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ABSTRACT
Off-policy evaluation (OPE) is the problem of evaluating new poli-

cies using historical data obtained from a different policy. In the

recent OPE context, most studies have focused on single-player

cases, and not on multi-player cases. In this study, we propose OPE

estimators constructed by the doubly robust and double reinforce-

ment learning estimators in two-player zero-sum Markov games.

The proposed estimators project exploitability that is often used as

a metric for determining how close a policy profile (i.e., a tuple of

policies) is to a Nash equilibrium in two-player zero-sum games. We

prove the exploitability estimation error bounds for the proposed

estimators. We then propose the methods to find the best candidate

policy profile by selecting the policy profile that minimizes the

estimated exploitability from a given policy profile class. We prove

the regret bounds of the policy profiles selected by our methods.

Finally, we demonstrate the effectiveness and performance of the

proposed estimators through experiments.
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1 INTRODUCTION
Off-policy evaluation (OPE) is the problem of evaluating new poli-

cies using historical data obtained from a different policy. Because

online policy evaluation and learning are usually expensive or risky

in various applications of reinforcement learning (RL), such as

medicine [36] and education [33], OPE is attracting considerable

interest [2, 22, 26, 30, 50, 51, 60]. In the recent OPE context, most

studies have focused on single-player cases rather thanmulti-player

cases.

Multi-Agent Reinforcement Learning (MARL) is a generaliza-

tion of single-agent RL for multi-agent environments. It is widely

applicable to situations where there are multi-agent interactions,

such as security games, auctions, and negotiations. In recent years,

MARL has achieved many successes in the games Go [46, 47] and

poker [6, 7]. MARL is a field with potential real-world applications,

such as automated driving [44].
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In this study, we propose OPE estimators in two-player zero-sum

Markov games (TZMGs), which is one of the problems dealt with

in MARL. In general, existing OPE estimators in RL estimate the

discounted value of a new policy. However, in multi-agent envi-

ronments, estimating the discounted value is ineffective when the

policy of the other player is unknown. Unlike these estimators, for

OPE in MARL, our OPE estimators evaluate a strategy profile by

estimating exploitability, which is a metric for determining how

close a strategy profile is to a Nash equilibrium in TZMGs. The

proposed exploitability estimators are constructed by the doubly ro-

bust (DR) [18] and double reinforcement learning (DRL) [23] value

estimators. We prove that the proposed exploitability estimators

are

√
𝑛-consistent estimators for the true exploitability.

We also propose the methods to find the best candidate strategy

profile from a given strategy profile class. The proposed methods

select the strategy profile that minimizes the exploitability pro-

jected by our exploitability estimators. Then, we prove that we

can consistently select the true lowest-exploitability policy profile

using the proposed methods.

To demonstrate the effectiveness of our exploitability estima-

tors, we compare our estimators to the estimators based on the

following representative value estimators: importance sampling

(IS), marginalized importance sampling (MIS), direct method (DM)

value estimators. The results show that the exploitability estimators

based on the DR and DRL value estimators generally outperform

the other estimator-based methods. To the best of our knowledge,

this is the first proposed estimators for exploitability for OPE in

TZMGs.

2 PRELIMINARY
2.1 Two-Player Zero-Sum Markov Game
A TZMG is defined as a tuple ⟨S,A1,A2,𝑇 , 𝑃𝐼 , 𝑃𝑇 , 𝑃𝑅, 𝛾⟩, where S
represents a finite state space; A𝑖 represents an action space for

player 𝑖 ∈ {1, 2};𝑇 represents a horizon; 𝑃𝐼 : S → [0, 1] represents
an initial state distribution; 𝑃𝑇 : S × A1 × A2 × S → [0, 1]
represents a transition probability function; 𝑃𝑅 : S×A1×A2×R →
[0, 1] represents a reward distribution; and 𝛾 ∈ [0, 1] represents
a discount factor. We define 𝑅 : S × A1 × A2 as a mean reward

function of 𝑃𝑅 . For 𝑡 = 1, · · · ,𝑇 , we define 𝑟𝑡 ∼ 𝑃𝑅 (𝑠𝑡 , 𝑎1𝑡 , 𝑎2𝑡 ) as a
player 1’s reward for taking actions 𝑎1𝑡 and 𝑎

2

𝑡 at state 𝑠𝑡 , and define

−𝑟𝑡 as a player 2’s reward. Let 𝜋𝑖,𝑡 : S × A𝑖 → [0, 1] be a Markov

policy for player 𝑖 at step 𝑡 ≤ 𝑇 , and let 𝜋𝑖 = (𝜋𝑖,𝑡 )𝑡 ≤𝑇 . We define

𝜋 = (𝜋1, 𝜋2) as a strategy profile or a policy profile. The 𝑇 -step
discounted value of the policy profile (𝜋1, 𝜋2) for each player is
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represented as follows:

𝑣1 (𝜋1, 𝜋2) = E𝜋1,𝜋2 [
𝑇∑
𝑡=1

𝛾𝑡−1𝑟𝑡 ], 𝑣2 (𝜋1, 𝜋2) = −𝑣1 (𝜋1, 𝜋2) .

We further define the state value function of state 𝑠𝑡 at step 𝑡 (1 ≤
𝑡 ≤ 𝑇 ) as follows:

𝑉1,𝑡 (𝑠𝑡 ) = E𝜋1,𝜋2 [
𝑇∑
𝑘=𝑡

𝛾𝑘−𝑡𝑟𝑘 |𝑠𝑡 ], 𝑉2,𝑡 (𝑠𝑡 ) = −𝑉1,𝑡 (𝑠𝑡 ) .

Based on the state value function, we define the state-action value

function of taking actions 𝑎1𝑡 and 𝑎
2

𝑡 at state 𝑠𝑡 as follows:

𝑄1,𝑡 (𝑠𝑡 , 𝑎1𝑡 , 𝑎2𝑡 ) = 𝑅(𝑠𝑡 , 𝑎1𝑡 , 𝑎2𝑡 ) + E𝑃𝑇 [𝛾𝑉1,𝑡+1 (𝑠𝑡+1) |𝑠𝑡 , 𝑎
1

𝑡 , 𝑎
2

𝑡 ],
𝑄2,𝑡 (𝑠𝑡 , 𝑎1𝑡 , 𝑎2𝑡 ) = −𝑄1,𝑡 (𝑠𝑡 , 𝑎1𝑡 , 𝑎2𝑡 ) .

For a given policy profile 𝜋 , we recursively define the marginal

state-action distribution 𝑝𝜋𝑡 (𝑠𝑡 , 𝑎1𝑡 , 𝑎2𝑡 ) at step 𝑡 as follows:

𝑝𝜋𝑡 (𝑠𝑡 , 𝑎1𝑡 , 𝑎2𝑡 ) = 𝜋1,𝑡 (𝑎1𝑡 |𝑠𝑡 )𝜋2,𝑡 (𝑎2𝑡 |𝑠𝑡 )

·
∑
𝑠𝑡−1∈S

∑
𝑎1
𝑡−1∈A1

∑
𝑎2
𝑡−1∈A2

𝑃𝑇 (𝑠𝑡 |𝑠𝑡−1, 𝑎1𝑡−1, 𝑎
2

𝑡−1)𝑝
𝜋
𝑡−1 (𝑠𝑡−1, 𝑎

1

𝑡−1, 𝑎
2

𝑡−1),

where 𝑝𝜋
1
(𝑠1, 𝑎1

1
, 𝑎2

1
) = 𝜋1,1 (𝑎1

1
|𝑠1)𝜋2,1 (𝑎2

1
|𝑠1)𝑃𝐼 (𝑠1).

2.2 Nash Equilibrium and Exploitability
A common solution concept for two-player zero-sum games is a

Nash equilibrium [37, 45], where no player cannot improve by de-

viating from their specified strategy. In TZMGs, a Nash equilibrium

𝜋★ = (𝜋★
1
, 𝜋★

2
) ensures the following condition:

∀𝜋1 ∈ Ω1, ∀𝜋2 ∈ Ω2, 𝑣1 (𝜋★1 , 𝜋2) ≥ 𝑣1 (𝜋
★
1
, 𝜋★

2
) ≥ 𝑣1 (𝜋1, 𝜋★2 ), (1)

where Ω1 and Ω2 are thewhole policy sets, i.e., the sets of all possible
Markov policies for players 1 and 2, respectively. The best response

is a policy for player 𝑖 that is optimal against 𝜋−𝑖 , where 𝜋−𝑖 is a
policy for a player other than 𝑖 . Here, we introduce the value known

as exploitability [19, 32, 52], which is a metric for measuring how

close a policy profile 𝜋 is to a Nash equilibrium 𝜋★ = (𝜋★
1
, 𝜋★

2
) in

two-player zero-sum games. Formally, the exploitability of 𝜋1, 𝜋2 is

represented as follows:

𝑣exp (𝜋1, 𝜋2) = max

𝜋 ′
2
∈Ω2

𝑣2 (𝜋1, 𝜋 ′2) − 𝑣1 (𝜋1, 𝜋2)

+ max

𝜋 ′
1
∈Ω1

𝑣1 (𝜋 ′1, 𝜋2) − 𝑣2 (𝜋1, 𝜋2)

= max

𝜋 ′
1
∈Ω1

𝑣1 (𝜋 ′1, 𝜋2) + max

𝜋 ′
2
∈Ω2

𝑣2 (𝜋1, 𝜋 ′2) .

