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ABSTRACT

We consider exploration tasks in which an autonomous mobile
robot incrementally builds maps of initially unknown indoor envi-
ronments. In such tasks, the robot makes a sequence of decisions
on where to move next that, usually, are based on knowledge about
the observed parts of the environment. In this paper, we present
an approach that exploits a prediction of the geometric structure
of the unknown parts of an environment to improve exploration
performance. In particular, we leverage an existing method that
reconstructs the layout of an environment starting from a partial
grid map and that predicts the shape of partially observed rooms
on the basis of geometric features representing the regularities of
the indoor environment. Then, we originally employ the predicted
layout to estimate the amount of new area the robot would observe
from candidate locations in order to inform the selection of the
next best location and to early stop the exploration when no further
relevant area is expected to be discovered. Experimental activities
show that our approach is able to exploit the predicted layout of
partially observed rooms in order to speed up the exploration.
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1 INTRODUCTION

For autonomous mobile robots, exploration is a task that incremen-
tally builds maps of initially unknown environments [28]. Typically,
at each stage of the exploration process, a robot selects the next best
location (often on a frontier between known and unknown space in
the current map) according to an exploration strategy [8]. The robot
iteratively reaches the selected location, acquires new knowledge
on the environment, updates the map, and selects a new next best
location, until the environment is fully observed. Decisions made
by most exploration strategies are only informed by the knowl-
edge of the observed parts of the environment that are represented
by the current map [5, 8]. Structured indoor environments show
regularities and symmetries [18] that could be exploited to predict
what could be observed in unexplored parts of the environment
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Figure 1: An example application of the proposed method,
where the exploring robot has to choose between three can-
didate locations (blue dots) in a real-world cluttered map
(from [24]). Without any knowledge on the unexplored
parts of the environment (left) the robot selects the next
best location to reach on the basis of what is already rep-
resented in the map. For instance, the robot could select the
location that maximizes the amount of area ideally covered
with a perception (blue circles). (For visualization purposes,
we reported a shorter perception range of 2.5m.) Predicting
the shape of the unexplored parts of the environment and,
in particular, of the partially observed rooms (right) allows
the robot to make a more informed choice. For example, the
robot can infer that the two candidate locations on top can
provide little information about the environment. However,
predictions of rooms’ shapes could be inaccurate and lead
the robot to discard promising locations.

and, ultimately, to make better decisions when selecting the next
best locations to reach. However, such knowledge could be inaccu-
rate, in the sense that predictions about unexplored portions could
not mirror the configurations found in the actual environment.
While the use of prior inaccurate and incomplete knowledge that is
available before the exploration starts (e.g., thefl oor plan of an envi-
ronment) has been recently shown to provide advantages to robot
exploration [16, 21], the potential of using knowledge predicted on
the basis of the currently explored parts of the environment has
yet been assessed (to the best of our knowledge).

In this paper, we address the above issue by presenting a method
that exploits the on-line prediction of the geometric structure of
the unknown parts of an indoor environment to select the next
best location for an exploring mobile robot and to terminate the
exploration early, namely before all the area of the environment
has been actually perceived by the robot, if no further relevant area
is expected to be observed.
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More precisely, we consider a mobile robot that explores an
initially unknown indoor environment in order to build its 2D grid
map (Section 3.1). At each stage of the exploration process, we
reconstruct, from the current grid map, the layout of the observed
parts and we predict a (possibly inaccurate) layout of the rooms
of the environment that have been only partially observed. The
layout is an abstract geometrical representation in which rooms are
modeled as polygons, capturing their shape andfi Itering out noisy
data (e.g., misalignment of walls and small pieces of furniture) that
are present in grid maps [3, 13, 14, 19].

The shape of partially observed rooms is predicted following the
insight that different parts of the building share common features.
For example, rooms connected to the same corridor likely share
a common wall and have similar shapes, as it usually happens in
large schools and offices [20]. By retrieving such structural knowl-
edge from the current map, we provide an estimate of the shape of
partially observed rooms. For layout reconstruction and prediction,
we employ methods we previously developed [14][17] (summarized
in Section 3.2). The predicted layout is then used to evaluate the
amount of new area that the robot expects to perceive from candi-
date locations and to inform its decision when selecting where to
go next (Section 3.3 and Fig. 1). Moreover, if the exploration process
is expected to be nearly over, namely if the amount of unobserved
area in the predicted layout is below a threshold, the exploration is
stopped and the predicted layout is used to complete missing map
portions.

