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ABSTRACT
Multi-agent reinforcement learning (MARL) requires coordination
to efficiently solve certain tasks. Fully centralized control is often
infeasible in such domains due to the size of joint action spaces.
Coordination graph formalizations allow reasoning about the joint
action based on the structure of interactions. However, they often
require domain expertise in their design and can be difficult for
dynamic environments with changing coordination requirements.
This paper introduces the deep implicit coordination graph (DICG)
architecture for such scenarios. DICG consists of a module for in-
ferring the dynamic coordination graph structure which is then
used by a graph neural network module to learn to implicitly rea-
son about the joint actions or values. DICG allows learning the
tradeoff between full centralization and decentralization via stan-
dard actor-critic methods to significantly improve coordination
for domains with large number of agents. We apply DICG to both
centralized-training-centralized-execution and centralized-training-
decentralized-execution regimes. We demonstrate that DICG solves
the relative overgeneralization pathology in predatory-prey tasks
as well as outperforms various MARL baselines on the challeng-
ing StarCraft II Multi-agent Challenge (SMAC) and traffic junction
environments.
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1 INTRODUCTION
Effective multi-agent reinforcement learning (MARL) in fully coop-
erative environments often requires coordination between agents
on a team. One simple approach for achieving coordination is to
reduce the problem to a single agent problem where the action
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space is the joint action space of all agents. Unfortunately, this
joint action space grows exponentially with the number of agents,
making it intractable for many domains of interest. To avoid this
problem, a common strategy is to decentralize or factorize the deci-
sion policy or value function for each agent [8, 34, 36]. Each agent
selects actions to maximize its corresponding utility function, with
the end goal of maximizing the joint value function. However, such
decentralization can be suboptimal [23]. The optimal policy is often
not learnable in such a context due to a game-theoretic pathology
referred to as relative overgeneralization [27], where the agent’s
reward gets confounded by penalties from random exploratory
actions of other collaborating agents.

Guestrin et al. [7] introduced the framework of coordination
graph (CG) to reason about joint value estimates from a factored
representation to significantly improve computational tractabil-
ity at the expense of optimality. Compared to function decompo-
sition schemes like Value Decomposition Networks (VDN) [35],
QMIX [28], and parameter sharing in decentralized policy opti-
mization [8], the CG framework allows explicit modeling of the
locality of interactions and formal reasoning about joint actions
given the coordination graph structure. Kok and Vlassis [17] applied
these ideas in the context of tabular reinforcement learning. The
approach was later extended to function approximation with neural
networks by Böhmer et al. [3]. Most of these approaches assume a
domain dependent static coordination graph is given. Although the
coordination graph terminology is focused on using a graph data-
structure to decompose payoffs and utilities, we believe the idea of
using a graph data-structure for coordinated action inference can
be considered more general.

For a wide range of problems, this coordination graph structure
is dynamic and state dependent. Domain heuristics like adding a
graph edge with neighboring agents based on some distance metric
are sometimes used [13]. The approach of Kok et al. [16] attempts
to learn such structure, but it is limited to tabular settings with
domain heuristics. We hypothesize that methods that learn the
appropriate dynamic coordination graph to inform the selection of
joint actions can help address coordination issues in MARL.

We propose the Deep Implicit Coordination Graph (DICG) module
for multi-agent deep RL. It uses a self-attention network to deter-
mine, what we call, an implicit coordination graph structure which
is then used for agent information integration through a graph
convolutional network (GCN). Although “implicit coordination
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graph” is not strictly the payoff-utility based coordination graph as
is standard in the literature, it builds off the same idea of reasoning
about the joint action based on the relatively sparse interactions
between the agents. The intuition behind this architecture design is
to make both the coordination graph structure and action inference
over its edges differentiable so that the entire DICG module can
be used inside either the actor or the critic and trained end-to-end
through standard policy optimization methods. Since the module is
trained to optimize the joint reward, the GCN submodule learns to
implicitly reason about joint actions/values based on the structure
of interaction inferred by the attention submodule.

We compareDICGwith fully centralized and decentralizedMARL
methods in a challenging domain involving predator-prey tasks
that require strong coordination. We also study performance on
the StarCraft II Multi-Agent Challenge (SMAC) [30] and the traf-
fic junction environment [34]. DICG learns the relevant dynamic
coordination graph structure, allowing it to make an appropriate
trade-off between centralized and decentralized methods.

