant half of the voters but not 𝑥, 𝑧. Since the part contain-

ing 𝑦, 𝑧 in 𝑆 ′ does not contain 𝑥 as 𝑥, 𝑧 are in different parts for at

least half of the voters, a contradiction that 𝑆 ′ is a majority based

aggregation, as 𝑥,𝑦 are in different parts in 𝑆 ′. □

Corollary 3.14. The existence of a Majority-based partition for
a given profile can be decided in polynomial time.

Moreover, note that, if it exists, then a Majority-based aggre-

gated partition is unique. Next, we check whether our partition

aggregation methods output the Majority-based partition whenever

it exists.

Theorem 3.15. If a majority based aggregated partition exists,
then it maximizes Total-PA.

Proof. Let 𝑉 be a set of partitions corresponding to all the

voters. Let 𝑆 be the majority based aggregated partition for 𝑉 . Let

𝑆 ′ ≠ 𝑆 be an optimal solution of Total-PA for 𝑉 . Since majority

based aggregated partition is unique, 𝑆 ′ is not a majority based

aggregated partition. Thus, either (1) there exists a part 𝑆𝑖 in 𝑆 ′

containing two projects that are not in same part for more than

half of the voters, or (2) there exists two parts 𝑆𝑖 , 𝑆 𝑗 in 𝑆
′
such that

there is a project in 𝑆𝑖 and a project in 𝑆 𝑗 that are in same part for

more than half of the voters.

Consider case (1). Let 𝑥 and 𝑦 be two projects in 𝑆𝑖 that are

in different parts for at least half of the voters. Let 𝑀𝑥 be the set

of projects that are in same part with 𝑥 for more than half of the

voters, and 𝑁𝑥 be the set of projects that are not in same part with

𝑥 for more than half of the voters. Note that a pair of projects 𝑎, 𝑏,

where 𝑎 ∈ 𝑀𝑥 and 𝑏 ∈ 𝑁𝑥 are not in same part for more than half of

the voters, otherwise majority based aggregated partition does not

exist. Also, note that every two projects in𝑀𝑥 are in same part for

more than half of the voters, otherwise majority based aggregated

partition does not exist. Now, create a new partition by deleting

𝑁𝑥 from 𝑆𝑖 , and add a new set of projects 𝑁𝑥 to 𝑆 . Since every pair

of project 𝑎, 𝑏, where 𝑎 ∈ {𝑥} ∪ 𝑀𝑥 and 𝑏 ∈ 𝑁𝑥 , are in different

parts for at least half of the voter; either the total PA utility of new

partition is same as that of 𝑆 ′ or larger than that of 𝑆 . It can not be

larger as 𝑆 ′ is an optimal solution of Total-PA. We apply this step

for all the parts in 𝑆𝑖 that contains at least two projects that are not

in same part for more than half of the voters. Note that the total

PA utility for new partition is same as that of 𝑆 ′. Let us denote this
new partition by 𝑆 ′′.

Next, we consider case (2). Note that if there exists two parts

𝑆𝑖 , 𝑆 𝑗 in 𝑆 ′ such that there is a project in 𝑆𝑖 and a project in 𝑆 𝑗 that

are in same part for more than half of the voters, then such parts

also exist in 𝑆 ′′ (because we have not merged any two parts). Let
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𝑆𝑝 and 𝑆𝑞 be two parts in 𝑆 ′′ that contains 𝑥 and 𝑦, respectively,

such that 𝑥 and 𝑦 are in same part for more than half of the voters.

We merge parts 𝑆𝑝 and 𝑆𝑞 in the partition 𝑆 ′′. Since 𝑆 ′′ does not
contain any part that violates majority based aggregation property

due to case (1), all the pair of projects in 𝑆𝑝 (or 𝑆𝑞 ) are in same part

for more than half of the voters. Note that every pair of projects

𝑎, 𝑏 such that 𝑎 ∈ 𝑆𝑝 and 𝑏 ∈ 𝑆𝑞 are in same part for more than

half of the voters, otherwise majority based aggregated partition

does not exist. Therefore, merging 𝑆𝑝 and 𝑆𝑞 increases the total PA

utility, a contradiction to the optimality of 𝑆 . Hence, 𝑆 ′ does not
contain parts that satisfies condition in case (2). □

Using the same example as in Proposition 3.10, we have following

result.

Proposition 3.16. Egalitarian-PA does not satisfy Majority-based
aggregation.