Experimental activities, mainly conducted in several simulated
large-scale indoor environments, show that our use of possibly
inaccurate predictions of partially observed rooms could effectively
speed up the exploration (Section 4). In general, the more the ex-
ploration progresses, the more knowledge about the structure of
the environment the robot acquires, the more the layout prediction
becomes accurate, and the more gain our proposed method provides
wrt classical exploration strategies that only consider knowledge
about the observed parts of the environment that are contained in
the grid map.

The main original contribution of this paper is thus a method that
employs the predicted layout of a partially observed environment
to speed up the exploration. We explicitly note that this paper deals
with a problem different from the one we addressed in a recent
paper [16], where the robot is assumed to have knowledge of indoor
environments (likefl oor plans and footprints) in advance, before
starting the exploration. In this paper, instead, we assume to have
zero initial knowledge and we predict, from the current map, the
shape of partially observed rooms on-line, at each stage of the
exploration process.

2 RELATED WORK

In several applications, a robot (or a multirobot system) is placed
in an initially unknown environment and needs to acquire rele-
vant knowledge by incrementally covering the free space of the
entire environment with its sensors. This task is called exploration.
Exploration approaches could be grouped in two main families.
Frontier-based exploration approaches move the robot to the ge-
ometrical boundaries between known and unknown portions of
environments [31]. Information-based exploration approaches move
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the robot to the most informative locations, according to some in-
formation measure (e.g., [27]). This paper focuses on frontier-based
approaches, as they usually do not assume to know in advance all
the locations the robot can possibly reach and thus better deal with
the task we consider, that of incrementally building a map of the
explored environment.

In frontier-based approaches, robots usually choose the next
best frontier to visit according to on-line greedy exploration strate-
gies [30]. For instance, the method in [8] evaluates each candidate
frontier considering both its distance from the robot (closest fron-
tiers are preferred) and the expected amount of information obtain-
able from the frontier (most informative frontiers are preferred).
The two criteria are then combined in an ad hoc utility function.
A similar method is reported in [29]. Other approaches, like [2]
and [5], present more principled methods, based on multi-objective
optimization, to aggregate the criteria that are used to evaluate
frontiers. A complete survey is beyond the scope of this paper and
can be found in [11]. Differently from ours, all these methods eval-
uate candidate frontiers only according to the knowledge of the
parts of the environment the robot has directly observed.

The use of other forms of knowledge to integrate the information
from the current map has been investigated with the aim of improv-
ing the performance of exploration. In [22], the possible aspect of
the unexplored parts of an environment is predicted by exploiting a
database of previously mapped environments, in order to complete
the partial map obtained by the robot. A similar approach, but ex-
tended to multirobot settings, is that of [26]. Unlike our approach,
both [22] and [26] use knowledge relative to environments different
from the one where the robot operates. Hence, while the above
methods rely on the presence of libraries of environments observed
in the past, our approach can be applied also when such data are
not available.

The authors of [21] propose an exploration approach that, know-
ing a representation of the environment in terms of a topo-metric
graph,fi nds an efficient exploration path. Similarly to ours, this
method exploits the knowledge of the same environment in which
the robot operates. However, in [21] (and in [16] mentioned before),
the robot is provided with prior knowledge about the environment,
while in the approach presented in this paper the robot updates
and exploits the knowledge as the exploration progresses.

A method that shares some similarities with our approach is
that of [7], which predicts the structure of an unexplored region
of an environment to improve SLAM performance. The method
reconstructs the neighborhood of a frontier by identifying similar
structures in the known map. The prediction of [7] considers the
local similarity between different parts of the same environment,
while our approach considers more abstract global features like the
fact that rooms aligned along the same corridor share the same
wall.

Another recent method that is similar to ours is that of [25],
where a variational autoencoder (VAE) is employed to predict un-
known regions of an environment starting from a partial map. The
prediction is then used to compute the expected information gain
for candidate locations. The good performance of this approach
is related to the fact that the authors consider buildings that are
very similar to each other. The generalization of the approach to
other environments requires to use more diversified data. Moreover,
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the method in [25] considers empty environments (a VAE could
be trained with real-world maps with clutter and furniture, but
this would require a significantly larger training set). Our method,
instead, can be used with any map (in which the walls can be
identified) acquired in any environment.

Wefi nally mention some methods that infer the presence and
location of specific elements in the unknown parts of environments,
like emergency exits [6], labels of unseen rooms [23], and portions
of environments represented as graphs [4][15]. These methods do
not provide the geometrical information we exploit for speeding
up exploration.

3 OUR APPROACH

In this section, we describe the exploration process we consider (Sec-
tion 3.1), then we detail the methods we use for reconstructing and
predicting the layout starting from a partial grid map (Section 3.2)
and for exploiting the predicted layout to estimate the amount of
information the robot can acquire from a frontier (Section 3.3). Fi-
nally, we illustrate the use of the predicted layout to implement an
early stopping criterion for the exploration (Section 3.4).