2 BACKGROUND AND RELATEDWORK
We formalize the problem as a Dec-POMDP [25] forming the tuple
⟨I,S, {A𝑖 }𝑛

𝑖=1,T ,Z, 𝑅,O, 𝛾⟩, where I = {1, . . . , 𝑛} is the set of
agents, S is the global state space, A𝑖 is the action space of the 𝑖th
agent, and Z is the observation space for an agent. The transition
function defining the next state distribution is given by T : S ×∏

𝑖 A𝑖 × S → [0, 1]. The reward function is 𝑅 : S ×∏
𝑖 A𝑖 → R,

and the discount factor is𝛾 ∈ [0, 1). The observation model defining
the observation distribution from the current state is O : S ×Z →
[0, 1]. Each agent 𝑖 has a stochastic policy 𝜋𝑖 conditioned on its
observations 𝑜𝑖 or action-observation history 𝜏𝑖 ∈ (Z × A𝑖 ). The
discounted return is𝐺𝑡 =

∑∞
𝑙=0 𝛾

𝑙𝑟𝑡+𝑙 , where 𝑟𝑡 is the joint reward at
step 𝑡 . The joint policy 𝜋 induces a value function 𝑉 𝜋 (𝑠𝑡 ) = E[𝐺𝑡 |
𝑠𝑡 ] and an action-value function 𝑄𝜋 (𝑠𝑡 , a𝑡 ) = E[𝐺𝑡 | 𝑠𝑡 , a𝑡 ], where
a𝑡 is the joint action. The advantage function is then 𝐴𝜋 (𝑠𝑡 , a𝑡 ) =
𝑄𝜋 (𝑠𝑡 , a𝑡 ) −𝑉 𝜋 (𝑠𝑡 ).

2.1 Policy Optimization
We use policy optimization to maximize the expected discounted
return. Given policy 𝜋𝜃 parameterized by 𝜃 , the surrogate policy
optimization objective is [32]:

maximize
𝜃

Ê𝑡

[
𝜋𝜃 (𝑎𝑡 | 𝑠𝑡 )
𝜋𝜃old (𝑎𝑡 | 𝑠𝑡 )

𝐴𝑡

]
(1)

where𝐴𝑡 is the advantage function estimator [31] at time step 𝑡 and
the expectation Ê𝑡 [. . .] indicates the empirical average over a finite
batch of samples. In practice, we use the clipped PPO objective
[32] to limit the step size for stable updates. For the policy 𝜋𝜃 , we
can either condition on states using a feed-forward network like
multi-layer perceptron (MLP), or condition on the full history using
a recurrent neural network such as an LSTM [11] or GRU [5]. In
the context of centralized training but decentralized execution, a
common strategy is to share the policy parameters between agents
that are homogeneous [3, 8]. With shared rewards, COMA [6]
critic can be useful for better credit assignment and can be easily
combined with our proposed approach. However, these approaches
do not model the coordination structure. Wei et al. [41] investigate

relative overgeneralization in continuous action multi-agent tasks
and show improvement over MADDPG [20]. OroojlooyJadid and
Hajinezhad [26] provide a general overview of cooperative MARL.

2.2 Coordination Graphs
For several multi-agent domains, the outcome of an agent’s action
often depends only on a subset of other agents in the domain. This
locality of interaction can be encoded in the form of a coordination
graph (CG) [7]. A CG is often represented as an undirected graph
𝐺 = ⟨V, E⟩ and contains a vertex 𝑣𝑖 ∈ V for each agent 𝑖 and a set
of undirected edges {𝑖, 𝑗} ∈ E between vertices 𝑣𝑖 and 𝑣 𝑗 . Guestrin
et al. [7] use this CG to induce a factorization of an action-value
function into utility functions 𝑓 𝑖 and payoff functions 𝑓 𝑖 𝑗 :

𝑞CG (𝑠𝑡 , 𝑎) =
∑
𝑣𝑖 ∈V

𝑓 𝑖 (𝑎𝑖 | 𝑠𝑡 ) +
∑

{𝑖, 𝑗 }∈E
𝑓 𝑖 𝑗 (𝑎𝑖 , 𝑎 𝑗 | 𝑠𝑡 ) (2)

Guestrin et al. [7] and Vlassis et al. [40] draw on the connections
with maximum a posteriori (MAP) estimation techniques in prob-
abilistic inference to compute the joint action from such factor-
izations; resulting into algorithms like Variable Elimination and
Max-Plus. Kok and Vlassis [17] explored their use in the context
of tabular MARL. Deep Coordination Graphs (DCG) [3] extended
these ideas of factoring the joint value function of all agents ac-
cording to a static coordination graph into payoffs between pairs
of agents to deep MARL. They did so by estimating the payoff func-
tions using neural networks and using message passing based on
Max-Plus [40] along the coordination graph to maximize the value
function, allowing training of the value function end-to-end.