Note that in two-player zero-sum games, we can rewrite the ex-

ploitability as 𝑣exp (𝜋1, 𝜋2) = 𝑣1 (𝜋★
1
, 𝜋★

2
) − min𝜋 ′

2
∈Ω2

𝑣1 (𝜋1, 𝜋 ′
2
) +

𝑣2 (𝜋★
1
, 𝜋★

2
) −min𝜋 ′

1
∈Ω1

𝑣2 (𝜋 ′
1
, 𝜋2). From the definition, a Nash equi-

librium 𝜋★ has the lowest exploitability of 0.

3 OFF-POLICY EVALUATION IN
TWO-PLAYER ZERO-SUM MARKOV GAMES

In this study, we assume that we can observe the historical data

D = {(𝑠𝑖,1, 𝑎1𝑖,1, 𝑎
2

𝑖,1, 𝑟𝑖,1, · · · , 𝑠𝑖,𝑇 , 𝑎
1

𝑖,𝑇 , 𝑎
2

𝑖,𝑇 , 𝑟𝑖,𝑇 , 𝑠𝑖,𝑇+1)}
𝑛
𝑖=1,

where 𝑛 ∈ N denotes the number of sampled trajectories. The data

is sampled using a fixed policy profile 𝜋𝑏 = (𝜋𝑏
1
, 𝜋𝑏

2
). We refer to

this policy profile as a behavior policy profile. The distribution of D
is then defined as follows:

𝑃𝐼 (𝑠1)
𝑇∏
𝑡=1

𝜋𝑏
1,𝑡 (𝑎

1

𝑡 |𝑠𝑡 )𝜋𝑏2,𝑡 (𝑎
2

𝑡 |𝑠𝑡 )𝑃𝑅 (𝑟𝑡 |𝑠𝑡 , 𝑎1𝑡 , 𝑎2𝑡 )𝑃𝑇 (𝑠𝑡+1 |𝑠𝑡 , 𝑎1𝑡 , 𝑎2𝑡 ).

In most of the studies related to OPE, the goal is to estimate the

discounted value of a given target policy from the historical data.

However, this goal is not appropriate for multi-agent environments.

This is because, in general, in TZMGs, the policy of the opponent

player is unknown, and one may play a game against a different

policy than the target policy. In this case, the discounted value of

the target policy depends critically on the opponent player’s policy.

Therefore, when the opponent policy is unknown, it is not worth

estimating the discounted value against a specific policy. In this

study, for OPE in TZMGs, we estimate the exploitability of a given

target policy profile 𝜋𝑒 = (𝜋𝑒
1
, 𝜋𝑒

2
) from the historical data instead

of estimating the discounted value. In other words, we estimate the

value against the worst opponent policy for each player.

In this study, we assume that we are constrained to consider

each player’s policies within pre-defined policy classes Π1 ⊂ Ω1

and Π2 ⊂ Ω2. In this case, if the best responses arg max

𝜋 ′
1
∈Ω1

𝑣1 (𝜋 ′
1
, 𝜋𝑒

2
)

and arg max

𝜋 ′
2
∈Ω2

𝑣2 (𝜋𝑒
1
, 𝜋 ′

2
) are not included in Π1 and Π2, we cannot

calculate the true exploitability 𝑣exp (𝜋𝑒
1
, 𝜋𝑒

2
). Therefore, instead of

calculating 𝑣exp (𝜋𝑒
1
, 𝜋𝑒

2
), our exploitability estimators project the

following value:

𝑣
exp

Π (𝜋𝑒
1
, 𝜋𝑒

2
) = max

𝜋 ′
1
∈Π1

𝑣1 (𝜋 ′1, 𝜋
𝑒
2
) + max

𝜋 ′
2
∈Π2

𝑣2 (𝜋𝑒1 , 𝜋
′
2
),

where Π = Π1×Π2 is a policy profile class. Note that our exploitabil-

ity estimators project the exploitability from the historical data,

without the structure information 𝑃𝐼 , 𝑃𝑇 , 𝑃𝑅 , and 𝑅.

3.1 Notation
For simplicity, we abbreviate terms like𝑉1,𝑡 (𝑠𝑡 ) as𝑉1,𝑡 . For a policy
profile 𝜋 , we define the following variables (note that each variable

implicitly depends on 𝜋 ):

• 𝜂𝑘 =
𝜋1,𝑘 (𝑎1𝑘 |𝑠𝑘 )𝜋2,𝑘 (𝑎

2

𝑘
|𝑠𝑘 )

𝜋𝑏
1,𝑘

(𝑎1
𝑘
|𝑠𝑘 )𝜋𝑏

2,𝑘
(𝑎2

𝑘
|𝑠𝑘 )

: the density ratio;

• 𝜌𝑡 =
∏𝑡
𝑘=1

𝜂𝑘 : the cumulative density ratio;

• 𝜇𝑡 =
𝑝𝜋𝑡 (𝑠𝑡 ,𝑎1𝑡 ,𝑎2𝑡 )
𝑝𝜋

𝑏

𝑡 (𝑠𝑡 ,𝑎1𝑡 ,𝑎2𝑡 )
: the marginal density ratio;

• 𝜋𝑏
𝑖
: the estimators of 𝜋𝑏

𝑖
;

• 𝑄̂1,𝑡 : the estimators of 𝑄1,𝑡 ;

• 𝜌𝑡 =
∏𝑡
𝑘=1

𝜋1,𝑘 (𝑎1𝑘 |𝑠𝑘 )𝜋2,𝑘 (𝑎
2

𝑘
|𝑠𝑘 )

𝜋𝑏
1,𝑘

(𝑎1
𝑘
|𝑠𝑘 )𝜋𝑏

2,𝑘
(𝑎2

𝑘
|𝑠𝑘 )

: the estimator of 𝜌𝑡 .

Besides, we use the notation ED [𝑓 (𝑋 )] = 1

|D |
∑
𝑥 ∈D 𝑓 (𝑥) as an

empirical average over D, and we use V[·] as a variance.
In the proofs presented in this study, we make the following

assumptions regarding the overlapping of the policies and bounds

of rewards and estimators, which are standard in the existing OPE

literature [21, 23, 60]:

Assumption 1. 0 ≤ 𝜂𝑡 ≤ 𝐶 , |𝑟𝑡 | ≤ 𝑅max for all 1 ≤ 𝑡 ≤ 𝑇 .

Assumption 2. 0 ≤ 𝜌𝑡 ≤ 𝐶𝑡 , 0 ≤ 𝜇𝑡 ≤ 𝐶𝑡 , 0 ≤ |𝑄̂1,𝑡 | ≤
(𝑇 + 1 − 𝑡)𝑅max for all 1 ≤ 𝑡 ≤ 𝑇 .
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4 OFF-POLICY VALUE ESTIMATORS
In this study, we construct the exploitability estimators using DR

and DRL value estimators [18, 23], which are the efficient estimators

for the discounted value 𝑣𝑖 (𝜋1, 𝜋2). Therefore, in this section, we

discuss the off-policy value evaluation and propose DR and DRL

estimators for the discounted value in TZMGs. To distinguish these

estimators from the exploitability estimators, we refer to them as

value estimators.

4.1 Efficiency Bound in Two-Player Zero-Sum
Markov Games

First, we discuss the (semiparametric) efficiency bound, which is

the lower bound of the asymptotic mean squared error of OPE,

among regular

√
𝑛-consistent estimators. Following the general

literature [53], we discuss the efficiency bound of the discounted

value in TZMGs. An efficiency bound is defined for estimators

under several conjectured models of the data generating process.