3.1 Frontier-based exploration overview

In frontier-based exploration, a robot incrementally perceives an
environment E by iteratively reaching frontiers at the boundaries
between known and unknown space. The knowledge acquired
about the environment is collected in a map M. In this paper, we
consider a robot equipped with a 2D laser range scanner that moves
in an inijtially unknown planar indoor environment E. To simplify
our illustration, we assume that the laser range scanner has afield
of view of 360°, so we can just consider the location of the robot,
ignoring its orientation. We will remove this assumption in Sec-
tion 4.1. The robot builds a grid map M obtained with a SLAM
algorithm, where each cell of M can be known (either free or obsta-
cle) or unknown. In our experiments, we use GMapping [9] and we
threshold the occupancy grid it returns so that each cell is labeled
as free, obstacle, or unknown. Note that our method only requires
the availability of an abstract grid map M, disregarding how it has
been obtained. We tested our approach with other SLAM methods
(Karto! and Hector SLAM? [12]) observing no significant change
in robot’s behavior (results are not reported here).

The robot performs the following steps until no frontier is left
and M represents all the free space of E reachable from the initial
location of the robot:

(i) it initializes the map M with a perception from its initial
location;

(ii) it extracts from M a list of frontiers and, for each frontier, it

selects a candidate location p;

(iii) it selects the next best location location p* using an explo-

ration strategy;

(iv) it plans and follows a path towards p*, integrating the per-

ceptions acquired along the way into the map M; and

(v) once it reaches p*, it restarts from (ii).

A frontier is a chain (i.e., an ordered set) of adjacent (with a
common edge) free cells such that each one of them is adjacent to

Thttp://www.ros.org/wiki/karto
http://www.ros.org/wiki/hector_slam
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at least an unknown cell. The middle cell of a frontier is a candidate
location p. If the chain has an even number of cells, ties are broken
randomly. Given a map M, the set of candidate locations is denoted
by C. Candidate locations are ranked according to an utility func-
tion u(p) that aggregates distance d(p) and information gain i(p),
similarly to [5][8].

The distance utility value d(p) is used to prefer closest candidate
locations that minimize the travel cost for the robot to reach them:

d(p) _ Dmax;D(p’pR)’ 1)
max
where D(p,pRr) is the Euclidean distance between the current loca-
tion of the robot pr and the candidate location p and Dpay is the
maximum D(p,pRr) over all the candidate locations p € C.

The information gain utility value i(p) represents the new knowl-
edge that the robot expects to acquire from visiting a given candi-
date location:

I(p)

i(p) =7 @)

where I(p) is the estimate of the amount of new (unexplored) area
visible from p (calculated as described in Section 3.3) and Inay is
the maximum value of I(p) over all the candidate locations p € C.

To select locations that are both close and informative, a tradeoff
is computed by linearly combining the distance and utility values
using a parameter « € [0, 1]:

u(p) =a-d(p)+(1-a)-i(p).

The next best candidate location p* is selected as follows:

©)

p* = argmaxu(p). (4)

peC

Given a value of a, p* represents the best balance between closeness
and expected new area visible and, as such, is considered the best
greedy choice for efficient exploration of the environment [1].

Each candidate location p € C lies on a frontier and, since we
consider indoor environments, it is in some partially observed room
(defined below). Our method infers the possible geometrical shape
(layout) of partially observed rooms, on the basis of structural fea-
tures of the observed parts of the environment. In particular, given
the current grid map M, we retrieve its layout £ by identifying the
rooms and labeling them as fully or partially observed. While the
layout of fully observed rooms is known, that of partially observed
rooms is predicted (Section 3.2). Then, the predicted layout of a
partially observed room containing p is used to provide an informed
value for I(p) in equation (2) (Section 3.3).

3.2 Predicting the layout of partially observed
rooms

To predict the shape of partially observed rooms, we use the en-
vironment layout £ obtained from a partial grid map M of the
environment using the method presented in [14][17]. (In principle,
any other method that provides a geometrical estimate of the shape
of partially observed environments could be used.) We provide
here a summary of the algorithm using a running example (Fig. 2).
Please refer to the original papers for full details. The main idea of
the method is to identify the shape of fully observed parts of the
environments and to use such structural knowledge to predict the
possible shape of partially observed rooms.
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(a) Partial grid map. (b) Representative lines

faces.

g7

and (c) Layout (solid color polygons) (d)Predicted layout (dashed color
of fully observed rooms.

polygons) of partial rooms.