In this work, however, we forgo explicitly computing the joint
action through inference over factored representation with a given
coordination graph. Instead, we use attention to learn the appro-
priate agent observation-dependent coordination graph structure
with soft edge weights and then use message passing in a graph
neural network to compute appropriate values or actions for the
agents, such that full the computation graph remains differentiable.

2.3 Self-attention
Self-attention mechanism [4] emerged from the natural language
processing community. It is used to relate different positions of a
single sequence. The difference between self-attention and standard
attention is that self-attention uses a single sequence as both its
source and target sequence. It has been shown useful in image
caption generation [18, 44] and machine reading [4, 43].

The attention mechanism has also been adopted recently for
MARL. The relations between a group of agents can be learned
through attention. Iqbal and Sha [12] use attention to extract rele-
vant information of each agent from the other agents. Jiang and Lu
[14] use self-attention to learn when to communicate with neigh-
boring agents. Wright and Horowitz [42] use self-attention on the
policy level to differentiate different types of connections between
agents. Jiang et al. [13] use multi-head dot product attention to
compute interactions between neighbouring agents for the purpose
of enlarging agents’ receptive fields and extracting latent features of
observations. We use self-attention to learn the attention weights
between agents, and use the attention weights to form a “soft”-
edged coordination graph instead of edges with binary weights.
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Figure 1: Network architecture of DICG. It can be used for either a centralized-training-centralized-execution (CTCE) approach
or as a centralized-training-decentralized-execution (CTDE) approach. The blue arrows indicate theCTCE approach. TheDICG
module serves as a joint observation encoder.We use the integrated observations 𝐸 to directly obtain actions for agents through
a parameter sharing policy. The baselines in CTCE are estimated by a concatenation of raw observations. The red arrows
indicate the CTDE approach. We pass the integrated observations 𝐸 through an aggregator network to estimate a centralized
baseline. We then use the baseline to compute the advantage to guide policy optimization.

2.4 Graph Neural Networks
Several frameworks have been proposed to extract locally con-
nected features from arbitrary graphs [15, 37]. Given a graph 𝐺 =

⟨V, E⟩, a graph convolutional network (GCN) takes as input the
feature matrix that summarizes the attributes of each node 𝑣𝑖 ∈ V
and outputs a node-level feature matrix. This is similar to how a
convolution operation across local regions of the input produces
feature maps in CNNs. MAGnet learns relation weights through
a loss function based on heuristic rules in the form of a relevance
graph [22]. Deep relational RL embeds multi-head dot-product at-
tention as relational block into graph neural networks to learn
pairwise interaction representation of a set of entities in the agent’s
state [45]. Recently, Liu et al. [19] combined a two-stage attention
network with a graph neural network for communication between
the agents to achieve state-of-the-art performance on the traffic
junction domain with curriculum training [2].

3 APPROACH
Instead of the standard approach of learning the binary weights of
the edges in a coordination graph, we use self-attention to learn the
relation between agents and use the attention weights as soft edges

of a coordination graph. These soft edges form an implicit coordina-
tion graph representing elements of its adjacencymatrix,𝑀 ∈ R𝑛×𝑛

>0 .
We use self-attention to avoid building coordination graphs using
hard-coded or domain-specific heuristics so that our approach is
applicable to more abstract multi-agent domains. Moreover, main-
taining differentiability is difficult with binary connections. We use
attention to implicitly represent the edge weights as the strength
of the connection between agents to obtain the graphs’s adjacency
matrix. We then apply graph convolution [15] with this adjacency
matrix to integrate information across agents. We use graph con-
volution because it is an efficient and differentiable way to pass
information along the graph. With the integrated information, we
can either use it as observation embeddings to directly obtain ac-
tions or use it to estimate baselines for advantage estimation during
policy optimization. In summary, the DICG module consists of an
encoder, an attention module, and a graph convolution module
with the architecture outlined in Fig. 1.