If the conjectured model is parametric, the efficiency bound is

equal to the Cramér-Rao lower bound. Even if the conjectured

model is non-parametric or semi-parametric, we can still define a

corresponding Cramér-Rao lower bound. Here, we introduce the

following theorem from [23].

Theorem 1 (Efficiency bound in TZMGs). The efficiency bound
of 𝑣1 (𝜋1, 𝜋2) in TZMGs is

ΥEB = V[𝑉1,1] +
𝑇∑
𝑡=1

E[𝛾2(𝑡−1) 𝜇2𝑡 V[𝑟𝑡 + 𝛾𝑉1,𝑡+1 |𝑠𝑡 , 𝑎1𝑡 , 𝑎2𝑡 ]],

where 𝑉1,𝑇+1 = 0.

4.2 Efficient Off-Policy Value Estimators
In this section, we propose the DR and DRL value estimators in

TZMGs and their asymptotic properties.

Double Robust Estimator: We extend the DR value estimator

for Markov decision processes (MDPs) proposed by [18] to apply to

TZMGs. For the theoretical guarantees, we consider the cross-fitting
version of the DR value estimator. We split the historical data into

𝐾 evenly-sized folds. Next, for each fold 𝑘 , we construct estimators

𝜌−𝑘𝑡 and 𝑄̂−𝑘
1,𝑡

based on all the data except fold 𝑘 . We define the DR

value estimator as follows:

𝑣DR
1

(𝜋1, 𝜋2)=ED

[
𝑇∑
𝑡=1

𝛾𝑡−1
(
𝜌
−𝑘 (𝑖)
𝑡

(
𝑟𝑡 − 𝑄̂−𝑘 (𝑖)

1,𝑡

)
+𝜌−𝑘 (𝑖)

𝑡−1 𝑉
−𝑘 (𝑖)
𝑡

)]
,

𝑣DR
2

(𝜋1, 𝜋2) = −𝑣DR
1

(𝜋1, 𝜋2),

where 𝑉
−𝑘 (𝑖)
𝑡 = E𝜋 [𝑄̂−𝑘 (𝑖)

1,𝑡
|𝑠𝑡 ]1 and 𝑘 (𝑖) denotes the fold that con-

tains the 𝑖-th data point. By extending the proof of Theorem 6

in [23] to the case of TZMG, we can easily show the asymptotic

property of the DR value estimator.

Theorem 2 (Asymptotic property of the DR value estima-

tor). Suppose 1 ≤ 𝑡 ≤ 𝑇, 1 ≤ 𝑘 ≤ 𝐾 , ∥𝑄̂−𝑘
1,𝑡

−𝑄1,𝑡 ∥2 = 𝑜𝑝 (𝑛−𝛼1 ), ∥𝜌−𝑘𝑡 −
𝜌𝑡 ∥2 = 𝑜𝑝 (𝑛−𝛼2 ), where 𝛼1 > 0, 𝛼2 > 0, and 𝛼1 + 𝛼2 ≥ 1/2. Then,

√
𝑛(𝑣DR

1
(𝜋1, 𝜋2) − 𝑣1 (𝜋1, 𝜋2))

𝑑−→ N(0, ΥDR),
1E𝜋 [𝑄̂−𝑘 (𝑖 )

1,𝑡
|𝑠𝑡 ] is the expected value taken only over 𝑎1 ∼ 𝜋1,𝑡 (𝑎1 |𝑠𝑡 ) and 𝑎2 ∼

𝜋2,𝑡 (𝑎2 |𝑠𝑡 ) .

√
𝑛(𝑣DR

2
(𝜋1, 𝜋2) − 𝑣2 (𝜋1, 𝜋2))

𝑑−→ N(0, ΥDR),
where

ΥDR = V[𝑉1,1] +
𝑇∑
𝑡=1

E[𝛾2(𝑡−1)𝜌2𝑡 V[𝑟𝑡 + 𝛾𝑉1,𝑡+1 |{𝑠𝑘 , 𝑎1𝑘 , 𝑎
2

𝑘
}𝑡
𝑘=1

]],

and 𝑉1,𝑇+1 = 0.

The proof of this theorem is shown in the full version of the paper

[1]. As in [18, 23], we can easily show that ΥDR is the semiparametric

efficiency bound under games where the current state 𝑠𝑡 uniquely

determines a trajectory.

Double Reinforcement Learning Estimator: In addition to

the DR value estimator, we extend a DRL value estimator with

cross-fitting for MDPs proposed by [23] to one for TZMGs. The

DRL value estimator is defined as follows:

𝑣DRL
1

(𝜋1, 𝜋2)=ED

[
𝑇∑
𝑡=1

𝛾𝑡−1
(
𝜇
−𝑘 (𝑖)
𝑡

(
𝑟𝑡 − 𝑄̂−𝑘 (𝑖)

1,𝑡

)
+𝜇−𝑘 (𝑖)
𝑡−1 𝑉

−𝑘 (𝑖)
1,𝑡

)]
,

𝑣DRL
2

(𝜋1, 𝜋2) = −𝑣DRL
1

(𝜋1, 𝜋2) .
By extending the proof of Theorem 13 in [23] to the TZMG case, we

can again show the asymptotic property of the DRL value estimator.

Theorem 3 (Efficiency of theDRL value estimator). Suppose
1 ≤ 𝑡 ≤ 𝑇, 1 ≤ 𝑘 ≤ 𝐾 , ∥𝑄̂−𝑘

1,𝑡
− 𝑄1,𝑡 ∥2 = 𝑜𝑝 (𝑛−𝛼1 ), ∥𝜇−𝑘𝑡 − 𝜇𝑡 ∥2 =

𝑜𝑝 (𝑛−𝛼2 ), where 𝛼1 > 0, 𝛼2 > 0, and 𝛼1 + 𝛼2 ≥ 1/2. Then,
√
𝑛(𝑣DRL

1
(𝜋1, 𝜋2) − 𝑣1 (𝜋1, 𝜋2))

𝑑−→ N(0, ΥEB),
√
𝑛(𝑣DRL

2
(𝜋1, 𝜋2) − 𝑣2 (𝜋1, 𝜋2))

𝑑−→ N(0, ΥEB),
where ΥEB is an efficiency bound in Theorem 1.

According to this result, the DRL value estimator is efficient un-

der mild assumptions, whereas the IS, MIS, DM, and DR estimators

may be inefficient.

4.3 Other Candidates of Value Estimators
In this study, we compare our exploitability estimators to the esti-

mators constructed by the IS, MIS, and DM value estimators. This

section summarizes these value estimators.

Importance Sampling Estimator: An IS estimator is repre-

sented as follows:

𝑣 IS
1
(𝜋1, 𝜋2) = ED

[
𝑇∑
𝑡=1

𝛾𝑡−1𝜌𝑡𝑟𝑡

]
, 𝑣 IS

2
(𝜋1, 𝜋2) = −𝑣 IS

1
(𝜋1, 𝜋2).

When the behavior policy profile is known, i.e., 𝜌𝑡 = 𝜌𝑡 , the IS

estimator is an unbiased and consistent estimator of 𝑣1 (𝜋1, 𝜋2) and
𝑣2 (𝜋1, 𝜋2). However, in general, the variance of the IS estimator

grows exponentially with respect to horizon 𝑇 [18].

Marginalized Importance Sampling Estimator: A MIS esti-

mator is represented as follows:

𝑣MIS

1
(𝜋1, 𝜋2) = ED

[
𝑇∑
𝑡=1

𝛾𝑡−1𝜇𝑡𝑟𝑡

]
, 𝑣MIS

2
(𝜋1, 𝜋2) = −𝑣MIS

1
(𝜋1, 𝜋2) .

