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ABSTRACT
Shortlisting is the task of reducing a long list of alternatives to a

(smaller) set of best or most suitable alternatives from which a final

winner will be chosen. Shortlisting is often used in the nomination

process of awards or in recommender systems to display featured

objects. In this paper, we analyze shortlisting methods that are

based on approval data, a common type of preferences. Further-

more, we assume that the size of the shortlist, i.e., the number of

best or most suitable alternatives, is not fixed but determined by

the shortlisting method. We axiomatically analyze established and

new shortlisting methods and complement this analysis with an

experimental evaluation based on imperfect quality estimates. Our

results lead to recommendations which shortlisting methods to use,

depending on the desired properties.
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1 INTRODUCTION
Shortlisting is a task that arises in many scenarios and applications:

given a large set of alternatives, identify a smaller subset that con-

sists of the best or most suitable alternatives. Prototypical examples

of shortlisting are awards, where we often find a two-stage pro-

cess. In a first shortlisting step, the large number of contestants

(books, films, individuals, etc.) is reduced to a smaller number. In

a second step, the remaining contestants can be evaluated more

closely and one contestant in the smaller set is chosen to receive

the award. Both steps may involve a form of group decision making

(voting), but can also consist of a one-person or even automatic

decision. For example, the shortlist of the Booker Prize is selected

by a small jury [33], whereas the shortlists of the Hugo Awards are

compiled based on thousands of ballots [32]. Another very com-

mon application of shortlisting is the selection of a number of most

promising applicants for a position who will be invited for an inter-

view [4, 31]. Apart from these prototypical examples, shortlisting is

also useful in many less obvious applications like the aggregation

of expert opinions for example in the medical domain [19] or in risk

management and assessment [34]. Shortlisting can even be used in

scenarios without agents in the traditional sense, for example if we

consider features as voters to perform an initial screening of objects,

i.e., a feature approves all objects that exhibit this feature [17].
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In this paper, we consider shortlisting as a form of collective

decision making. We assume that a group of voters announce their

preferences by specifying which alternatives they individually view

worthy of being shortlisted, i.e., they file approval ballots. In prac-

tice, approval ballots are commonly used for shortlisting, because

the high number of alternatives that necessitates shortlisting in

the first place precludes the use of ranked ballots. Furthermore,

we assume that the number of alternatives to be shortlisted is not

fixed (but there might be a preferred number), as there are very

few shortlisting scenarios where there is a strong justification for

an exact size of the shortlist. Due to this assumption, we are not

in the classical setting of multiwinner voting [16, 22, 24], where a

fixed-size committee is selected but in the more general setting of

multiwinner voting with a variable number of winners [17, 20, 21].

One can also view shortlisting rules as a particular type of social
dichotomy functions [7, 11], i.e., voting rules which partition alter-

natives into two groups.

In real-world shortlisting tasks, there are two prevalent meth-

ods in use: Multiwinner Approval Voting (selecting the k alterna-

tives with the highest approval score) and threshold rules (select-

ing all alternatives approved by more than a fixed percentage of

voters). Further shortlisting methods have been proposed in the

literature [6, 17, 21]. Despite the prevalence of shortlisting appli-

cations, there does not exist work on systematically choosing a

suitable shortlisting method. Such a recommendation would have

to consider both expected (average-case) behavior and guaranteed

axiomatic properties, neither have been studied previously specifi-

cally for shortlisting applications (cf. related work below). Our goal

is to answer this need and provide principled recommendations for

shortlisting rules, depending on the properties that are desirable in

the specific shortlisting process.

In more detail, the contributions of this paper are the following:

• We define shortlisting as a voting scenario and specify minimal

requirements for shortlisting methods (Section 2). Furthermore,

we introduce three new shortlisting methods: First k-Gap, Largest
Gap, and Size Priority (Section 3).

• We conduct an axiomatic analysis of seven shortlisting methods

and by that identify essential differences between them. Further-

more, we axiomatically characterizeApproval Voting, f -Threshold,
and the new First k-Gap rule (Section 4).

• We present a connection between shortlisting and clustering

algorithms, as used inmachine learning.We show that Firstk-Gap
and Largest Gap can be viewed as instantiations of linkage-based

clustering algorithms (Section 5).

• In numerical simulations, we approach an essential difficulty of

shortlisting processes: voters with imperfect (noisy) perception

of the alternatives. These simulations complement our axiomatic
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analysis by highlighting further properties of shortlisting meth-

ods and provide further data points for recommending shortlist-

ing methods (Section 6).

• The recommendations based on our findings are summarized

in Section 7. In brief, our analysis leads to a recommendation

of First k-Gap, f -Threshold, and Size Priority, depending on the

general shortlisting goal and desired behavior.

Related work. There are two recent papers that are particularly

relevant for our work. Both in [17] and [28], the authors investi-

gate multiwinner voting with a variable number of winners. In

contrast to our paper, the main focus of [17] lies on computational

complexity, which is less of a concern for our shortlisting setting

(as discussed later). The paper also contains some numerical sim-

ulations related to the number of winners (which is one of three

metrics we consider in our paper). In the few cases where short-

listing rules are considered
1
, their simulation concerning winner

set sizes agrees with ours (cf. Fig. 1c, λ = 0). In [28], the authors

study proportionality. Proportionality is incompatible with Effi-

ciency, which we require for shortlisting rules. Thus, the rules and

properties considered in [28] do not intersect with ours.

More generally, there is a substantial literature on multiwinner

voting with a fixed number of winners (i.e., committee size), as

witnessed by recent surveys [16, 22, 24]. Multiwinner voting rules

are much better understood, both from an axiomatic [2, 14, 18, 25,

29] and experimental [8, 13] point of view, also in the context of

shortlisting [3, 9]. Results for multiwinner rules, however, typically

do not translate to the setting with a variable number of winners.

2 THE FORMAL MODEL
In this section we describe our formal model that embeds score-

based shortlisting in a voting framework. The model consists of

two parts: a general framework for approval-based elections with

a variable number of winners [17, 20, 21] on the one hand and,

on the other hand, four basic axioms that we consider essential

prerequisites for shortlisting rules.