We go on to consider Total-PAM and Egal-PAM.

Proposition 3.17. Total-PAM does not satisfy Majority-based
aggregation.

Proof. We offer a counterexample: Consider a set of 2 projects,

{𝑝1, 𝑝2}; and a set of 5 voters. Let the partition for 3 voters be

{{𝑝1, 𝑝2}}, and for 2 voters, the partition is {{𝑝1}, {𝑝2}}. Note that
{{𝑝1, 𝑝2}} is a majority based aggregated partition; its total PAM

utility is 1. However, the total PAM utility for {{𝑝1}, {𝑝2}} is 2. □

The example in Lemma 3.17 implies the following as well.

Proposition 3.18. Egalitarian-PAM does not satisfy the property
of majority based aggregation.

Next we consider our adaptation of the axiom of Independence

of Irrelevant Alternatives to our setting.

Proposition 3.19. Total-PA does not satisfy Independence of Ir-
relevant Projects.

Observe that, if an aggregation rule is not unanimous, then it can

not satisfy independent of irrelevant projects properties as we can

have one profile in which all the projects are in the same part (or,

equivalently, in different parts) for all voters, and another profile

which is an instance that violates the Unanimity axiom. Hence, due

to Proposition 3.10, we have following result.

Corollary 3.20. Egalitarian-PA does not satisfy Independence of
Irrelevant Projects.

4 COMPLEMENTARITY STRUCTURES
Below we consider complementarity structures.

4.1 One Utility Function
Here we have one utility function. Intuitively, we take an extreme

point of view regarding complementarity effects, assuming that

projects in a complementarity part are “useless” unless the whole

complementarity part that they are contained in is funded as a

whole. Thus, we define the utility of a voter to be number of parts

in her suggested partition that are – exactly as she suggested – in

the aggregation partition.

Formally, we have the following:

Number of Correct Parts (COMP): Let 𝑣 be a voter with the

partition 𝑃𝑣 and 𝑆 be an aggregated partition. Then, 𝑓𝐶𝑂𝑀𝑃 (𝑣, 𝑆) =
|{𝑞 ∈ 𝑃𝑣 : 𝑞 ∈ 𝑆}|. That is, the utility of voter 𝑣 is the number of

parts in her partition that are present in the aggregated partition.

Example 4.1. Consider a voter 𝑣 with the partition

𝑃𝑣 = {{𝑎, 𝑏}, {𝑐, 𝑑, 𝑒}, {𝑓 }} and an aggregated partition

𝑆 = {𝑎}, {𝑏, 𝑓 }, {𝑐, 𝑑, 𝑒}}. Then, the utility of 𝑣 wrt. 𝑆 is 1, as

only the part {𝑐, 𝑑, 𝑒} is present both in 𝑃𝑣 and in 𝑆 .

The corresponding aggregation methods are thus referred to as

Total-COMP and Egal-COMP: In Total-COMP we wish to maximize

the sum of voter utilities according to the utility function defined

above; while in Egal-COMP we wish to maximize the minimum

voter utility according to the utility function defined above.

4.2 Computational Complexity
Both Total-COMP and Egal-COMP are NP-hard.

Theorem 4.2. Total-COMP is NP-hard.

Proof. We reduce from the Set Packing problem, in which given

sets S = {𝑆1, . . . , 𝑆𝑚} over universe 𝑋 = {𝑥1, . . . , 𝑥𝑛}, we shall

decide the existence of at least 𝑘 disjoint sets of the set S. Without

loss of generality, we assume that 𝑘 > 2, all the sets inS are distinct.

We create a project 𝑥 corresponding to each element in 𝑥 ∈ 𝑋 , and

another dummy project 𝑑𝑝 . For each set 𝑆 ∈ S, we add a voter 𝑣𝑆
with its partition: one part is 𝑆 , and the other part consists of all the

remaining projects and dummy project. We also add a dummy voter

𝑣𝑑 with its partition: one part is {𝑑𝑝 }, and the other part consists

of all the remaining projects. We set the utility 𝑢 = 𝑘 + 1. Next, we

prove equivalence between the instance (𝑋,S) of Set Packing and

(𝑃, C) of Total-COMP.

The idea of the proof is that the sets in the solution to (𝑃, C) along
with a set of all the elements which are not in the solution and the

set {𝑑𝑝 }, will lead to a solution of (𝑋,S). In the backward direction,

we observe that the utility of every voter is at most 1, otherwise

we cannot achieve the desired utility. Further, we can pick at most

one “big" part containing for any voter as every such part contains

dummy project. So, there are at least 𝑘 voters corresponding to

whom we pick a part that corresponds to 𝑘 disjoint set in S. □

Theorem 4.3. Egal-COMP is NP-hard.