In detail, we first pass 𝑛 observations {𝑜𝑖 }𝑛𝑖=1 of the 𝑛 agents
through a parameter sharing encoder parameterized by 𝜃𝑒 . The
encoder outputs 𝑛 embedding vectors {𝑒𝑖 }𝑛𝑖=1, each with size 𝑑 :

𝑒𝑖 = Encoder(𝑜𝑖 ;𝜃𝑒 ), for 𝑖 = 1, . . . , 𝑛. (3)
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We then compute the attention weights from agent 𝑖 to 𝑗 using
these embeddings as:

𝜇𝑖 𝑗 =
exp(Attention(𝑒𝑖 , 𝑒 𝑗 ,𝑊𝑎))∑𝑛

𝑘=1 exp(Attention(𝑒𝑖 , 𝑒𝑘 ,𝑊𝑎))
. (4)

where the attention module is parameterized by𝑊𝑎 , which is a
trainable 𝑑 × 𝑑 weight matrix. The attention score function we
adopt is general attention [21]:

Attention(𝑒𝑖 , 𝑒 𝑗 ,𝑊𝑎) = 𝑒⊤𝑗 𝑊𝑎𝑒𝑖 . (5)

The attention module is also parameter shared among agents. We
use these attention weights to form an 𝑛 × 𝑛 positive real valued
adjacency matrix 𝑀 with 𝑀𝑖 𝑗 = 𝜇𝑖 𝑗 , which encodes the implicit
coordination graph. Since we apply soft-max for attention weights,
we have

∑𝑛
𝑗=1 𝜇𝑖 𝑗 = 1.

We stack the embeddings to form an 𝑛 ×𝑑 feature matrix 𝐸 with
the 𝑖th row being the embedding 𝑒⊤

𝑖
. We denote the 𝐸 before any

graph convolution operations as 𝐸 (0) . With the soft adjacency ma-
trix𝑀 and the feature matrix 𝐸 (0) , we can apply graph convolution
to perform message passing and information integration across all
agents. In the fast approximate GCN by Kipf and Welling [15], a
graph convolution layer is

𝐻 (𝑙+1) = 𝜎

(
𝐷̃− 1

2 𝑀̃𝐷̃− 1
2𝐻 (𝑙)𝑊 (𝑙)

𝑐

)
, (6)

where 𝐻 (𝑙) is the feature matrix of convolution layer 𝑙 . In our case,
𝐻 (0) = 𝐸 (0) = [𝑒⊤1 ; 𝑒

⊤
2 ; . . . ; 𝑒

⊤
𝑛 ]. Diagonal entries of𝑀 are already

positive from the self-attention weights. Therefore, unlike Kipf
and Welling [15], we do not need to add an identity matrix for
non-zero self-connections and can set 𝑀̃ = 𝑀 . By their definition,
𝐷̃𝑖𝑖 =

∑𝑛
𝑗=1 𝑀̃𝑖 𝑗 =

∑𝑛
𝑗=1 𝜇𝑖 𝑗 = 1, i.e. 𝐷̃ is simplified to an identity

matrix, 𝐼𝑛 . The 𝑑 × 𝑑 matrix 𝑊
(𝑙)
𝑐 is a trainable weight matrix

associated with layer 𝑙 , and 𝜎 is a non-linear activation.
Replacing 𝑀̃ with attention weights𝑀 and 𝐷̃ with 𝐼𝑛 , the graph

convolution operation simplifies to

𝐻 (𝑙+1) = 𝜎

(
𝑀𝐻 (𝑙)𝑊 (𝑙)

𝑐

)
. (7)

This graph convolution operation is performed𝑚 times. We denote
the output of𝑚th layer𝐻 (𝑚) as 𝐸 (𝑚) , which is a stack of integrated
embeddings.