An approval-based election E = (C,V ) consists of a non-empty

set of alternatives C = {c1, . . . , cm } and an n-tuple of approval

ballots V = (v1, . . . ,vn ) where vi ⊆ C and c j ∈ vi if voter i
approves alternative c j and c j < vi otherwise. In the following

we will always write nE for the number of voters and mE for

the number alternatives in an election E. If no ambiguity arises,

we will omit the subscript. The approval score scE (c j ) of alterna-
tive c j in election E is the number of approvals of c j in V , i.e.,
scE (c j ) = |{i : 1 ≤ i ≤ n and c j ∈ vi }|. We write sc(E) for the vec-
tor (scE (c1), . . . , scE (cm )). To avoid unnecessary case distinctions,

we only consider non-degenerate elections: these are electionswhere
not all alternatives have the same approval score. An approval-based
variable multiwinner rule (which we refer to just as “voting rule”) is

a function mapping an election E = (C,V ) to a subset ofC . Given a

rule R and an election E, R(E) ⊆ C is the winner set according to
voting rule R, i.e., R(E) is the set of alternatives which have been

shortlisted. Note that R(E) may be empty or contain all candidates.

1NAV and NCAS in [17] are equivalent to f -Threshold and Approval Voting in our

paper (subject to tiebreaking). Also First Majority is considered in [17].

Now we introduce the basic axioms that we require every short-

listing rule to satisfy. Anonymity and Neutrality are two basic

fairness axioms that are considered essential for voting rules [35].

Axiom 1 (Anonymity). All voters are treated equal, i.e., for every

permutation π : {1, . . . ,n} → {1, . . . ,n} and election E = (C,V ), if

E∗ = (C,V ∗) with V ∗ = (vπ (1), . . . ,vπ (n)), then R(E) = R(E∗).

Axiom 2 (Neutrality). All alternatives are treated equally, i.e., for

every election E = (C,V ) and permutation π : C → C , if E∗ =
(C,V ∗) where V ∗ = (v∗

1
, . . . ,v∗n ) with v∗i = {π (c) | c ∈ vi }, then

π (c) ∈ R(E∗) iff c ∈ R(E) for all c ∈ C .

Shortlisting differs from other multiwinner scenarios in that we

are not interested in representative or proportional committees.

Instead, the goal is to select the most excellent alternatives. This

goal is formalized in the following axiom.

Axiom 3 (Efficiency). No winner can be (strictly) less approved

than a non-winner, i.e., for all elections E = (C,V ) and all candidates

ci and c j if scE (ci ) > scE (c j ) and c j ∈ R(E) then also ci ∈ R(E).

The assumption that approval scores are approximate measures

of the general quality of alternatives can also be argued in a proba-

bilistic framework: under reasonable assumptions a set of alterna-

tives with the highest approval scores coincides with the maximum

likelihood estimate of the truly best alternatives [26]. Thus, we

impose Efficiency to guarantee the inclusion of the most-likely best

alternatives.

Since the number of winners is variable in our setting, there

is generally no need to break ties. Because tiebreaking is usually

an arbitrary and unfair process, voting rules should not introduce

unnecessary tiebreaking.

Axiom 4 (Non-tiebreaking). If two alternatives have the same

approval score, either both or neither should be winners i.e., for all

elections E = (C,V ) and all candidates ci and c j if scE (ci ) = scE (c j )
then either ci , c j ∈ R(E) or ci , c j < R(E).

We set these four axioms as the minimal requirements for a

voting rule to be considered a shortlisting rule in our sense.

Definition 1. An approval-based variable multiwinner rule is a

shortlisting rule if it satisfies Anonymity, Neutrality, Efficiency and

is non-tiebreaking.

Observe that Non-tiebreaking and Efficiency are axioms that are

only interesting if we consider voting with a variable number of

winners. Clearly, no voting rule for voting with a fixed number of

winners can be Non-tiebreaking. Furthermore, except for the issue

of how to break ties, there is exactly one voting rule for approval

voting with a fixed number k of winners that satisfies Efficiency,

namely picking the k alternatives with maximum approval score

(Multiwinner Approval Voting).
A consequence of Efficiency and Non-tiebreaking is that a short-

listing rule only has to decide how many winners there should be.

This reduces the complexity of finding the winner set drastically

as there are only linearly many possible winner sets, in contrast to

the exponentially many subsets of C .

Observation 1. For every election there are at most m + 1 sets

that can be winner sets under a shortlisting rule.
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3 SHORTLISTING RULES
In the following, we define the shortlisting rules that we study in

this paper. We define these rules by specifying which properties

an alternative has to satisfy to be contained in the winner sets.

As before, let E = (C,V ) be an election. We assume additionally

that c1, . . . , cm is an enumeration of the alternatives in descending

order of approval score, i.e., such that scE (ci−1) ≥ scE (ci ) for all
2 ≤ i ≤ m. Some of the following rules are parameterized by a

positive integer k . An example illustrating the rules follows at the

end of the section.

3.1 Established Rules
A natural idea is to select all most-approved alternatives. The cor-

responding winner set equals the set of co-winners of classical

Approval Voting [5].

Approval Voting.An alternative c is a winner iff c’s approval score
is maximal, i.e., c ∈ R(E) iff scE (c) = max(sc(E)).

Another natural way to determine the winner set is to fix some

percentage threshold and declaring all alternatives to be winners

that surpass this approval threshold [20]. For example, for a baseball

player to be entered into the Hall of Fame, more than 75% of the

members of the Baseball Writers’ Association of America have to

approve this nomination [10]. Such rules are known as quota rules

in judgment aggregation [15].

f -Threshold. Let f : N→ N be a function such that 0 < f (|V |) <

|V |. Then, c ∈ R(E) for an alternative c ∈ C if and only if scE (c) >
f (|V |). We write α-Threshold for a constant 0 < α < 1 to denote

the f -Threshold rule with f (n) = ⌊α · n⌋.

The next two rules are further shortlisting methods that have

been proposed in the literature. First Majority [21] includes as many

alternatives as necessary to comprise more than half of all approvals.