The MIS estimator can be regarded as one of the IS-type estima-

tors. Although the MIS estimator addresses the curse of horizon by

exploiting the Markov decision process (MDP) structure, it is still

inefficient [23, 55].
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Algorithm 1 Off-Policy Exploitability Estimator with 𝑣DR
𝑖

Input: Historical data D
Input: A target policy profile 𝜋𝑒 = (𝜋𝑒

1
, 𝜋𝑒

2
)

Input: A policy classes Π1 and Π2

1: Take a 𝐾-fold random partition (𝐼𝑘 )𝐾𝑘=1 of observation indices

{1, · · · , 𝑛} such that the size of each fold 𝐼𝑘 is 𝑛/𝐾 .
2: Let D𝑘 = {D (𝑖) |𝑖 ∈ 𝐼𝑘 },D−𝑘 = {D (𝑖) |𝑖 ∉ 𝐼𝑘 }
3: Construct value estimators

𝑣𝑘
1
(𝜋1, 𝜋2) = ED𝑘

[
𝑇∑
𝑡=1

𝛾𝑡−1
(
𝜌−𝑘𝑡

(
𝑟𝑡 − 𝑄̂−𝑘

1,𝑡

)
+ 𝜌−𝑘𝑡−1𝑉

−𝑘
𝑡

)]
,

𝑣𝑘
2
(𝜋1, 𝜋2) = ED𝑘

[
𝑇∑
𝑡=1

𝛾𝑡−1
(
𝜌−𝑘𝑡

(
−𝑟𝑡 + 𝑄̂−𝑘

1,𝑡

)
− 𝜌−𝑘𝑡−1𝑉

−𝑘
𝑡

)]
,

where 𝑄̂−𝑘
1,𝑡

and 𝜌−𝑘𝑡 are the estimators of 𝑄1,𝑡 and 𝜌𝑡 , rerspec-

tively, constructed using D−𝑘 .
Output: max

𝜋1∈Π1

1

𝐾

∑𝐾
𝑘=1

𝑣𝑘
1
(𝜋1, 𝜋𝑒

2
) + max

𝜋2∈Π2

1

𝐾

∑𝐾
𝑘=1

𝑣𝑘
2
(𝜋𝑒

1
, 𝜋2)

Direct Method Estimator: A DM estimator is represented as

follows:

𝑣DM
1

(𝜋1, 𝜋2) = ED
[
E𝜋 [𝑄̂1,1 (𝑠1, 𝑎11, 𝑎

2

1
) |𝑠1]

]
,

𝑣DM
2

(𝜋1, 𝜋2) = −𝑣DM
1

(𝜋1, 𝜋2).

The DM estimator is not consistent if 𝑄̂1,1 is not consistent, and it

is not unbiased if 𝑄̂1,1 is not correct.

5 OFF-POLICY EXPLOITABILITY
ESTIMATORS

For OPE in TZMGs, we propose the following exploitability estima-

tors constructed by the DR and DRL value estimators, respectively:

𝑣
exp

DR
(𝜋𝑒

1
, 𝜋𝑒

2
) = max

𝜋1∈Π1

𝑣DR
1

(𝜋1, 𝜋𝑒2 ) + max

𝜋2∈Π2

𝑣DR
2

(𝜋𝑒
1
, 𝜋2), (2)

𝑣
exp

DRL
(𝜋𝑒

1
, 𝜋𝑒

2
) = max

𝜋1∈Π1

𝑣DRL
1

(𝜋1, 𝜋𝑒2 ) + max

𝜋2∈Π2

𝑣DRL
2

(𝜋𝑒
1
, 𝜋2) . (3)

Similarly, we define 𝑣
exp

IS
, 𝑣

exp

MIS
, and 𝑣

exp

DM
as the exploitability esti-

mators based on the IS, MIS, and DM value estimators, respectively.

We present the pseudocode of the proposed estimator with 𝑣DR
𝑖

in

Algorithm 1. The procedure of the exploitability estimator with

𝑣DRL
𝑖

is the same as Algorithm 1 except that 𝜌𝑡 is replaced with 𝜇𝑡 .

In this section, we demonstrate the exploitability estimation error

bounds of 𝑣
exp

DR
(𝜋𝑒

1
, 𝜋𝑒

2
) and 𝑣exp

DRL
(𝜋𝑒

1
, 𝜋𝑒

2
). To obtain theoretical im-

plications, we define the 𝜖-Hamming covering number𝑁𝐻 (𝜖,Π) un-
der theHamming distance𝐻𝑛 (𝜋𝑎, 𝜋𝑏 ) = 1

𝑛

∑𝑛
𝑖=1 1({

∨𝑇
𝑡=1 𝜋

𝑎
1,𝑡
(𝑠𝑖,𝑡 ) ≠

𝜋𝑏
1,𝑡
(𝑠𝑖,𝑡 )} ∨ {∨𝑇

𝑡=1 𝜋
𝑎
2,𝑡
(𝑠𝑖,𝑡 ) ≠ 𝜋𝑏

2,𝑡
(𝑠𝑖,𝑡 )}) and its entropy integral

𝜅 (Π) =
∫ ∞
0

√
log𝑁𝐻 (𝜖2,Π). In the proofs of the remaining theo-

rems, we make the following assumptions on the covering number

𝑁𝐻 (𝜖,Π):

Assumption 3. For any 0 < 𝜖 < 1, 𝑁𝐻 (𝜖,Π) ≤ 𝐷1 exp(𝐷2 ( 1𝜖 )
𝜔 )

for some constants 𝐷1, 𝐷2 > 0, 0 ≤ 𝜔 < 0.5.

Assumption 3 is precisely the same as the assumption in the

proof of [25, 60], and this is not strong assumption [60]. Further-

more, to establish uniform error bounds on 𝑄̂1,𝑡 and 𝜇𝑡 , in the

remaining theorems, we assume that 𝑄̂1,𝑡 and 𝜇𝑡 are computed

using the estimated TZMG model 𝑅, 𝑃𝑇 , 𝑝
𝜋𝑏

𝑡 . Under similar con-

sistency assumptions as in [25, 60], the estimation error bounds of

𝑣
exp

DR
and 𝑣

exp

DRL
are then obtained as follows:

Theorem 4 (Estimation error bound of 𝑣
exp

DR
(𝜋𝑒

1
, 𝜋𝑒

2
)). Let us

define𝜋𝑏,−𝑘
𝑙

(𝑎1
𝑙
, 𝑎2
𝑙
|𝑠𝑙 )=𝜋𝑏,−𝑘

1,𝑙
(𝑎1
𝑙
|𝑠𝑙 )𝜋𝑏,−𝑘

2,𝑙
(𝑎2
𝑙
|𝑠𝑙 ) and𝜋𝑏𝑙 (𝑎

1

𝑙
, 𝑎2
𝑙
|𝑠𝑙 )=

𝜋𝑏
1,𝑙
(𝑎1
𝑙
|𝑠𝑙 )𝜋𝑏

2,𝑙
(𝑎2
𝑙
|𝑠𝑙 ). Assume Assumptions 1, 2, 3, (4a) 1 ≤ 𝑡 ≤ 𝑇

and 𝑡 ≤ 𝑡 ′ ≤ 𝑇 ,

E

[(
𝑅−𝑘 (𝑠𝑡 ′, 𝑎1𝑡 ′, 𝑎

2

𝑡 ′)
𝑡 ′−1∏
𝑙=𝑡

𝑃−𝑘𝑇 (𝑠𝑙+1 |𝑠𝑙 , 𝑎1𝑙 , 𝑎
2

𝑙
)

−𝑅(𝑠𝑡 ′, 𝑎1𝑡 ′, 𝑎
2

𝑡 ′)
𝑡 ′−1∏
𝑙=𝑡

𝑃𝑇 (𝑠𝑙+1 |𝑠𝑙 , 𝑎1𝑙 , 𝑎
2

𝑙
)
)2 = 𝑜 (𝑛−2𝛼1 ),

and (4b) 1 ≤ 𝑡 ≤ 𝑇 ,

E

©­«
𝑡∏
𝑙=1

1

𝜋
𝑏,−𝑘
𝑙

(𝑎1
𝑙
, 𝑎2
𝑙
|𝑠𝑙 )

−
𝑡∏
𝑙=1

1

𝜋𝑏
𝑙
(𝑎1
𝑙
, 𝑎2
𝑙
|𝑠𝑙 )

ª®¬
2 = 𝑜 (𝑛−2𝛼2 ),

where 𝛼1 > 0, 𝛼2 > 0, and 𝛼1 + 𝛼2 ≥ 1/2. Then, for any 𝛿 > 0, there
exists 𝐶 > 0, 𝑁𝛿 > 0, such that with probability at least 1 − 2𝛿 and
for all 𝑛 ≥ 𝑁𝛿 :

|𝑣expΠ (𝜋𝑒
1
, 𝜋𝑒

2
) − 𝑣exp

DR
(𝜋𝑒

1
, 𝜋𝑒

2
) | ≤ 𝐶

(
𝜅 (Π) +

√
log(1/𝛿)

) √
Υ∗
DR

/𝑛,

where Υ∗
DR

= sup

𝜋 ∈Π
E

[(∑𝑇
𝑡=1 𝛾

𝑡−1 (
𝜌𝑡 (𝑟𝑡 −𝑄1,𝑡 ) + 𝜌𝑡−1𝑉1,𝑡

) )2]
.