Figure 2: An example run of the approach we use for retrieving the layout starting from a partial grid map. In the map of
Fig. 2a 95% of the area has been explored. In Fig. 2d, the layout of partially observed rooms is dashed and the layout of fully
observed rooms is solid. The map known to the robot is superimposed with gray lines. The same color code is used for layouts

L in the rest of the paper.

The method starts from a partial grid map M of the environment,
like that of Fig. 2a. From M, a set of edges is extracted and used
to identify walls. Each wall is then associated to a representative
line, which indicates the direction of collinear (along the same
direction), but possibly spatially separated, walls. Representative
lines, reported in red in Fig. 2b, segment the environment into
a set of faces. (Although faces are rectangular in the example of
Fig. 2b, they are in general polygonal because representative lines
are not constrained to intersect orthogonally, for example when
the environment has diagonal walls.) Faces can be of three types:
fully observed, if their area has been completely observed in M,
partially observed, if their area has been partially observed in M,
and unknown, if no point of their area has been observed in M.

Then, the faces are clustered in groups, each one representing
a room. Intuitively, two adjacent faces are clustered together if
their common edges does not correspond to any observed wall. The
polygon representing the layout of a room is obtained by merging
the faces of the group corresponding to the room. Rooms are distin-
guished in fully observed rooms, only composed of fully observed
faces, and partially observed rooms, also composed of partially ob-
served or unknown faces. An example of fully observed rooms
identified from the partial grid map of Fig. 2a is in Fig. 2c.

Finally, the estimated layout of partially observed rooms is com-
puted by using information from representative lines, faces, and
fully observed rooms. The idea is tofi nd out the set of faces (not
belonging to any room) that will form a room whose shape is maxi-
mally “consistent” with the structure of the rest of the environment.
For example, if one side of a room is bounded by a corridor, the oppo-
site side of that room likely shares a wall with adjacent rooms along
the same corridor. Practically, starting from a partially observed
face belonging to a partially observed room r containing a frontier,
all the sets of adjacent faces (fully observed, partially observed, and
unknown, which have been not clustered in any room) that can
complete r (e.g., that are connected) are iteratively considered. The
set of faces that maximizes a function that measures the expected
quality of the predicted shape (according to its consistency wrt to
fully observed rooms, to its convexity, and to the number of its
walls) is then found and considered as the most likely shape for r.
An example of the predicted layout of partially observed rooms is
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in Fig 2d. The retrieved layout L = {r1,ry, ...} is eventually com-
posed of the layout of both fully observed and partially observed
rooms. While the layout of fully observed rooms comes from direct
observations made by the robot and, consequently, is accurate, the
layout of partially observed rooms can be inaccurate and rather
different from the shape of the actual environment.

A particular situation is encountered when a partially observed
room is at the border of the map M. In this case, one or more sides of
the room are not bounded by any representative line derived from
M and the layout of the room cannot be predicted, as we cannot
exploit any structural knowledge for this end. When this happens,
we label the room as containing an open frontier and we highlight
the corresponding edges in red, as in thefi rst three examples of
Fig. 5 (discussed later). This particular situation usually occurs at
early stages of exploration, where only a limited portion of the
environment has been explored.

3.3 Expected information gain I(p)

In this paper, we originally exploit the retrieved layout £ to cal-
culate I(p) in equation (2), namely to estimate the amount of un-
explored area visible from a candidate location p (see Fig. 3a). The
mainstream approaches for calculating I(p) measure the maximum
visible area from p given the footprint of the robot’s laser range
scanner (as done, e.g., in [5, 8]) or the length of the frontier on
which p lies (as partially done, e.g., in [29]). These approaches are
designed for settings where no knowledge about the unobserved
parts of the environment is taken into account. Fig. 3b shows an
example in which I(p) is calculated as the area of the maximum
number of unknown cells that can be perceived by the laser range
scanner from p. This estimate is optimistic and implicitly assumes
that the area beyond the frontier on which p is located is free.

In our approach, we calculate I(p) as follows. Given a map M
and its retrieved layout £, the walls identified in L (corresponding
to the edges of the polygons representing the rooms) are projected
on M as obstacles (occupied cells), thus obtaining a new map M<.
Given a cell p € M, wefi nd the corresponding cell p£ € MZ£. Then,
for each unknown cell ¢ € M that is within the footprint of the laser
range scanner when the robot is in p, wefi nd the corresponding
¢ e ML, The cell ¢ contributes to calculating the expected area
I(p) visible from p when both the following conditions are satisfied:
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o L is free,
e ¢£ is visible from pL in M<, namely the line segment con-
necting their centers does not touch any obstacle cell in
ML
Eventually, given the cells ¢ that satisfy the above conditions, I(p)
is calculated by summing the areas of those cells. Fig. 3d shows an
example in which the method just described is used to calculate
I(p). It is interesting to contrast it with Fig. 3b. Although it is a
sort of informed variant of the classical frontier-based exploration
approaches, the proposed method provides benefits to the perfor-
mance of exploration also when the retrieved layout £ and the grid
map M £ in which it is embedded are inaccurate, as we show in
the next section. In case of open frontiers, where the information
about £ cannot be used to estimate I(p), the maximum area that
can be perceived from p is considered (as in [5, 8]).