The following definition deviates slightly from the original defini-

tion in that it is non-tiebreaking.

FirstMajority. Let i be the smallest index such that

∑
j≤i scE (c j ) >∑

j>i scE (c j ). Then c ∈ R(E) if and only if scE (c) ≥ scE (ci ).

Next-k [6] is a rule that includes alternatives starting with the

highest approval score, until a major drop in the approval scores is

encountered, more precisely, if the total approval score of the next

k alternatives is less than the score of the previous alternative.

Next-k . We have ci ∈ R(E) if for all i ′ < i it holds that scE (ci′) ≤∑k
j=1 scE (ci′+j ), where scE (ci′+j ) = 0 if i ′ + j > m.

Observe that for both Next-k and First Majority the winner set

does not depend on the chosen enumeration of alternatives. This

will also hold for the new voting rules introduced in the following.

3.2 New Shortlisting Rules
Similarly to Next-k , the next two rules are based on the idea that

one wants to make the cut between winners and non-winners in

a place where there is a large gap in the approval scores. This can

either be the overall largest gap or the first sufficiently large gap.

Largest Gap. Let i be the smallest index for which it holds that

scE (ci ) − scE (ci+1) = maxj<m (scE (c j ) − scE (c j+1)). Then c ∈ R(E)
if and only if scE (c) ≥ scE (ci ).

Note that in this definition a smallest index is guaranteed to exist

due to our assumption that profiles are non-degenerate.

First k-Gap. Let i be the smallest index for which it holds that

scE (ci ) − scE (ci+1) ≥ k . Then c ∈ R(E) if and only if scE (c) ≥

scE (ci ). If no such index exists, then R(E) = C .

The parameter k has to capture what it means in a given short-

listing scenario that there is a sufficiently large gap between alterna-

tives, which in particular depends on |V |. If no further information

is available, one can choose k by a simple probabilistic argument.

Assume, for example, alternative c’s approval score is binomially

distributed scE (c) ∼ B(n,qc ), where n is the number of voters and

qc can be seen as c’s quality. We choose k such that the probability

of events of the following type are smaller than a selected thresh-

old α : two alternatives a and b have the same objective quality

(qa = qb ) but have a difference in their approval scores of k or

more. In such a case, the First k-Gap rule might choose one alter-

native and not the other even though they are equally qualified,

which is an undesirable outcome. For example, if n = 100 and we

want α = 0.5, we have to choose k ≥ 5 and if we want α = 0.1 we

need k ≥ 12. Note that this argument leads to rather large k-values;
if further assumptions about the distribution of voters can be made,

smaller k-values are feasible.
The voting rules above output winner sets of very different

sizes (as we will see in the experimental evaluation, Section 6). It

is a common case, however, that there is a preferred size for the

winner set, but this size can be varied in order to avoid tiebreaking.

This flexibility is especially crucial if the electorate is small and

ties are more frequent. Based on real-world shortlisting processes,

we propose a rule that deals with this scenario by accepting a

preference order over set sizes as parameter and selecting a winner

set with the most preferred size that does not require tiebreaking.

Size Priority. Let▷ be a strict total order on {0, . . . ,m}, the priority
order. Then R(E) = {ci ∈ C | 1 ≤ i ≤ k} if and only if

• either scE (ck ) , scE (ck+1) or k = 0 or k =m,

• and scE (cℓ) = scE (cℓ+1) for all ℓ ▷ k .

Size Priority is a non-tiebreaking analogue of Multiwinner Ap-
proval Voting, which selects the k alternatives with the highest

approval score. A specific instance of Size Priority is used by the

Hugo Award with the priority order 5 ▷ 6 ▷ 7 . . . [32]. Generally,

the choice of a priority order depends on the situation at hand.

For award-shortlisting, typically a small number of alternatives is

selected (the Booker Prize, e.g., has a shortlist of size 6). In a much

more principled fashion, Amegashie [1] argues that the optimal

size of the winner set for shortlisting should be proportional to

√
m,

i.e., the square root of the number of alternatives.

In practice, the most common priority order is k ▷ k + 1 ▷ · · · ▷
m for some k < m, i.e., the smallest non-tiebreaking committee

that contains at least k alternatives is selected. Another important

special case are instances of Size Priority that rank 0 and m the

lowest, i.e., that are decisive whenever possible. Therefore, we give

Size Priority rules with based on such priority orders a special name.

Definition 2. Let ▷ be a strict total order on 0, . . . ,m and let k
be a positive integer with k ≤ m such that k ▷ k + 1 ▷ · · · ▷ m
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andm ▷ ℓ for all ℓ < k . Then, the Size Priority rule defined by the

priority order ▷ is an Increasing Size Priority rule.

Let ▷ be a strict total order on 0, . . . ,m such that k ▷ m and

k ▷ 0 holds for all 0 < k < m. Then, the Size Priority rule defined

by the priority order ▷ is an Decisive Size Priority rule.

Other special cases of Size Priority could be defined in a similar

way, for example Decreasing Size Priority. However, Increasing Size
Priority and Decisive Size Priority are the most natural and common

types of Size Priority and additionally satisfies better axiomatic

properties than, e.g., Decreasing Size Priority.

Example. Let E = (C,V ) be an election with 10 voters and 8 al-

ternatives c1, . . . , c8. Furthermore, let sc(E) = (10, 10, 9, 8, 6, 3, 3, 0).

Then the set of Approval Voting winners is {c1, c2} and the set of

0.5-Threshold winners is {c1, . . . , c5}. The set of First Majority win-

ners is {c1, c2, c3}, since
∑
c ∈C scE (c) = 49 and scE (c1) + scE (c2) +

scE (c3) = 29. For every i ≤ 7 we have scE (ci−1) ≤ scE (ci ) +
scE (ci+1). Therefore, the set of Next-k winners is {c1, . . . , c7} for
every k ≥ 2. There are two 3-gaps, between c5 and c6 and between

c7 and c8 and there are no larger gaps, hence {c1, . . . , c5} is the set
of winners under Largest Gap. The first 2-gap is between c4 and
c5, hence the winner set according to First 2-Gap is {c1, . . . , c4}.
Now let ▷ be a strict total order such that the top elements are

1 ▷ 6 ▷ 0 ▷ . . . . Then the set of Size Priority winners under

▷ is the empty set, because {c1} and {c1, . . . , c6} break ties, as

scE (c1) = scE (c2) and scE (c6) = scE (c7).