Theorem 5 (Estimation error bound of 𝑣
exp

DRL
(𝜋𝑒

1
, 𝜋𝑒

2
)). As-

sume Assumptions 1, 2, 3, (4a), and (5a) 1 ≤ 𝑡 ≤ 𝑇 ,

E

©­«
∏𝑡
𝑡 ′=1 𝑃

−𝑘
𝑇

(𝑠𝑡 ′ |𝑠𝑡 ′−1, 𝑎1𝑡 ′−1, 𝑎
2

𝑡 ′−1)
𝑝−𝑘
𝑏,𝑡

(𝑠𝑡 , 𝑎1𝑡 , 𝑎2𝑡 )

−
∏𝑡
𝑡 ′=1 𝑃𝑇 (𝑠𝑡 ′ |𝑠𝑡 ′−1, 𝑎

1

𝑡 ′−1, 𝑎
2

𝑡 ′−1)
𝑝𝑏,𝑡 (𝑠𝑡 , 𝑎1𝑡 , 𝑎2𝑡 )

)
2 = 𝑜 (𝑛−2𝛼2 ),

where 𝛼1 > 0, 𝛼2 > 0, and 𝛼1 + 𝛼2 ≥ 1/2. Then, for any 𝛿 > 0, there
exists 𝐶 > 0, 𝑁𝛿 > 0, such that with probability at least 1 − 2𝛿 and
for all 𝑛 ≥ 𝑁𝛿 :

|𝑣expΠ (𝜋𝑒
1
, 𝜋𝑒

2
) − 𝑣exp

DRL
(𝜋𝑒

1
, 𝜋𝑒

2
) | ≤ 𝐶

(
𝜅 (Π) +

√
log(1/𝛿)

) √
Υ∗
DRL

/𝑛,

where Υ∗
DRL

= sup

𝜋 ∈Π
E

[(∑𝑇
𝑡=1 𝛾

𝑡−1 (
𝜇𝑡 (𝑟𝑡 −𝑄1,𝑡 ) + 𝜇𝑡−1𝑉1,𝑡

) )2]
.

Theorems 4 and 5 mean that 𝑣
exp

DR
and 𝑣

exp

DRL
are

√
𝑛-consistent

estimators for the true exploitability defined among Π. In partic-

ular, when Π = Ω1 × Ω2, the error between the estimated ex-

ploitability and the true exploitability 𝑣exp (𝜋𝑒
1
, 𝜋𝑒

2
) converges to

0 at a rate 𝑂𝑝 ( 1√
𝑛
). Because Υ∗

DR
= sup

𝜋 ∈Π
(ΥDR + 𝑣2

1
(𝜋1, 𝜋2)) and

Υ∗
DRL

= sup

𝜋1,𝜋2∈Π
(ΥEB +𝑣2

1
(𝜋1, 𝜋2)), it is necessary to use the value es-

timator with a small (asymptotic) variance to reduce the exploitabil-

ity estimation error. That is, the exploitability estimation error

would be small using the value estimator with a small asymptotic

variance. Therefore, from Theorems 2 and 3, using the efficient
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value estimator 𝑣
exp

DRL
would result in a small estimation error. Note

that we do not assume that the behavior policy profile is known in

Theorems 4 and 5. We sketch the proof of Theorem 4. The proof of

Theorem 5 is almost the same as Theorem 4.

Proof sketch of Theorem 4. First, we define the DR value estimator

with oracles 𝑄1,𝑡 and 𝜌𝑡 as follows:

𝑣DR
1

(𝜋𝑒
1
, 𝜋𝑒

2
) = ED

[
𝑇∑
𝑡=1

𝛾𝑡−1
(
𝜌𝑡

(
𝑟𝑡 −𝑄1,𝑡

)
+ 𝜌𝑡−1𝑉𝑡

) ]
,

𝑣DR
2

(𝜋𝑒
1
, 𝜋𝑒

2
) = −𝑣DR

1
(𝜋𝑒

1
, 𝜋𝑒

2
) .

Besides, we define the value difference between two policy profiles

𝜋𝛼 and 𝜋𝛽 in Π as follows:

Δ(𝜋𝛼 , 𝜋𝛽 ) = 𝑣1 (𝜋𝛼1 , 𝜋
𝛼
2
) − 𝑣1 (𝜋𝛽

1
, 𝜋
𝛽

2
),

Δ̂(𝜋𝛼 , 𝜋𝛽 ) = 𝑣DR
1

(𝜋𝛼
1
, 𝜋𝛼

2
) − 𝑣DR

1
(𝜋𝛽

1
, 𝜋
𝛽

2
),

Δ̃(𝜋𝛼 , 𝜋𝛽 ) = 𝑣DR
1

(𝜋𝛼
1
, 𝜋𝛼

2
) − 𝑣DR

1
(𝜋𝛽

1
, 𝜋
𝛽

2
).

We mainly show the uniform concentration of these difference

functions following the proof of [60].

Uniformconcentration of the difference of influence func-
tions: First, we prove that the influence difference function Δ̃(·, ·)
concentrates uniformly around its mean Δ(·, ·):

Lemma 1. Under Assumptions 1 and 3, for any 𝛿 > 0, with proba-
bility at least 1 − 2𝛿 ,

sup

𝜋𝛼 ,𝜋𝛽 ∈Π

���Δ̃(𝜋𝛼 , 𝜋𝛽 ) − Δ(𝜋𝛼 , 𝜋𝛽 )
���

≤ 𝑂 ©­«
(
𝜅 (Π) +

√
log

1

𝛿

) √
Υ∗
DR

𝑛

ª®¬ + 𝑜 ( 1

√
𝑛
) .

The proof of Lemma 1 is the extension of the concentration result

in [60] to the TZMG setting. The proof of this lemma is shown in

the full version of the paper [1].

Uniform concentration of the estimated value difference
function: Next, we prove that with high probability, the estimated

value difference function Δ̂(·, ·) concentrates around Δ̃(·, ·) uni-
formly at a rate 𝑜𝑝 ( 1√

𝑛
):

Lemma 2. Under Assumptions 1, 2, 3, (4a)-(4b):

sup

𝜋𝛼 ,𝜋𝛽 ∈Π

���Δ̂(𝜋𝛼 , 𝜋𝛽 ) − Δ̃(𝜋𝛼 , 𝜋𝛽 )
��� = 𝑜𝑝 ( 1

√
𝑛
) .

The proof of this lemma is shown in the full version of the paper

[1]. Here, we have:

sup

𝜋𝛼 ,𝜋𝛽 ∈Π

���Δ̂(𝜋𝛼 , 𝜋𝛽 ) − Δ(𝜋𝛼 , 𝜋𝛽 )
���

= sup

𝜋𝛼 ,𝜋𝛽 ∈Π

���Δ̂(𝜋𝛼 , 𝜋𝛽 )−Δ̃(𝜋𝛼 , 𝜋𝛽 )−Δ(𝜋𝛼 , 𝜋𝛽 )+Δ̃(𝜋𝛼 , 𝜋𝛽 )���
≤ sup

𝜋𝛼 ,𝜋𝛽 ∈Π

���Δ̂(𝜋𝛼 , 𝜋𝛽 ) − Δ̃(𝜋𝛼 , 𝜋𝛽 )
���

+ sup

𝜋𝛼 ,𝜋𝛽 ∈Π

���Δ̃(𝜋𝛼 , 𝜋𝛽 ) − Δ(𝜋𝛼 , 𝜋𝛽 )
��� .

Therefore, combining Lemmas 1 and 2, we can show the uniform

concentration of Δ̂(·, ·) on Δ(·, ·):

Lemma 3. Assume Assumptions 1, 2, 3, (4a)-(4b). Then, for any
𝛿 > 0, there exists 𝐶 > 0, 𝑁𝛿 > 0, such that with probability at least
1 − 2𝛿 and for all 𝑛 ≥ 𝑁𝛿 :

sup

𝜋𝛼 ,𝜋𝛽 ∈Π

���Δ̂(𝜋𝛼 , 𝜋𝛽 ) − Δ(𝜋𝛼 , 𝜋𝛽 )
���≤𝐶 (

𝜅 (Π)+
√
log(1/𝛿)

)√Υ∗
DR

𝑛
.

Estimation error boundof the exploitability estimator: Next,
we define the best response and the estimated best response as fol-

lows:

𝜋
†
1
= arg max

𝜋1∈Π1

𝑣1 (𝜋1, 𝜋𝑒2 ), 𝜋
†
2
= arg max

𝜋2∈Π2

𝑣2 (𝜋𝑒1 , 𝜋2),

𝜋
†
1
= arg max

𝜋1∈Π1

𝑣DR
1

(𝜋1, 𝜋𝑒2 ), 𝜋
†
2
= arg max

𝜋2∈Π2

𝑣DR
2

(𝜋𝑒
1
, 𝜋2).