Proof. We provide a reduction from the Hitting String prob-

lem [12] in which we are given a set of 𝑛′ strings 𝑠1, . . . , 𝑠𝑛′ over
alphabet {0, 1, ∗} of length𝑚′

each and shall decide whether there

is a string 𝑞 over alphabet {0, 1} such that for each string 𝑠𝑖 there is

at least one 𝑗 ∈ [𝑚′] such that the 𝑗th character of 𝑠𝑖 is equivalent

to the 𝑗th character of 𝑞. (Note that 𝑞 is over {0, 1} while all 𝑠𝑛′ ’s
are over {0, 1, ∗}.)

Given such an instance of Hitting String we construct an instance

for Egal-COMP, as follows. For each 𝑗 ∈ [𝑚′] we construct projects
𝑖𝑑 𝑗 , 𝑧𝑒𝑟𝑜 𝑗 , 𝑜𝑛𝑒 𝑗 (so we have 3𝑚

′
projects). Furthermore, we add one

dummy project 𝑑𝑝 . For each string 𝑠𝑖 we have a voter 𝑠𝑖 with the

following partition: for each 𝑗 ∈ [𝑚] for which the 𝑗 th character of

𝑠𝑖 is 0 we have a part {𝑖𝑑 𝑗 , 𝑧𝑒𝑟𝑜 𝑗 }; for each 𝑗 ∈ [𝑚] for which the 𝑗 th
character of 𝑠𝑖 is 1 we have a part {𝑖𝑑 𝑗 , 𝑜𝑛𝑒 𝑗 }; and we have another

part containing all other projects (we call this part of the partition
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as the “big” part). Furthermore, we add one dummy voter 𝑣𝑑 with

the following partition: one part is {𝑑} and another part containing
all other projects. We ask whether there is a solution achieving

egalitarian utility at least 1. This finishes the construction.

For the forward direction, given a solution 𝑞 to the Hitting String

instance, we construct a solution for the Egal-COMP instance, as

follows: for each 𝑗 ∈ [𝑚] for which the 𝑗th character of 𝑞 is 0 we

have a part {𝑖𝑑 𝑗 , 𝑧𝑒𝑟𝑜 𝑗 }; for each 𝑗 ∈ [𝑚] for which the 𝑗 th character
of 𝑞 is 1 we have a part {𝑖𝑑 𝑗 , 𝑜𝑛𝑒 𝑗 }; a part {𝑑}, and one more part

containing all other projects. Then, the utility of each voter is at least

1. For the backward direction, let P be a an aggregated partition

with with egalitarian utility 1. We first note that for the dummy

voter, the utility is due to the part {𝑑} as if 𝑃 \ {𝑑} is in P, the utility

of other voters is 0. Since {𝑑} is in P, for any voter, the “big" part
is not in the aggregated partition as these part contains 𝑑 . Thus,

for every voter the utility is due to {𝑖𝑑 𝑗 , 𝑧𝑒𝑟𝑜 𝑗 } or {𝑖𝑑 𝑗 , 𝑜𝑛𝑒 𝑗 } for
some 𝑗 ∈ [𝑚]. We construct a string 𝑞 as follows: if {𝑖𝑑 𝑗 , 𝑧𝑒𝑟𝑜 𝑗 } is
in P, then 𝑗 th character of 𝑞 is 0, otherwise 1. Clearly, it is a hitting

string for 𝑠1, . . . , 𝑠𝑛′ . □

4.3 Axiomatic Properties
Here we consider axiomatic properties that are relevant for com-

plementarity aggregation methods, similar to the one defined for

substitution structure, and test our aggregation methods against

them.

Unanimity requires that, if all voters agree on a part, then the

aggregated partition shall contain that part.

Definition 4.4 (Unanimity). A partition aggregation method R
satisfies Unanimity if the following holds: Let 𝑃1, . . . , 𝑃𝑛 be the set

of partitions of projects 𝑃 = {𝑝1, . . . , 𝑝𝑚}. If there is a part 𝑋 ⊆ 𝑃

that belongs to every 𝑃𝑖 , where 𝑖 ∈ [𝑛], then 𝑋 also belongs to the

aggregated partition.