We note that, due to Observation 1, all of the above rules can be

computed in polynomial time. Finally, we observe that Approval
Voting is a special case of First k-Gap, Next-k and Increasing Size
Priority. This is because First k-Gap and Next-k equal Approval
Voting if we set k = 1 and Increasing Size Priority equals Approval
Voting with priority order 1 ▷ 2 ▷ · · · ▷m ▷ 0.

4 AXIOMATIC ANALYSIS
In this section, we axiomatically analyze shortlisting rules with the

goal to discern their defining properties. First, we consider axioms

that are motivated by the specific requirements of shortlisting, then

we study well-known axioms that describe more generally desirable

properties of voting rules. For an overview, see Table 1.

When shortlisting is used for the initial screening of a set of

alternatives, for example for an award or a job interview, then we do

not assume that the voters have perfect judgment. Otherwise, there

would be no need for a second round of deliberation, as we could just

choose the highest-scoring alternative as a winner. Therefore, small

differences in approval may not correctly reflect which alternative

is more deserving of a spot on the shortlist. Thus, out of fairness,

we want our voting rule to treat alternatives differently only if there

is a significant difference in approval between them.

Axiom 5 (ℓ-Stability). If the approval scores of two alternatives

differ by less than ℓ, either both or neither should be a winner, i.e.,

for every election E = (C,V ) and candidates ci and c j if |scE (ci ) −
scE (c j )| < ℓ then either ci , c j ∈ R(E) or ci , c j < R(E).

Here, the parameter ℓ has to capture what a significant difference

is in a given election. This will depend, for example, on the number

and trustworthiness of the voters.

Observe that 1-Stability equals non-tiebreaking. Furthermore, as

the approval scores approximate the underlying quality of alterna-

tives
2
, at least we want to include alternatives that are approved

by everyone and exclude alternatives that are approved by no one.

Axiom 6 (Unanimity). If an alternative is approved by everyone,

it must be a winner, i.e., for every election E = (C,V ), if scE (c) = n
then c ∈ R(E).

Axiom 7 (Anti-Unanimity). If an alternative is approved by no

one, it cannot win, i.e., for every election E = (C,V ) if scE (c) = 0

then c < R(E).

Unfortunately, it turns out that these three axioms are incompat-

ible unless there are many more voters than alternatives. Indeed

Unanimity, Anti-Unanimity and ℓ-Stability can be jointly satisfied

if and only if |V | ≥ l · |C | + 1.

Theorem 1. For every ℓ there is a rule that satisfies Unanimity,
Anti-Unanimity and ℓ-Stability for every election E such that nE >
(ℓ− 1) · (mE − 1). This is a tight bound in the following sense: If ℓ > 1,
no voting rule satisfies Unanimity, Anti-Unanimity and ℓ-Stability
for all elections E with nE ≤ (ℓ − 1) · (mE − 1).

Proof. For the one direction, we claim that a slightly modified

version of First k-Gap satisfies all three axioms for elections E with

nE > (ℓ−1) · (mE −1). We defineModified First ℓ-Gap as follows: Let
c1, . . . , cm be an enumeration of C such that scE (ci−1) ≥ scE (ci ).
Let i be the smallest index such that scE (ci ) − scE (ci+1) ≥ ℓ. Then
c ∈ R(E) if and only if scE (c) ≥ scE (ci ). If no such index exists, then
R(E) = ∅ if there is an alternative c with scE (c) = 0, and R(E) = C
otherwise. Clearly, this rule still satisfies ℓ-Stability.

Now, let E be an election such that there is an alternative c
with scE (c) = n. Assume first that there is no alternative c ′ with
scE (c ′) = 0. In that case, Modified First ℓ-Gap vacuously satisfies

Anti-Unanimity and, by definition, also Unanimity. Now assume

that there is an alternative c with scE (c) = 0. We claim that there

is an index i such that scE (ci ) − scE (ci+1) ≥ ℓ and hence only

alternatives c such that scE (c) ≥ scE (ci ) > ℓ − 1 are winners.

Otherwise, we have scE (ci+1) ≥ scE (ci ) − (ℓ − 1) for all i < m and

hence scE (cm ) ≥ scE (c1) − (ℓ − 1) · (m − 1). However, as scE (c1) =
n > (ℓ − 1) · (m − 1) this contradicts the assumption that there is

an alternative c with scE (c) = 0, i.e., scE (cm ) = 0.

Finally, let E be an election such that there is no alternative c
with scE (c) = n. Then,Modified First ℓ-Gap vacuously satisfies Una-
nimity. Now, if there is an alternative c ′ with scE (c ′) = 0 then we

have to distinguish two cases. If there is no ℓ-gap, then R(E) = ∅ by

definition and hence Modified First ℓ-Gap satisfies Anti-Unanimity.

On the other hand, if there is a ℓ-gap, then only alternatives above

the ℓ-gap are selected, which must have a score of ℓ or larger. Hence,

Anti-Unanimity is also satisfied.

Now we assume towards a contradiction that there is a rule R

that satisfies Unanimity, Anti-Unanimity and ℓ-Stability (ℓ > 1)

for all elections E = (C,V ) with nE = (ℓ − 1) · (mE − 1). Let E be

an election with 2 alternatives and ℓ − 1 voters such that sc(E) =
(ℓ−1, 0). We observe nE = ℓ−1 ≥ (ℓ−1) · (2−1). Therefore, R must

2
The relation between approval voting and maximum likelihood estimation is analyzed

in detail by Procaccia and Shah [26], in particular, under which conditions approval

voting selects the most likely “best” alternatives.
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Unanimity Anti-Unanimity Independence Ind. of Losing Alt. ℓ-Stability Determined Set Monot. Superset Monot.