Then, by some algebra, we have:

𝑣
exp

Π (𝜋𝑒
1
, 𝜋𝑒

2
) − 𝑣exp

DR
(𝜋𝑒

1
, 𝜋𝑒

2
)

≤ 3 sup

𝜋𝛼 ∈Π,𝜋𝛽 ∈Π
|Δ((𝜋𝛼

1
, 𝜋𝛼

2
), (𝜋𝛽

1
, 𝜋
𝛽

2
))−Δ̂((𝜋𝛼

1
, 𝜋𝛼

2
), (𝜋𝛽

1
, 𝜋
𝛽

2
)) |,

and

𝑣
exp

Π (𝜋𝑒
1
, 𝜋𝑒

2
) − 𝑣exp

DR
(𝜋𝑒

1
, 𝜋𝑒

2
)

≥−3 sup

𝜋𝛼 ∈Π,𝜋𝛽 ∈Π
|Δ((𝜋𝛼

1
, 𝜋𝛼

2
), (𝜋𝛽

1
, 𝜋
𝛽

2
))−Δ̂((𝜋𝛼

1
, 𝜋𝛼

2
), (𝜋𝛽

1
, 𝜋
𝛽

2
)) |.

Therefore, we have:

|𝑣expΠ (𝜋𝑒
1
, 𝜋𝑒

2
) − 𝑣exp

DR
(𝜋𝑒

1
, 𝜋𝑒

2
) |

≤ 3 sup

𝜋𝛼 ∈Π,𝜋𝛽 ∈Π
|Δ((𝜋𝛼

1
, 𝜋𝛼

2
), (𝜋𝛽

1
, 𝜋
𝛽

2
))−Δ̂((𝜋𝛼

1
, 𝜋𝛼

2
), (𝜋𝛽

1
, 𝜋
𝛽

2
)) |.

Then, from Lemma 3 and this equation, the statement is concluded.

6 BEST EVALUATION POLICY PROFILE
SELECTION

In this section, we consider the problem of selecting the best can-

didate policy profile from a given policy profile class, one of the

most practical applications of OPE. For given historical data D, our

goal is to select the best policy profile with the lowest exploitability

from the candidate policy profile class Π, i.e.,

(𝜋∗
1
, 𝜋∗

2
) = arg min

𝜋1,𝜋2∈Π1×Π2

𝑣
exp

Π (𝜋1, 𝜋2).

According to Equation (1), when Π1 = Ω1 and Π2 = Ω2, the policy

profile (𝜋∗
1
, 𝜋∗

2
) is a Nash equilibrium.

To this end, we propose methods based on the exploitability esti-

mators proposed in the previous section. Based on the exploitability

estimator 𝑣
exp

DR
, we select the policy profile that minimizes the esti-

mated exploitability as follows:

(𝜋DR
1
, 𝜋DR

2
) = arg min

𝜋1,𝜋2∈Π1×Π2

𝑣
exp

DR
(𝜋1, 𝜋2) .

From the definition of 𝑣
exp

DR
, we can rewrite the 𝜋DR

1
and 𝜋DR

2
, re-

spectively, as follows:

𝜋DR
1

= arg max

𝜋1∈Π1

min

𝜋2∈Π2

𝑣DR
1

(𝜋1, 𝜋2), (4)

𝜋DR
2

= arg max

𝜋2∈Π2

min

𝜋1∈Π1

𝑣DR
2

(𝜋1, 𝜋2). (5)
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Algorithm 2 Off-Policy Best Evaluation Policy Profile Selection

with 𝑣
exp

DR

Input: Historical data D
Input: A policy classes Π1 and Π2

1: Take a 𝐾-fold random partition (𝐼𝑘 )𝐾𝑘=1 of observation indices

{1, · · · , 𝑛} such that the size of each fold 𝐼𝑘 is 𝑛/𝐾 .
2: Let D𝑘 = {D (𝑖) |𝑖 ∈ 𝐼𝑘 },D−𝑘 = {D (𝑖) |𝑖 ∉ 𝐼𝑘 }.
3: Construct value estimators

𝑣𝑘
1
(𝜋1, 𝜋2) = ED𝑘

[
𝑇∑
𝑡=1

𝛾𝑡−1
(
𝜌−𝑘𝑡

(
𝑟𝑡 − 𝑄̂−𝑘

1,𝑡

)
+ 𝜌−𝑘𝑡−1𝑉

−𝑘
𝑡

)]
,

𝑣𝑘
2
(𝜋1, 𝜋2) = ED𝑘

[
𝑇∑
𝑡=1

𝛾𝑡−1
(
𝜌−𝑘𝑡

(
−𝑟𝑡 + 𝑄̂−𝑘

1,𝑡

)
− 𝜌−𝑘𝑡−1𝑉

−𝑘
𝑡

)]
,

where 𝑄̂−𝑘
1,𝑡

and 𝜌−𝑘𝑡 are the estimators of 𝑄1,𝑡 and 𝜌𝑡 , respec-

tively, constructed using D−𝑘 .
4: Obtain 𝜋1 and 𝜋2 by solving the following optimization prob-

lem:

𝜋1 = arg max

𝜋1∈Π1

min

𝜋2∈Π2

1

𝐾

𝐾∑
𝑘=1

𝑣𝑘
1
(𝜋1, 𝜋2),

𝜋2 = arg max

𝜋2∈Π2

min

𝜋1∈Π1

1

𝐾

𝐾∑
𝑘=1

𝑣𝑘
2
(𝜋1, 𝜋2).

Output: (𝜋1, 𝜋2)

Similarly, we define 𝜋 IS, 𝜋MIS
, 𝜋DM, and 𝜋DRL as the estimators

based on 𝑣
exp

IS
, 𝑣

exp

MIS
, 𝑣

exp

DM
, and 𝑣

exp

DRL
, respectively. We describe the

pseudocode of the proposed method with 𝑣
exp

DR
in Algorithm 2. The

procedure of the proposed method with 𝑣
exp

DRL
is the same as Algo-

rithm 2 except that 𝜌𝑡 is replaced with 𝜇𝑡 .

We can derive the exploitability bounds of 𝜋DR and 𝜋DRL simi-

larly as in the proofs of Theorems 4 and 5.

Theorem 6 (Exploitability bound of 𝜋DR). Assume Assump-
tions 1, 2, 3, (4a)-(4b). Then, for any 𝛿 > 0, there exists𝐶 > 0, 𝑁𝛿 > 0,
such that with probability at least 1 − 2𝛿 and for all 𝑛 ≥ 𝑁𝛿 :

𝑣exp (𝜋DR
1
, 𝜋DR

2
) − 𝑣exp (𝜋∗

1
, 𝜋∗

2
) ≤ 𝐶

(
𝜅 (Π) +

√
log(1/𝛿)

) √
Υ∗
DR

𝑛
.

Theorem 7 (Exploitability bound of 𝜋DRL). Assume Assump-
tions 1, 2, 3, (4a), and (5a). Then, for any 𝛿 > 0, there exists 𝐶 >

0, 𝑁𝛿 > 0, such that with probability at least 1 − 2𝛿 and for all
𝑛 ≥ 𝑁𝛿 :

𝑣exp (𝜋DRL
1

, 𝜋DRL
2

)−𝑣exp (𝜋∗
1
, 𝜋∗

2
) ≤𝐶

(
𝜅 (Π) +

√
log(1/𝛿)

) √
Υ∗
DRL

𝑛
.

These theorems mean that we can consistently select the true

lowest-exploitability policy profile 𝜋∗ using the proposed methods.

According to the minimax theorem, if Π1 = Ω1 and Π2 = Ω2, then

𝑣exp (𝜋∗
1
, 𝜋∗

2
) = 0. Therefore, in this case, the exploitability of the

selected policy profile converges asymptotically to 0. This means

that the selected policy profile converges asymptotically to a Nash

equilibrium when Π1 = Ω1 and Π2 = Ω2. We sketch the proof of

Theorem 6. The proof of Theorem 7 is almost the same as Theorem

6.

Proof sketch of Theorem 6. Let define:

B𝑖 (𝜋−𝑖 ) = arg max

𝜋 ′
𝑖
∈Ω𝑖

𝑣𝑖 (𝜋 ′𝑖 , 𝜋−𝑖 ), ˆB𝑖 (𝜋−𝑖 ) = arg max

𝜋𝑖 ∈Π𝑖

𝑣DR𝑖 (𝜋𝑖 , 𝜋−𝑖 ).