We then use a residual connection [10] between 𝐸 (0) and 𝐸 (𝑚)

to obtain the final embedding matrix 𝐸 = 𝐸 (0) + 𝐸 (𝑚) . The residual
connection is designed to assist gradient flow through the attention
module and the encoder. The final embedding matrix 𝐸 consists
of a stack of integrated embeddings {𝑒𝑖 }𝑛𝑖=1. Finally, there are two
ways to use the embedding matrix 𝐸:

(a) DICG-CE: If full communication is allowed between agents,
we can use the DICG module in a centralized-training-centralized-
execution (CTCE) framework to communicate information between
the agents. The output from the DICGmodule, 𝐸, integrates relevant
information across all agents. The corresponding embedding 𝑒𝑖 (or
its history for recurrent neural networks) can be passed through a
separate or parameter-shared policy network to obtain actions for
each agent (indicated with blue arrows in Fig. 1). We can then use
standard actor-critic methods to train the network end-to-end. As
our experiments demonstrate, embeddings obtained from DICG are
superior to simply concatenating the raw observations and passing

through an MLP network due to the implicit coordination structure
reasoning for information integration.

(b) DICG-DE: If full communication is not allowed between
agents, we can still use the DICG module to facilitate better coordi-
nation. Following the principles of centralized-training-decentralized-
execution (CTDE), we can use the output of the DICG module, 𝐸,
in a centralized critic. We pass 𝐸 through another MLP, which we
refer to as an aggregator network, to estimate the centralized base-
line (indicated with red arrows in Fig. 1). Separate or parameter
shared policy networks can be trained for each agent using standard
actor-critic methods [1, 6, 8], except using the DICG centralized
baseline for advantage computation. During execution the critic is
no longer required and the agents can act independently. Again,
we find that the embeddings obtained by DICG are superior to
simply concatenating the raw observations and passing through
an MLP network due to its implicit reasoning about the dynamic
coordination structure.

KeyDifferences fromRelatedApproaches: Each component
module like self-attention and graph convolutions that are key to
our approach have been previously used in the literature. Iqbal and
Sha [12] use attention mechanism in their critic to dynamically
attend to other agents. However, they do not use the concept of
a coordination graph and process those embeddings with a graph
neural network. Moreover, they experiment with fairly small and
simple particle environments. Wright and Horowitz [42] use atten-
tion mechanism in their actor to aggregate information from other
agents sharing some similarities with DICG-CE. They do not use
attention to create a coordination graph structure that can be used
by a graph neural network to process the observation embeddings.
Moreover, they are focused on a simple simulation of merging vehi-
cles. Jiang et al. [13] use attention mechanism to obtain a relational
kernel for use in a graph neural network. Moreover they are focused
on value based methods and use Deep Q-learning. They do not use
the attention weights to create a coordination graph. Rather, they
hand craft the adjacency matrix used by the graph neural network.
They experiment with particle environments with simple observa-
tions. Ryu et al. [29] use both an attention mechanism and graph
neural networks. However, they focus on multi-group settings and
consider the relationships between an individual agent with groups
of other agents to come upwith a hierarchical representation. Again,
they only experiment with simple particle environments.

The key contribution of this work is to take inspiration from the
coordination graph literature and combine these various compo-
nents in a specific way to design a fully differentiable architecture.
As we’ll see in the next section, this design leads to strong perfor-
mance improvements in a variety of complex multi-agent domains.

4 RESULTS
We present experiments applying DICG to three environments
(shown in Fig. 2): predator-prey, StarCraft II Multi-agent Challenge
(SMAC) [30], and traffic junction [34]. These environments require
coordination to achieve high returns, i.e. agent interactions are not
so sparse that totally decentralized approaches with partial observ-
ability can achieve high returns. They are also sufficiently complex
that fully centralized approaches quickly become intractable. We
compare our approach against two standard actor-critic baseline
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Figure 2: Experiment environments. (a) Predators are marked in blue, and prey are marked in red. The cyan grids are the
capture range of predators. An example of successful capture is predator 2 and 6 capturing prey 3. An example of a single-agent
capture attempt that will cause penalty is predator 3 capturing prey 8 alone. (b) SMAC scenario 3s_vs_5z. (c) An illustration
of the hard mode traffic junction environment with 18 × 18 grids and 4 two-way routes.
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Figure 3: Average return of predator-prey with increasing penalty for single-agent capture attempt.

approaches: 1) fully decentralized architecture (referred to as DEC)
with only local observation as input to policy; and 2) centralized
architecture (referred to as CENT) with a direct concatenation of
all observations as input to policy. Due to the dimensionality of
the action space, we still need to factorize the policy [8, 34] in the
centralized architecture so that we output separate action distri-
butions for each agent. They both use a centralized critic with full
observation to create a baseline estimate, and they use PPO for
policy optimization [1]. Benchmarking against them can justify the
effectiveness of coordination learning and information integration
of DICG. We also compare with results reported by other MARL
approaches. All results are averaged over 5 seeds. Code is available
at: https://github.com/sisl/DICG.