Approval Voting ✓ ✓ × ✓ × ✓ ✓ ✓

f -Threshold ✓ ✓ ✓ ✓ × × ✓ ×

First Majority ✓ ✓ × × × ✓ × ×

Next-k ✓ ✓ × × × ✓ ✓ ×

Largest Gap ✓ ✓ × × × ✓ ✓ ×

First k-Gap ✓ × × ✓ ℓ ≤ k ✓ ✓ ✓

Decis. Size Priority ✓ ✓ × × × ✓ ✓ ×

Incr. Size Priority ✓ × × ✓ × ✓ ✓ ✓

Table 1: Results of the axiomatic analysis.

satisfy Unanimity, Anti-Unanimity and ℓ-Stability on E. Hence,
c1 ∈ R(E) must hold by Unanimity. Then scE (c1) − scE (c2) < ℓ
implies c2 ∈ R(E) by ℓ-Stability, contradicting Anti-Unanimity. □

First k-Gap satisfies Unanimity and ℓ-Stability for k ≥ ℓ for all

elections. Therefore, it cannot satisfy Anti-Unanimity. Furthermore,

we observe that First k-Gap is the only voting rule considered in

this paper that satisfies ℓ-Stability for ℓ > 1, as Approval Voting, f -
Threshold, Next-k , First Majority and Largest Gap satisfy Unanimity

and Anti-Unanimity for all non-degenerate profiles. Size Priority
always satisfies either Unanimity or Anti-Unanimity. In particular

it satisfies Unanimity ifm ▷ 0 holds and Anti-Unanimity if 0 ▷m
holds. It satisfies both axioms (for non-degenerate profiles) if and

only if it is decisive. Therefore Increasing Size Priority satisfies

Unanimity but not Anti-Unanimity. Finally, Size Priority satisfies

ℓ-Stability for ℓ > 1 if and only if 0 orm is the most preferred size.

It is worth noting, however, that Largest Gap satisfies ℓ-Stability

whenever there is an ℓ-gap.

Another requirement for a shortlisting rule is that it produces

short shortlists. To find voting rules that produce small sets of

winners without compromising on quality, we define the concept

of a minimal voting rule that satisfies a set of axioms.

Definition 3. Let A be a set of axioms and let S(A) be the set of

all voting rules satisfying all axioms in A. Then, we say a voting

rule is a minimal voting rule R for A if for all elections E it holds

that R(E) =
⋂

R∗∈S (A) R
∗(E).

In general that a minimal voting rule R for a set of axioms A

satisfies all axioms in A. Consider, e.g., the following axiom:

Axiom 8 (Determined). Every election must have at least one

winner, i.e., for all elections E we have R(E) , ∅.

Besides f -Threshold and Size Priority all voting rules considered

in this paper are determined. Size Priority is determined if and

only if it is either decisive or m ▷ 0. We observe the minimal

determined voting rule always returns the empty set and is hence

not determined. However, the following holds:

Proposition 2. Let A be a set of axioms that contains the four
basic shortlisting axioms (Axioms 1–4). Then the minimal voting rule
for A is again a shortlisting rule, i.e., it satisfies Axioms 1–4.

Proof. We show that the minimal voting rule R satisfies effi-

ciency and is non-tiebreaking. Let E be an election. As every rule

in S(A) is a shortlisting rule, there is a kR∗ ∈ {0, . . . ,m} for ev-

ery rule R∗ ∈ S(A) such that R∗(E) = {c1, . . . , ckR∗ }. Now let

km be the smallest k such that there is a rule R∗ ∈ S(A) with

R∗(E) = {c1, . . . , ck }. Then, by definition R(E) = R∗(E). As R∗(E)
does not violate efficiency and non-tiebreaking for E, neither does
R. As this argument holds for arbitrary elections, R satisfies effi-

ciency and is non-tiebreaking. It is easy to see that neutrality and

anonymity hold as well. □

The minimal shortlisting rule (without additional axioms) is the

voting rule that always outputs the empty set,Approval Voting is the
minimal determined shortlisting rule and the minimal shortlisting

rule that is k-stable is First k-Gap.

Theorem 3. Approval Voting is the minimal voting rule that is
efficient, non-tiebreaking and determined. Furthermore, for every
positive integer k , First k-Gap is the minimal voting rule that is
efficient, k-stable and determined.

Proof. Let A be the set {Efficiency,k − Stability,Determined}

and R be First k-Gap. We know that First k-Gap is efficient, k-stable
and determined, therefore we know

⋂
R∗∈S (A) R

∗(E) ⊆ R(E).
Now, every determined voting rule must have a non-empty set of

winners. If the voting rule is efficient, the set of winners must con-

tain at least one top ranked alternative. Now, consider an enumer-

ation of the alternatives c1, . . . , cm such that scE (c j ) ≥ scE (c j+1)
holds for all j. If a voting rule is k-stable, a winner set containing
one top ranked alternative must contain all alternatives ci for which
scE (c j ) < scE (c j+1) + k holds for all j < i . By the definition of First
k-Gap this implies R(E) ⊆

⋂
R∗∈S (A) R

∗(E).
The minimality of Approval Voting is a special case of the mini-

mality of First k-Gap, as 1-Stability equals non-tiebreaking. □

This result is another strong indication that First k-Gap is promis-

ing from an axiomatic standpoint. It produces shortlists that are

as short as possible without violating k-Stability, an axiom that is

very desirable in many shortlisting scenarios.

ℓ-Stability formalizes the idea that the winner determination

should take the magnitude of difference between approval scores

into account. This contradicts an idea that is often considered in

judgment aggregation, namely that all alternatives should be treated

independently [15].

Axiom 9 (Independence). If an alternative is approved by exactly

the same voters in two elections then it must be a winner either in

both or in neither. That is, for an alternative c , and two elections

E = (C,V ) and E∗ = (C,V ∗) with |V | = |V ∗ | and c ∈ vi if and only

if c ∈ v∗i for all i ≤ n, it holds that c ∈ R(E) if and only if c ∈ R(E∗).
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f -Threshold rules are the only rules in our paper satisfying Inde-

pendence. Indeed, Independence characterizes f -Threshold rules.