Besides, for simplicity, we write 𝜋DR
𝑖

as 𝜋𝑖 and 𝑣
DR

𝑖
as 𝑣𝑖 . From the

definitions of 𝜋∗
𝑖
and 𝜋𝑖 , we have:

𝑣1 ( ˆB1 (𝜋∗2 ), 𝜋
∗
2
) ≤ 𝑣1 (B1 (𝜋∗2 ), 𝜋

∗
2
),

𝑣1 (𝜋∗1 ,B2 (𝜋∗1 )) ≤ 𝑣1 (𝜋
∗
1
, ˆB2 (𝜋∗1 )),

𝑣1 (B1 (𝜋2), 𝜋2) ≤ 𝑣1 ( ˆB1 (𝜋2), 𝜋2) ≤ 𝑣1 ( ˆB1 (𝜋∗2 ), 𝜋
∗
2
),

𝑣1 (𝜋1,B2 (𝜋1)) ≥ 𝑣1 (𝜋1, ˆB2 (𝜋1)) ≥ 𝑣1 (𝜋∗1 , ˆB2 (𝜋∗1 )).
Therefore, the exploitability bound of 𝜋 is:

𝑣exp (𝜋1, 𝜋2) − 𝑣exp (𝜋∗1 , 𝜋
∗
2
)

= Δ((B1 (𝜋2), 𝜋2), (𝜋1,B2 (𝜋1))) − Δ̂((B1 (𝜋2), 𝜋2), (𝜋1,B2 (𝜋1)))
− Δ((B1 (𝜋∗2 ), 𝜋

∗
2
), (𝜋∗

1
,B2 (𝜋∗1 ))) + Δ̂((B1 (𝜋∗2 ), 𝜋

∗
2
), (𝜋∗

1
,B2 (𝜋∗1 )))

+𝑣1 (B1 (𝜋2), 𝜋2)−𝑣1 (𝜋1,B2 (𝜋1))−𝑣1 (B1 (𝜋∗2 ), 𝜋
∗
2
)+𝑣1 (𝜋∗1 ,B2 (𝜋∗1 ))

≤ Δ((B1 (𝜋2), 𝜋2), (𝜋1,B2 (𝜋1))) − Δ̂((B1 (𝜋2), 𝜋2), (𝜋1,B2 (𝜋1)))
− Δ((B1 (𝜋∗2 ), 𝜋

∗
2
), (𝜋∗

1
,B2 (𝜋∗1 ))) + Δ̂((B1 (𝜋∗2 ), 𝜋

∗
2
), (𝜋∗

1
,B2 (𝜋∗1 )))

+ Δ̂(( ˆB1 (𝜋∗2 ), 𝜋
∗
2
), (B1 (𝜋∗2 ), 𝜋

∗
2
)) − Δ(( ˆB1 (𝜋∗2 ), 𝜋

∗
2
), (B1 (𝜋∗2 ), 𝜋

∗
2
))

− Δ̂((𝜋∗
1
, ˆB2 (𝜋∗1 )), (𝜋

∗
1
,B2 (𝜋∗1 ))) + Δ((𝜋∗

1
, ˆB2 (𝜋∗1 )), (𝜋

∗
1
,B2 (𝜋∗1 )))

≤ 4 sup

𝜋𝛼 ∈Π,𝜋𝛽 ∈Π
|Δ((𝜋𝛼

1
, 𝜋𝛼

2
), (𝜋𝛽

1
, 𝜋
𝛽

2
)) − Δ̂((𝜋𝛼

1
, 𝜋𝛼

2
), (𝜋𝛽

1
, 𝜋
𝛽

2
)) |.

Then, from Lemma 3 and this equation, the statement is concluded.

Remark 1. In general, when the policy classes Π1 and Π2 are
complicated, it is not easy to solve the optimization problems in Equa-
tions (2)-(5). However, when we use the specific policy class such as
the kernel functions, we can estimate the exploitability efficiently by
a similar procedure as in [25]. Furthermore, if we use tabular poli-
cies and estimated TZMG model 𝑅, 𝑃𝑇 , and 𝑝𝜋

𝑏

𝑡 , we can solve the
optimization problems via linear programming.

7 EXPERIMENTS
We conduct experiments to analyze and evaluate the proposed

exploitability estimators and the policy profile selection methods.

We conduct our experiments in two environments: repeated biased

rock-paper-scissors (RBRPS) and Markov soccer [28].

In all the experiments, we first prepare a near optimal policy

profile 𝜋𝑑 using Minimax-Q learning [28], after which we construct

the behavior and target policy profiles using 𝜋𝑑 . We use an off-

policy temporal difference learning [49] to construct a Q-function

model, and we use a histogram estimator for 𝜇, as in Section 5.2

in [23]. In our experiments, we assume that the behavior policy

profile is known and fixed.

7.1 Environments
RBRPS is a simple TZMG where two players play an one-shot

biased rock-paper-scissors game [42] multiple times. We refer to a

game that is repeated once as RBRPS1 and a game that is repeated
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R P S

R 0 -80/3 80/3

P 80/3 0 -80/3

S -80/3 80/3 0

R P S

R 0 -25 50

P 25 0 -5

S -50 5 0
R P S

R 0 -1 1

P 1 0 -1

S -1 1 0
R P S

R 0 -50 5

P 50 0 -25

S -5 25 0

R P S

R 0 -5 25

P 5 0 -50

S -25 50 0

Step 1

Step 2

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

A

B

(b)(a)

Figure 1: (a) Payoff matrices and a state transition graph in repeated biased rock-paper-scissors. When the result at the first
step is a draw, the payoff matrix at the second step will be the gray one. When either player wins by rock/paper/scissors, the
payoff matrix at the next step will be the blue/red/green one. (b) An initial board in Markov soccer.

two times as RBRPS2. Note that RBRPS1 is precisely the same as

the conventional rock-paper-scissors game. Figure 1 (a) shows the

payoff matrices and the state transition graph of RBRPS2. In the

first step, the payoff matrix is the same as in the conventional rock-

paper-scissors game. Depending on the result of the one-shot game,

the next state and the payoff matrix transition. There are five states

in RBRPS2, and each state corresponds to each payoff matrix.

Markov soccer is a 1 vs 1 soccer game on a 4 × 5 grid , as shown

in Figure 1 (b). A and B denote players 1 and 2, respectively, and

the circle in the figure represents the ball. In each turn, each player

can move to one of the neighboring cells or stay in place, and the

actions of the two players are executed in random order. When a

player tries to move to the cell occupied by the other player, the

ball’s possession goes to the stationary player, and the positions

of both players remain unchanged. When the player with the ball

reaches the goal (right of cell 10 or 15 for A, left of cell 6 or 11 for

B), the game is over. At this time, the player receives a reward of +1,
and the opponent receives a reward of −1. The player’s positions
and the ball’s possession are initialized as shown in Figure 1 (b).

7.2 Exploitability Evaluation
In the first experiment, we compare the performance of 𝑣

exp

IS
, 𝑣

exp

MIS
,

𝑣
exp

DM
, 𝑣

exp

DR
, and 𝑣

exp

DRL
in RBRPS1 and RBRPS2. We define the behavior

policy profile as 𝜋𝑏
1
= 0.7𝜋𝑑

1
+ 0.3𝜋𝑟 and 𝜋𝑏

2
= 0.7𝜋𝑑

2
+ 0.3𝜋𝑝 , where

𝜋𝑟 is a deterministic policy that always chooses rock, and 𝜋𝑝 is one

that always chooses paper. Similarly, we define the target policy

profile as 𝜋𝑒
1
= 0.9𝜋𝑑

1
+ 0.1𝜋𝑟 and 𝜋𝑒

2
= 0.5𝜋𝑑

2
+ 0.5𝜋𝑝 . We define

the policy classes as Π1 = Ω1,Π2 = Ω2. We conduct 100 trials using

varying historical data sizes.

Tables 1 and 2 show the root-mean-squared error (RMSE) of each

exploitability estimator in RBRPS1 and RBRPS2, where bold font

indicates the best estimator in each case. For further details on the

results, see the full version of the paper [1]. We find that 𝑣
exp

DR
and

𝑣
exp

DRL
generally outperform the other estimators. Note that 𝑣

exp

DRL
has

no advantage over 𝑣
exp

DR
because the current state 𝑠𝑡 uniquely deter-

mines a trajectory. Because the exploitability evaluation requires

Table 1: Off-policy exploitability evaluation in RBRPS1:
RMSE.