4.1 Predator-Prey
We use an environment similar to that described by Böhmer et al.
[3]. The environment consists of a 10 × 10 grid world with 8 preda-
tors and 8 prey. We control the movement of predators to capture
prey. The prey move by hard-coded and randomized rules to avoid
predators. If a prey is captured, the agents receives a reward of
10. However, the environment penalizes any single-agent attempt
to capture prey with a negative reward 𝑝; at least two agents are
required to be present in the neighboring grid cells of a prey for
a successful capture. We set the episode length to 200 steps, and
impose a step cost of −0.1. Cooperation is necessary to achieve
a high return in this environment. We use an MLP policy for all

the architectures. Fig. 2a shows the environment and illustrations
of a successful capture and a single-agent capture attempt to be
penalized. A typical relative overgeneralization pathology could
arise from imposing the single-agent capture attempt and a lack
of proper coordination is that all agents crowd to a corner of the
grids, failing to explore strategies.

Figure 3 shows the average return for test episodes for varying
penalties 𝑝 averaged over 5 runs. Overall, DICG performs the best
and solves relative overgeneralization with its implicit coordination.
Without any penalty (𝑝 = 0), fully centralized (CENT-MLP) and
fully decentralized (DEC-MLP) architectures have similar perfor-
mance. However, they require more steps to capture all prey than
the DICG approaches. As we increase the penalty, only DICG is
able to reliably and quickly converge to optimality. DEC-MLP has
a characteristic slowdown in the learning curves before it is able
to approach DICG. It finally converges to suboptimal performance
with relative overgeneralization due to the lack of coordination
across agents. The fully centralized approach CENT-MLP can only
achieve positive returns in non-penalized setting. With a negative
penalty, CENT-MLP cannot learn to capture prey appropriately due
to two reasons: 1) simple concatenation of observations in CENT-
MLP leads to a large joint observation space, and 2) concatenation
of observations is not an efficient way to integrate information and
learn coordination across agents.
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Analyzing Implicit Coordination Graph
We examine the effects of the implicit CG in the following experi-
ments.

Semantics of implicit CG: To understand how the DICG learns
to coordinate, we perform attention weight analysis, i.e. we study
the strength of soft edges of the implicit coordination. A heuristic
of what affects the strength of connection between agents is the
distance between agents. Figure 4 shows the relationship between
attention weight and distance between agents learned by DICG.
Zero distance corresponds to the attention weight of an agent to
itself. As the penalty increases, agents tend to increase the attention
weight towards agents further away. This phenomenon coincides
with the coordination requirements imposed by the increase of
penalty that agents should pay more attention to form groups with
each other to capture prey as a team than moving alone.

Effectiveness of GCN at information integration: To exam-
ine whether information is effectively integrated across agents
along the implicit coordination graph, we design an experiment
to predict agent 𝑗 ’s actions 𝑎 𝑗 only using agent 𝑖’s information
with 𝑖 ≠ 𝑗 . This is formulated as a supervised learning problem:
𝑎 𝑗 = 𝑓 (𝑥𝑖 ;𝜙) with loss 𝐿 = 𝐶𝑟𝑜𝑠𝑠𝐸𝑛𝑡𝑟𝑜𝑝𝑦 (𝑎 𝑗 , 𝑎 𝑗 ). Theoretically,
with a finite amount of data, if 𝑥𝑖 is more correlated with 𝑎 𝑗 , the

classifier 𝑓 (·;𝜙) can produce a higher prediction accuracy. There-
fore, we set 𝑥𝑖 to the pre-DICG embeddings 𝑒𝑖 and the post-DICG
embeddings 𝑒𝑖 . We use a simple MLP classifier parameterized by 𝜙 ,
with a single 64-unit hidden layer and ReLU as activation. Results
of five random pairs of (𝑖, 𝑗) are shown in Fig. 5. The post-DICG
embeddings can predict other agent’s actions with a higher accu-
racy than the pre-DICG embeddings. We can interpret this as the
DICG architecture allowing individual agents to learn other agents’
intentions.