Theorem 4. Given a fixed set of alternatives C , every shortlist-
ing rule that satisfies Independence is an f -Threshold rule for some
function f .

Proof. Let R be a voting rule that satisfies Anonymity and

Independence. Then we claim that for two elections E = (C,V )

and E∗ = (C,V ∗) with |V | = |V ∗ | and an alternative ci ∈ C we

have that scE (ci ) = scE∗ (ci ) implies that either ci ∈ R(E),R(E∗) or
ci < R(E),R(E

∗). If scE (ci ) = scE∗ (ci ), then there is a permutation

π : {1, . . . ,n} → {1, . . . ,n} such that ci ∈ vi if and only if ci ∈

v∗π (i). Now, let E
′ = (C,π (V )). Then, by Anonymity, ci ∈ R(E) if and

only if ci ∈ R(E ′). Now, as ci is approved by the same voters in E ′

and E∗, Independence implies ci ∈ R(E ′) if and only if ci ∈ R(E∗).
Now let R additionally satisfy Efficiency. Let E = (C,V ) and

E∗ = (C,V ∗) be two elections with |V | = |V ∗ |. Furthermore, assume

ci ∈ R(E) and scE (ci ) < scE∗ (ci ). We claim that this implies ci ∈

R(E∗). By Independence, we can assume w.l.o.g. that there is an

alternative c j such that scE (c j ) = scE∗ (ci ). Then, by efficiency,

c j ∈ R(E∗). Now, let E ′ be the same election as E but with ci
and c j switched. Then by Neutrality we have ci ∈ R(E ′). As by
definition scE′(ci ) = scE∗ (ci ) this implies ci ∈ R(E∗) by Anonymity

and Independence. This means that for every alternative ci and
n ∈ N there is a k such that for all elections E = (C,V ) with |V | = n
we know ci ∈ R(E) if and only if scE (ci ) ≥ k . If R also satisfies

Neutrality, then k must be the same for every ci ∈ C and hence R

must be a Threshold rule. □

A sensible modification of f -Threshold would be to select all al-

ternatives with an above-average approval score, i.e., the set of win-

ners consists of all alternatives c with scE (c) > 1

m ·
∑
c ′∈C scE (c ′).

Duddy et al. [12] analyzed this rule and concluded that it is the best

rule for partitioning alternatives into homogeneous groups (see

also the axiomatic characterization of this rule in [7]). This rule is

not a f -Threshold rule (by definition).

Next, we consider classic axioms of social choice theory, adapted

to the shortlisting setting. The first one states that removing a

non-winning alternative cannot change the outcome of an election.

Axiom 10. (Independence of Losing Alternatives) Let E = (C,V )

with V = (v1, . . . ,vn ) and E∗ = (C∗,V ∗) where C∗ = C \ {c∗}
and V ∗ = (v∗

1
, . . . ,v∗n ) be two elections such that c∗ < R(E) and

v∗i = vi \ {c
∗} for all i ≤ n. Then R(E) = R(E∗).

Clearly, f -Threshold satisfies this axiom as it also satisfies In-

dependence. Furthermore, as the removal of a losing alternative

can only widen the gap between the winners and the non-winners,

First k-Gap satisfies the axiom, and so does Approval Voting, which
is a special case of First k-Gap. None of the other rules satisfy In-

dependence of Losing Alternatives. First Majority does not satisfy

the axiom: Assume E is an election such that sc(E) = (3, 2, 1, 0).

Then the winning set under First Majority is {c1, c2} but removing

c3 changes the winning set to {c1}. For the same election, the win-

ner set under Largest Gap is {c1} but removing c3 changes this to
{c1, c2}. For Next-k , consider an election E with sc(E) = (4, 3, 2, 0).

Then, for every k > 1, we have R(E) = {c1, c2} under Next-k , but
after deleting c3 we have R(E) = {c1}.

For Size Priority we encounter a difficulty: Independence of Los-

ing Alternatives cannot be applied to Size Priority because each

instance of Size Priority is defined by a linear order on 0, . . . ,m and

decreasing the number of alternatives necessitates a different order.

However, we can say that a linear order▷ onN defines a class of Size
Priority instances as follows: for every number of alternativesm,

we define a Size Priority instance by restriction ▷ to {0, 1, . . . ,m}.

This allows us to precisely say what it means that a class of Size
Priority instances (defined by ▷) satisfies Independence of Losing
Alternatives. Consider, e.g., the class of Size Priority instances de-

fined by any order of the form 2 ▷ 1 ▷ . . . and an election E with

sc(E) = (2, 1, 1). Then R(E) = {c1} but the removal of c3 leads to
R(E) = {c1, c2}. Thus, Size Priority fails Independence of Losing

Alternatives in general. However, removing a losing alternative

cannot change the outcome of a Increasing Size Priority rule, as the

rule selects the smallest non-tiebreaking winner set with at least k
alternatives; if k ≤ m then it selects allm alternatives.

Finally, we study two versions of Monotonicity, an axiom that is

very common for example in judgment aggregation. Monotonicity

intuitively demands that increasing the support for an alternative

cannot hurt this alternative. We first consider a variation that is

tailored to the shortlisting setting, stating that if a voter that did not

approve the winning alternatives changes his mind and approves

all winners, then this cannot change the outcome of an election.

Axiom 11 (Set Monotonicity). Let E = (C,V = (v1, . . . ,vn )) be an
election. If E∗ = (C,V ∗) is another election with V ∗ = (v∗

1
, . . . ,v∗n )

such that for some j ≤ n we have vj ∩ R(E) = ∅, v∗j = vj ∪ R(E)

and v∗l = vl for all l , j, then R(E∗) = R(E).

All of our rules except First Majority satisfy Set Monotonicity. Let

E be an election with sc(E) = (2, 2, 1, 1, 1, 1). Then under First Major-
ity we have R(E) = {c1, c2, c3}. Now if a voter who did not approve

{c1, c2, c3} before approves it, then we get sc(E) = (3, 3, 2, 1, 1, 1)

and hence R(E) = {c1, c2}. Set Monotonicity is a very natural ax-

iom for many applications, so the fact that First Majority does not

satisfy it makes it hard to recommend the rule in most situations.