𝑁 𝑣
exp

IS
𝑣
exp

MIS
𝑣
exp

DM
𝑣
exp

DR
𝑣
exp

DRL

250 0.085 0.232 4.8 × 10
−3 3.6 × 10−3 4.5 × 10

−3

500 0.065 0.230 6.9 × 10
−5 3.6 × 10−5 6.1 × 10

−5

1000 0.044 0.226 2.9 × 10
−9 1.1 × 10−9 2.5 × 10

−9

Table 2: Off-policy exploitability evaluation in RBRPS2:
RMSE.

𝑁 𝑣
exp

IS
𝑣
exp

MIS
𝑣
exp

DM
𝑣
exp

DR
𝑣
exp

DRL

250 36.6 11.3 7.07 8.98 6.52
500 21.7 11.2 6.04 6.10 5.56
1000 15.5 11.1 4.87 4.33 4.39

estimating best response value using historical data, the estimation

error of the discounted value must be small. Therefore, 𝑣
exp

DR
and

𝑣
exp

DRL
, with a small estimation error of the discounted value, would

perform better than the other estimators.

7.3 Best Evaluation Policy Profile Selection
In the second experiment, we analyze the performance of our pol-

icy profile selectors in RBRPS1, RBRPS2, and Markov soccer. We

compare the five policy profiles 𝜋 IS, 𝜋MIS
, 𝜋DM, 𝜋DR, and 𝜋DRL,

which are selected by each policy profile selector.

In the experiments on RBRPS1 and RBRPS2, we define the behav-

ior policy profile as 𝜋𝑏
1
= 0.5𝜋𝑑

1
+ 0.5𝜋𝑟 and 𝜋𝑏

2
= 0.5𝜋𝑑

2
+ 0.5𝜋𝑝 . We

define the candidate policy classes as Π1 = Ω1,Π2 = Ω2 in RBRPS1,

and set them to Π1 = {{𝛼1 (𝑠)𝜋𝑑
1
(𝑠) + (1 − 𝛼1 (𝑠))𝜋𝑟 (𝑠)}𝑠∈𝑆 |0 ≤

𝛼1 (𝑠) ≤ 1} and Π2 = {{𝛼2 (𝑠)𝜋𝑑
2
(𝑠) + (1 − 𝛼2 (𝑠))𝜋𝑝 (𝑠)}𝑠∈𝑆 |0 ≤

𝛼2 (𝑠) ≤ 1} in RBRPS2. Note that the number of policy parame-

ters is reduced to simplify minimax optimization in RBRPS2. We

conduct ten trials in each experiment with a historical data size of

250.
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Table 3: Best evaluation policy profile selection in RBRPS: Exploitability (and standard errors).

𝜋𝑏 𝜋 IS 𝜋MIS 𝜋DM 𝜋DR 𝜋DRL

RBRPS1 1.00 0.236(0.04) 0.738(0.05) 0.058(0.01) 0.036(0.01) 0.054(0.01)
RBRPS2 39.6 29.2(5.12) 37.4(4.33) 22.5(2.49) 20.5(0.66) 19.4(0.45)

Table 4: Best evaluation policy profile selection in Markov soccer: Win rate ×100 (and standard errors).

Player 2

𝜋𝑏
2

𝜋 IS
2

𝜋MIS

2
𝜋DM
2

𝜋DR
2

𝜋DRL
2

P
l
a
y
e
r
1

𝜋𝑏
1

48.9(0.52) 31.7(9.5) 54.2(10.7) 18.2(3.4) 22.6(3.6) 15.6(0.9)
𝜋 IS
1

81.2(3.0) 54.9(7.9) 74.9(8.0) 46.8(6.0) 53.5(5.3) 44.7(4.7)
𝜋MIS

1
88.1(1.6) 65.5(6.2) 79.7(6.4) 57.8(3.7) 63.2(5.0) 55.5(3.0)

𝜋DM
1

88.8(3.1) 65.5(6.7) 81.3(6.2) 58.3(6.0) 67.0(4.5) 56.7(4.9)
𝜋DR
1

89.0(3.0) 70.0(5.5) 82.0(5.6) 60.8(5.8) 66.2(6.0) 57.5(4.1)
𝜋DRL
1

92.2(1.5) 69.8(5.9) 82.5(5.8) 63.6(4.5) 71.0(5.1) 62.4(3.2)

Table 3 shows the exploitability of each selected policy profile

in RBRPS1 and RBRPS2. We find that all selected policies are better

than the behavior policy profile. Again, bold font indicates the best

policy profile in each case. Notably, 𝜋DR and 𝜋DRL outperform the

policy profiles obtained by the other estimators.

In the Markov soccer experiment, we define the behavior policy

profile as 𝜋𝑏
1
= 0.3𝜋𝑑

1
+0.7𝜋𝑢 and 𝜋𝑏

2
= 0.5𝜋𝑑

2
+0.5𝜋𝑢 , where 𝜋𝑢 is a

uniform random policy. We set the candidate policy classes to Π1 =

{𝛼1𝜋𝑑
1
+ (1− 𝛼1)𝜋𝑢 |0 ≤ 𝛼1 ≤ 1} and Π2 = {𝛼2𝜋𝑑

2
+ (1− 𝛼2)𝜋𝑢 |0 ≤

𝛼1 ≤ 1}. As before, we conduct ten trials in each experiment with

a historical data size of 250. Because it is difficult to calculate the

exploitability accurately in Markov soccer accurately, we compare

the selected policy’s winning rates against other policies. Here, we

approximate the winning rate using the rate of reaching the goal

in 10, 000 games. Note that player 1 has an advantage over player

2 because the possession of the ball always goes to player 1 at the

initial state.

Table 4 shows the winning rates of each selected policy in

Markov soccer. In this table, we show the winning rate of player

1. The winning rates of 𝜋DRL
1

and 𝜋DRL
2

are generally higher than

those of the other policies. Unlike the results in RBRPS, the pol-

icy profile selected using 𝑣
exp

DRL
is more robust and better than that

obtained using 𝑣
exp

DR
. These results suggest that we can select the

policy profile the lowest exploitability when using 𝑣
exp

DRL
.

8 RELATEDWORK
In the context of OPE, there are many previous studies focusing

on the theoretical properties of the value estimators, such as the IS

[16], MIS [55], DR [9, 13, 14, 18, 31, 41, 51], and DRL [21, 23] esti-

mators. In particular, the DRL estimator has the crucial advantage

of using Markov properties to avoid the curse of horizon. The main

difference between these studies and our study is that we propose

exploitability estimators for OPE in MARL.

There are some studies on inverse MARL that assume the sit-

uation where the historical data is obtained in multi-agent envi-

ronments [27, 38, 40, 54, 56, 59]. These studies differ from ours in

that they aim to restore the reward function from the historical

data. In contrast, our study uses the historical data to estimate the

exploitability of a given policy profile.

MARL in Markov games has been studied extensively in the

literature [3, 8, 17, 28, 29, 34, 57]. Most existing studies on MARL

focus on online policy learning. In contrast, our study focuses on

offline policy evaluation.

As with policy learning in Markov games, there is a large body

of literature on policy learning in extensive-form games [12, 15, 35,

43, 48, 62]. These studies focus on developing efficient method for

computing Nash equilibria in extensive-form games, such as coun-

terfactual regret minimization [62]. On the other hand, we focus

on policy evaluation in Markov games. Various works have investi-

gated policy evaluation in extensive-form games [4, 5, 10, 11, 20, 61].

While these studies have focused on online strategy evaluation with

known structure, our study focuses on offline estimating exploitabil-

ity without structural information.

There are several studies on the offline policy selection in bandit

problems or RL [2, 24–26, 50, 60]. Unlike these studies, we pro-

pose the policy selection methods in multi-agent settings. Various

studies on batch MARL [39, 58] also have considered the off-policy

data setting. The most significant difference between these studies

and our study is that our study’s main objective is to develop OPE

estimators in MARL. Furthermore, we consider the situation where

candidate policies belong to a restricted policy class. This has ad-

vantages in practical situations where only specific policies can be

implemented.

9 CONCLUSION
In this study, we proposed estimators for TZMGs. The proposed

estimators project the exploitability of a target policy profile from

historical data.We proved the exploitability estimation error bounds

for the proposed estimators. Besides, we proposed the methods for

selecting the best policy profile from a given policy profile class

based on our exploitability estimators. We proved the exploitability

bounds of the policy profiles selected by the proposed methods. In

future studies, we will explore the application of our exploitability

estimators in more general settings, such as large extensive-form

games.
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