4.2 StarCraft II Multi-agent Challenge (SMAC)
StarCraft II, and the StarCraft II Learning Environment (SC2LE),
has provided an environment for some of the most important rein-
forcement learning work in recent years [38, 39]. However most of
this work has resided in the single-agent domain where reinforce-
ment learning is used to train a single, centralized decision-making
agent how to play the entire StarCraft II game involving the control
of a large number of units within the game. The StarCraft Multi-
Agent Challenge (SMAC) extends SC2LE by providing a collection
of reinforcement learning benchmarks designed specifically for
multi-agent environments [30].

Within SMAC, each unit is controlled by its own separate learn-
ing agent whose actions must be conditioned on local observations
and not the global game state. SMAC scenarios are designed to
exploremicromanagement, e.g. precise movements and coordinated
targeting, of relatively small groups of units. A scenario where 3
agent controlled stalkers combating with 5 computer controlled
zealots is shown in Fig. 2b. In each episode, positive rewards are
given for the positive health point difference between the controlled
agent team and the computer controlled opponent team, otherwise,
the agent team receive zero or negative rewards. Large positive
terminal reward is given for winning the episode by eliminating
the opponents (zero for being eliminated).

We test DICG on SMAC’s asymmetric and “micro-trick” scenar-
ios such as 8m_vs_9m, 3s_vs_5z, and 6h_vs_8z [30]. The opponent
AI difficulty is set to “hard”, “hard”, and “super hard”, respectively.
We use an LSTM policy for all architectures in SMAC. Results of
SMAC are in Fig. 6. In 8m_vs_9m, DICG-DE-LSTM outperforms all
the other approaches; DICG-CE-LSTM and DEC-LSTM have sim-
ilar performance; CENT-LSTM performs the worst. In 3s_vs_5z,
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Table 1: SMAC win rate comparison.

Approach 8m_vs_9m 3s_vs_5z 6h_vs_8z

DCG [3] 55 ± 10% 85 ± 3% 10 ± 5%
VDN [35] 49 ± 5% 72 ± 10% 0
QMIX [28] 60 ± 11% 95 ± 1% 5 ± 5%
CENT-LSTM 42 ± 6% 0 0
DEC-LSTM 65 ± 16% 94 ± 5% 0
DICG-CE-LSTM 72 ± 11% 96 ± 3% 9 ± 9%
DICG-DE-LSTM 87 ± 6% 99 ± 1% 0

DICG-DE-LSTM shows the highest and the most stable win rate,
as well as the most sample efficient learning; DICG-CE-LSTM has
more stable performance than DEC-LSTM, but CENT-LSTM fails to
learn. From game replays, we observe that DICG learns a particular
circular movement strategy in 3s_vs_5z. Due to the asymmetric
setup, the 3 stalker agents controlled by DICG cannot overcome the
opposing 5 zealots with force. The DICG agents learn to split into
two groups, each attracting a number of opponents. Each group
moves along the edges of the square map in a circle, and damages
opponents using a learned hit-and-run tactic with their high speed.
When the opponents are sufficiently weak, the two groups reunite
to eliminate the opponents. This highly coordinated tactic demon-
strates the effectiveness of DICG. In 6h_vs_8z, a very difficult map,
DICG-CE-LSTM is the only approach to win against the opponent
AI.

A comparison of SMAC win rate under the same difficulty set-
ting with DCG [3], VDN [35] and QMIX [28] is in Table 1. DICG
outperforms DCG and others without using the privileged state in-
formation in 8m_vs_9m and 3s_vs_5z, and having comparable but
noisier win rate for 6h_vs_8z. DICG outperforms VDN and QMIX
in all the mentioned scenarios requiring high coordination. In many
multi-agent tasks, we do not have access to privileged full state
information even during training and our algorithm needs to just
work with observations. DICG demonstrates the advantage of inte-
grated information to prevent relative overgeneralization in such
scenarios.

4.3 Traffic Junction
The traffic junction environment, introduced by Sukhbaatar and
Fergus [34], is a multi-agent environment where cars are randomly

Table 2: Traffic junction success rate comparison.