We can strengthen this axiom as follows: a voter that previously

disapproved all winning alternatives changes her mind and now

approves a superset of all (previously) winning alternatives; this

should not change the set of winning alternatives. This is a useful

property as it guarantees that if an additional voter enters the

election, who agrees with the set of currently winning alternatives

but might approve additional alternatives, then the set of winning

alternatives remains the same and, in particular, does not expand.

Axiom 12 (Superset Monotonicity). Let E = (C,V = (v1, . . . ,vn ))
be an election. If E∗ = (C,V ∗ = (v∗

1
, . . . ,v∗n )) is another election

such that for some j ≤ n we have vj ∩ R(E) = ∅, R(E) ⊆ v∗j and

v∗l = vl for all l , j, then R(E) = R(E∗).

Clearly, Superset Monotonicity implies Set Monotonicity, hence

First Majority cannot satisfy Superset Monotonicity. Furthermore

f -Threshold, Next-k , Largest Gap and Size Priority do not satisfy

Superset Monotonicity. This is easy to check for f -Threshold. For
Next-k , consider an election E such that sc(E) = (3, 1, 1). Then the

winner under Next-k is c1. Now, if a voter changes his mind and ad-

ditionally approves all three alternatives, then all three alternatives

become winners under Next-k (for every k > 1). Next, consider an
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election E such that sc(E) = (2, 1, 0). For Largest Gap, R(E) = {c1}.
If one voter additionally approves {c1, c2}, then sc(E) = (3, 2, 0)

and R(E) = {c1, c2}. For Size Priority, consider an election E with

sc(E) = (2, 1, 1) and 2 ▷ 1 ▷ 3 ▷ 0. Then R(E) = {c1}. Now, if
one voter additionally approves {c1, c2}, then R(E) = {c1, c2}. In
contrast, Increasing Size Priority satisfies Superset Monotonicity as

any ties between winners remain. This is essentially the only case

for which Size Priority satisfies Superset Monotonicity. Finally, as

the size of the gap between winners and non-winners cannot de-

crease and gaps within the winner set remain, First k-Gap satisfies

Superset Monotonicity for all k (which includes Approval Voting).

5 CLUSTERING ALGORITHMS AS
SHORTLISTING METHODS

Essentially, the goal of shortlisting is to classify some alternatives

as most suitable based on their approval score. The machine learn-

ing literature offers a wide variety of clustering algorithms that

can perform such a classification. We can turn these algorithms

into shortlisting rules in the following way: Let E = (C,V ). We use

sc(E) as input for a clustering algorithm. This algorithm produces

a partition S1, . . . , Sk of sc(E). The winner set is (the set of can-

didates corresponding to) the partition that contains the highest

score. Under the assumption that the algorithm outputs clusters

that are non-intersecting intervals (a condition that any reasonable

clustering algorithm satisfies), it is straight-forward to verify that

this procedure indeed defines a shortlisting rule, i.e., this rule sat-

isfies Anonymity, Neutrality, Efficiency and is non-tiebreaking. In

the following, we focus on linkage-based algorithms [30].

Linkage-based algorithms work in rounds and start with the

partition of sc(E) into singletons. Then, in each round, two sets

(clusters) are merged until a stopping criterion is satisfied. We con-

sider linkage-based algorithms where always the two clusters with

minimum distance are merged. Thus, such algorithms are specified

by two features: a distance metric for sets (to select the next sets

to be merged) and a stopping criterion. We assume that if two or

more pairs of sets have the same distance, then the pair containing

the smallest element are merged. Following Shalev-Shwartz and

Ben-David [30], we consider three distance measures: the minimum

distance between sets (Single Linkage), the average distance be-

tween sets (Average Linkage), and the maximum distance between

sets (Max Linkage). These three methods can be combined with

arbitrary stopping criteria; we consider two: (A) stopping as soon as

only two clusters remain, and (B) stopping as soon as every pair of

clusters has a distance of ≥ α . Interestingly, two of our previously

proposed methods correspond to linkage-based algorithms: First,

if we combine the minimum distance with stopping criterion (A)

we obtain the Largest Gap rule. Secondly, if we use the minimum

distance and impose a distance upper-bound of k (stopping cri-

terion B), we obtain the First k-Gap rule. Since these two rules

exhibited favorable properties in our axiomatic analysis, it stands

to reason that other linkage-based rules may be of interest as well.

Our analysis reveals that this is not the case; rules based on other

distance measures do not exhibit a particularly interesting set of

properties. Due to space constraints we have to omit the specifics.

To conclude, we see that stopping criteria (A) and (B) appear to be

only sensible when combined with the minimum distance. However,

the average and maximum distance may be more beneficial with

different stopping criteria. In particular, the stopping criteria of

β > 2 remaining clusters could be advantageous if winning sets of

size roughly m/β are sought. We leave this for future investigation.

6 EXPERIMENTS
In numerical experiments, we want to evaluate the characteristics

of the considered shortlisting rules (Python code: [23]).

Basic setup. We consider a shortlisting scenario with 100 voters

and 30 alternatives. Each alternative c has an objective quality qc ,
which is a real number in [0, 1]. For each alternative, we gener-

ate qc from a truncated normal (Gauss) distribution with mean

0.5 and standard deviation 0.2, restricted to values in [0, 1]. That

is, most alternatives are of average quality (around 0.5) and only

few have especially high or low quality. (Sampling from a uniform

distribution yielded comparable results.) Our base assumption is

that voters approve an alternative with likelihood qc . Thus, the ap-
proval score of alternatives are binomially distributed, specifically

scE (c) ∼ B(100,qc ). We then modify this assumption to study a

complication for shortlisting: imperfect quality estimates (noise).

The noise model. This model is controlled by a variable λ ∈ [0, 1].