Majority-based aggregation requires that, if a majority of the

voters agree on a part, then this shall be in the aggregated partition.

Definition 4.5 (Majority based aggregation). A partition ag-

gregation method R satisfies Majority based aggregation if the fol-

lowing holds: Let 𝑃1, . . . , 𝑃𝑛 be the set of partitions of projects

𝑃 = {𝑝1, . . . , 𝑝𝑚}. If there is a part 𝑋 ⊆ 𝑃 that belongs to more

than half of the partitions, then 𝑋 also belongs to the aggregated

partition.

4.4 Rules vs Axioms
Next, we compare our two complementarity aggregation methods

wrt. to the axiom of Unanimity:

Theorem 4.6. Total-COMP is unanimous.

Proof. Let P be an optimal aggregated partition for a set of

voters {𝑣1, . . . , 𝑣𝑛} that maximizes Total-COMP. Let 𝑋 ⊆ 𝑃 be a

part that is in the partitions of all the voters. We claim that 𝑋 is

in P. Suppose not, then we create an aggregated partition P ′
as

follows: initially, P ′ = P; add 𝑋 to P ′
, delete projects in 𝑋 from

other parts in P ′
. We claim that the utility of P ′

is more than

that of P. Let 𝑋1, . . . , 𝑋ℓ be parts in P that intersect with 𝑋 . No

voter gets utility from these parts as every voter has part 𝑋 . All the

parts in P \ {𝑋1, . . . , 𝑋ℓ } are also present in P ′
. P ′

also contains 𝑋 .

Thus, the utility for P ′
is at least one more than the utility for P, a

contradiction to the optimality of P. □

Using similar arguments, we show that Egal-COMP also satisfies

this axiom.

Theorem 4.7. Egal-COMP is unanimous.

Proof. Let P be an optimal aggregated partition for a set of

voters, {𝑣1, . . . , 𝑣𝑛}, that maximizes Total-COMP. Let 𝑋 ⊆ 𝑃 be a

part that is in the partitions of all the voters. We claim that 𝑋 is

in P. Suppose not, then we create an aggregated partition P ′
as

follows: initially, P ′ = P, add 𝑋 to P ′
, delete projects in 𝑋 from

other parts in P ′
. We claim that the egailtarian utility of P ′

is more

than that of P. Let 𝑋1, . . . , 𝑋ℓ be parts in P that intersects with 𝑋 .

Clearly, no voter gets utility from these parts as every voter has

part 𝑋 . All the parts in P \ {𝑋1, . . . , 𝑋ℓ } are also present in P ′
. P ′

also contains 𝑋 . Thus, the satisfaction of every voter increases by

at least 1 for P ′
, a contradiction to the optimality of P. □

Next we consider Majority-based aggregation. We show that,

contrary to Unanimity, Total-COMP and Egal-COMP does not sat-

isfy this axiom.

Theorem 4.8. Total-COMP and Egal-COMP do not satisfymajority-
based aggregation.

Proof. We first argue for Total-COMP using the following ex-

ample. Let 𝑃𝑣1 = 𝑃𝑣2 = {𝑝1, 𝑝2, 𝑝3} and 𝑃𝑣3 = {{𝑝1}, {𝑝2}, {𝑝3}}.
Note that the utility for the partition {{𝑝1}, {𝑝2}, {𝑝3}} is 3, while
it is 2 for the majority based aggregated partition {𝑝1, 𝑝2, 𝑝3}.

We argue for Egal-COMP using the following example. Let 𝑃𝑣1 =

𝑃𝑣2 = {𝑝1, 𝑝2}, {𝑝3}} and 𝑃𝑣3 = {{𝑝1}, {𝑝2, 𝑝3}}. Note that the

egalitarian utility for the partition {{𝑝1}, {𝑝2}, {𝑝3}} is 1, while it is
0 for the majority based aggregated partition {{𝑝1, 𝑝2}, {𝑝3}}. □

5 OUTLOOK
We have studied several aggregation methods for aggregating parti-

tion, both for identifying good substitution structures and for iden-

tifying good complementarity structures. Beside studying further

utility functions and aggregation goals and performing computer-

based simulations on a carefully designed heuristic methods to solve

the combinatorial problems we discuss here, the most pressing av-

enue for future research is to consider substitution structures and

complementarity structures simultaneously: concretely, one might

study how to aggregation “signed partitions”, in which each voter

partitions the set of projects and declare, for each part, whether it

is a substitution part or a complementarity part.
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