Approach Easy Medium Hard

CommNet [34] 93.0 ± 4.2% 54.3 ± 14.2% 50.2 ± 3.5%
IC3Net [33] 93.0 ± 3.7% 89.3 ± 2.5% 72.4 ± 9.6%
GA-Comm [19] 99.7% 97.6% 82.3%
CENT-MLP 97.7 ± 0.9% 0 0
DEC-MLP 90.2 ± 6.5% 81.3 ± 4.8% 69.4 ± 4.9%
DICG-CE-MLP 98.1 ± 1.9% 80.5 ± 6.8% 22.8 ± 4.6%
DICG-DE-MLP 95.6 ± 1.5% 90.8 ± 2.9% 82.2 ± 6.0%

added to traffic junctions with pre-assigned routes who need to
avoid collision with each other and reach their destinations. Each
agent only has a limited vision of one grid from itself. The reward
function consists of a collision penalty to discourage collision and
a step cost to discourage congestion. There are easy, medium, and
hard difficulty modes in the traffic junction environment. The envi-
ronment configurations are adopted from Singh et al. [33]. Figure 2b
shows the traffic junction environment in hard mode. We use MLP
policies for the traffic junction environment.

The results are in Fig. 7 and a comparison with other baselines
using the same environment configurations is in Table 2. DICG-CE-
MLP performs better than DICG-DE-MLP in easymode. CENT-MLP
also performs well in easy mode. This is because easy mode has
fewer number of agents and small observation space. Centralized
execution can outperform decentralized approaches in relatively
small domains. However, DICG-CE-MLP has the privilege of more
efficient agent information integration over CENT-MLP.

In medium and hard mode, where the number of agents and the
dimension of observation space increases, centralized approaches
fail to perform well. DICG-DE-MLP outperforms decentralized and
centralized baselines in medium and hard mode. Even though we
do not use any curriculum [2] based training, DICG’s performance is
close to that of GA-Comm [19] which employs curriculum learning.
Note that the results of GA-Comm fall within the uncertainty range
of our results in easy and hard mode.

Ablation. To examine the effectiveness of various components in
the DICG architecture, we perform ablation experiments by adjust-
ing the attention module and the graph convolution module. Two
variants of DICG-DE-MLP are designed:
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(1) Replacing learned attention weights with uniform attention
weights, i.e. for 𝑛 agents, the attention weights become 1/𝑛.
We denote this variant as DICG-DE-uniform-MLP.

(2) Replacing the graph convolution module with MLP. We con-
catenate the embeddings and the attention weights of all the
agents and feed the concatenation through an MLP to esti-
mate the baseline. We denote this variant as AMLP-DE-MLP.

We test the variants in the hard mode traffic junction environment
where the number of agents is large.We expect the attentionmodule
and graph convolution modules to play relatively more important
roles in coordinating agents. The results are shown in Fig. 8 (aver-
aged over 5 random seeds) in a zoomed-in view. AMLP-DE-MLP
shows similar performance as DEC-MLP. This indicates that MLP
cannot integrate agents’ information as effectively as graph con-
volution. DICG-DE-uniform-MLP has slightly worse performance
than DICG-DE-MLP. This indicates that learned attention weights
can better emphasize coordination among agents than uniformly
spreading attention. Table 3 compares the success rate with other
approaches.

Table 3: Traffic junction success rate comparison with abla-
tion experiments in hard mode.

Approach Success Rate

CommNet [34] 50.2 ± 3.5%
IC3Net [33] 72.4 ± 9.6%
GA-Comm [19] 82.3%
CENT-MLP 0
DEC-MLP 69.4 ± 4.9%
DICG-CE-MLP 22.8 ± 4.6%
DICG-DE-MLP 82.2 ± 6.0%
DICG-DE-uniform-MLP 72.0 ± 1.3%
AMLP-DE-MLP 70.3 ± 3.8%

5 CONCLUSIONS AND FUTUREWORK
In this work, we present the DICG architecture that uses self-
attention to implicitly build a coordination graph and then per-
form message passing with graph convolution layers to compute
appropriate baseline values (DE) or actions (CE) for the agents
while keeping the computational graph differentiable. We demon-
strate that DICG solves the relative overgeneralization pathology
in predator-prey tasks, as well as various MARL baselines including
the challenging StarCraft II micromanagement tasks and traffic
junction tasks. DICG is shown to be an effective architecture for
implicitly and dynamically learning multi-agent coordination that
achieves an appropriate tradeoff between fully centralized and fully
decentralized approaches. For future work, we aim to improve the
sample efficiency of DICG. To achieve this, we may incorporate the
DICG architecture into off-policy learning algorithms such as deep
Q-learning [24] and soft actor-critic [9, 41].
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