We assume that voters do not perfectly perceive the quality of

alternatives, but with increasing λ fail to differentiate between al-

ternatives. Instead of our base assumption that each voter approves

an alternative c with likelihood qc , we change this likelihood to

(1− λ)qc + 0.5λ. Thus, for λ = 0 this model coincides with our base

assumption; for λ = 1 we have complete noise, i.e., all alternatives

are approved with likelihood 0.5. As λ increases from 0 to 1, the

amount of noise increases, or, in other words, the voters become less

able to judge the quality of alternatives. Additionally, we studied a

bias model. The results are largely similar and thus omitted.

Considered voting rules. We ran our experiments on all rules

defined in Section 3. However, we do not mention Next-k , as it
returns very large winner sets (average > 25 for any k ≥ 2); such

large winner sets are undesirable for shortlisting. We instantiate

First k-Gap with k = 5 (this corresponds to 5% of the voters). For

the Size Priority rule we use the priority order 4 ▷ 5 ▷ 6 ▷ . . . , i.e.,
an Increasing Size Priority rule. Finally, we chose 0.5-Threshold as

representative for threshold rules.

Our comparison of shortlisting rules is visualized in Figure 1 for

the noise model (with varying λ). Each data point (corresponding to

a specific λ) is based on N = 1000 instances E1, . . . ,EN . The figures

visualize the behavior of each considered shortlisting rule R via

three metrics: (1) average quality of R’s winner sets, (2) frequency

of the objectively best alternative(s) being contained in R’s winner

sets, and (3) average size of R’s winner sets.

To have a high average quality and to always include the highest-

quality alternative can be viewed as somewhat orthogonal objec-

tives. The first objective is easiest to achieve by returning small

winner sets, the second by returning large winner sets (so that

the objectively best alternative is guaranteed to be included, inde-

pendently of the voters’ noisy perception). This contrast can be

seen clearly when comparing Approval Voting and 0.5-Threshold:
Approval Voting returns rather small winner sets (as seen in Fig. 1c)

and thus has a high average quality (Fig. 1a), however if λ increases,

the objectively best alternative is often not contained in the winner
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(a) Average quality of winner sets

(b) Inclusion of objectively best alternative in winner sets

(c) Average size of winner sets

Figure 1: Numerical simulations for the noise model

set (Fig. 1b). 0.5-Threshold has a low average quality (Fig. 1a) due to

large winner sets (Fig. 1c), but is likely to contain the objectively

best alternative even for large λ (Fig. 1b).

Size Priority (with the considered priority order) is a noteworthy

alternative to Approval Voting. It achieves a very similar average

quality, while having a significantly larger chance to include the

objectively best alternative. As in shortlisting processes it is gen-

erally not necessary to have very small winner sets, we view Size
Priority (with a sensibly chosen priority order) as superior to Ap-
proval Voting. First Majority and Largest Gap produce rather large

winner sets and thus the graphs resemble that of 0.5-Threshold.
We see a very interesting property of First 5-Gap: it is the only

rule where the size of winner sets significantly adjusts to increasing

noise. If λ increases, the differences between the approval scores

vanishes and thus fewer 5-gaps exist. As a consequence, the win-

ner sets increase in size. This is a highly desirable behavior, as it

allows First 5-Gap to maintain a high likelihood of containing the

objectively best alternative without sacrificing average quality for

low-noise instances. Also First Majority reacts to an increase in

noise, albeit to only a very small degree.

To sum up, our experiments show the behavior of shortlisting

rules with accurate and inaccurate voters, and the trade-off between

large and small winner set sizes. In our opinion, two shortlisting

rules have particularly favorable characteristics: 1) Size Priority
produces small, high-quality winner sets but includes more than

just the highest-scoring alternative (as Approval Voting does). Thus,

it shows a certain robustness to a noisy selection process, as is

desirable in shortlisting settings. 2) First k-Gap manages to adapt in

high-noise settings by increasing the winner set size, the only rule

with this distinct feature. This makes it particularly recommendable

in settings with unclear outcomes (few or many best alternatives),

where a flexible shortlisting method is required.

7 DISCUSSION
Based on our analysis, we recommend three shortlisting methods:

Size Priority, First k-Gap, and f -Threshold. Size Priority, in particular
Increasing Size Priority, is recommendable if the size of the winner

set is of particular importance, e.g., in highly structured shortlisting

processes such as the nomination for awards. Typically, in such

processes, the Multiwinner Approval Voting rule is used. This rule

requires, however, a tiebreaking mechanism. Size Priority does not

break ties (a requirement we impose on shortlisting rules) and thus

removes arbitrariness from the shortlisting process. Increasing Size
Priority exhibits a very solid behavior in our numerical experiments

as well as good axiomatic properties (cf. Table 1).

Our axiomatic analysis reveals First k-Gap as a particularly

strong rule in that it is the minimal rule satisfying ℓ-Stability. Fur-

thermore, it is the only rule that adapts to increasing noise in our

simulations. This behavior is particularly desirable if including the

best candidates in the shortlist is more important than the size of

the winner set, as is often the case when deciding which applicants

should be invited for an interview. A potential disadvantage is that

the parameter k has to be chosen according to the given scenario

(number of voters, reliability of voters), which requires in-depth

knowledge about the shortlisting process.

Finally, Theorem 4 shows that f -Threshold rules are the only

rules satisfying the Independence axiom. Therefore, if the selection

of alternatives should be independent from each other, then clearly

a f -Threshold rule should be chosen. For example, the inclusion in

the Baseball Hall of Fame should depend on the quality of a player

and not on the quality of the other candidates.

These recommendations are applicable to most shortlisting sce-

narios. There are, however, possible variations of our shortlisting

framework that require further analysis in the future. For example,

while strategyproofness is usually not important with independent

experts, there are some shortlisting applications with a more open

electorate where this may become an issue [9, 27]. Further, q-NCSA,
a recently proposed voting rule [17], is worth being investigated in

a shortlisting setting. In general, the class of variable multiwinner

rules (and social dichotomy functions) deserves further attention

as many fundamental questions (concerning proportionality, ax-

iomatic classifications, algorithmic questions, etc.) are unexplored.
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