3.4 Early stopping of exploration

Exploration missions are usually performed until the entire area of
the environment is mapped by the robot. As a consequence, clas-
sical exploration techniques as [5, 8] often result in the following
behavior: at the beginning of exploration, the robot quickly incre-
ments its map M by visiting close locations with high information
gain. However, it usually leaves behind small scattered frontiers
across different rooms, as in the example of Fig. 2. Hence, in the
final stages of the exploration process (e.g., at 90% or 95% of the total
area explored), the robot has to reach all such remaining frontiers
and perceive the environment from there. These residual frontiers
are particularly costly to visit, being usually in rooms far away
from each other, and often result in small information gains, as they
typically represent small gaps like corners.

The retrieved layout £ can be used to estimate the missing parts
of partially observed rooms and to automaticallyfi 1l the small gaps
without actually observing them. Considering the example of Fig. 2,
our method is able to provide a correct estimate of the shape of the

T — -

(b) I(p) without using L.

— T e

(a) Candidate location p
(blue dot).

T = -

(d) I(p) using L.

- e [

(c) Layout L.

Figure 3: An example of how I(p) is calculated without (Fig.
3b) and with (Fig. 3d) the knowledge of L. Fig. 3¢ shows the
representative line (red, dashed) of the wall used to predict
the layout (red, solid) of the partially observed room in L.
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area visible from all of the remaining frontiers. In order to exploit
this feature, we introduce a criterion for stopping the exploration
early, which is based on L. More precisely, Early Stopping (ES) ends
the exploration if the estimated unexplored area visible from all the
current candidate locations in C is less than a threshold. When ES
is triggered, we consider the exploration complete and discard the
remaining frontiers, as we can easily predict the area that can be
perceived from them.

4 EXPERIMENTAL EVALUATION

In this section, we evaluate the proposed approach in exploring
large-scale simulated buildings. Note that, we resort to simulations
to perform repeated experiments in different environments, as
publicly available maps from repositories do not account for the
online decisions made by the exploration strategies.

4.1 Experimental setting

We implemented our method in ROS, using the ROS navigation
stack. Explorations are performed in 10 large-scale buildings (from
1000 m? to 3500 m?) simulated in Stage®, using a simulated robot
equipped with a laser range scanner with afi eld of view of 180° and
arange of 6 m. To address afi eld of view that is narrower than 360°,
as assumed in Section 3, we consider that the robot, at a frontier
location, heads towards the unknown space along the perpendicular
to the tangent to the frontier, in order to maximize the perceived
area. Environments are selected as examples of complex real-world
office and school environments with more than 15 rooms. They have
polygonal structures, like the vast majority of indoor environments,
and are large-scale, to have meaningful predictions.

We perform, for each environment, 10 runs using our method
for estimating the information gain I(p) (“with £”) and using a
baseline method similar to those of [5, 8], which is representative
of methods currently most used in the literature (“no £”), in which
the information gain I(p) is calculated as in Fig. 3b. We measure,
as exploration progresses, the percentage of explored area (exp),
namely the percentage of free area of E mapped in M, as a function
of the time. We compute mean and standard deviation (over all the
runs) of the time required to perform a full exploration for each
environment (namely time at exp = 100%). The starting locations of
the robot are realistically placed at the entrances of the buildings
and arefi xed for all the runs. The maps obtained in different runs are
slightly different from each other, because of the noise introduced
in the simulation (translational error up to 0.01 m/m and rotational
error up to 2°/rad), resulting in different frontiers being detected
and, ultimately, in different choices being made by the robot.

The layout £ is retrieved on-line during the exploration mission
starting from the grid map M provided by the ROS implementation
of GMapping®. At the beginning of the exploration, as only few
rooms have been fully observed, the predicted layout of partially ob-
served rooms could be highly inaccurate, and several open frontiers
could be detected. Note that, differently from methods like [25], we
do not require any prior data to learn a model. With the progression
of the exploration, however, £ becomes more stable and accurate
(confirming thefi ndings of [17]). The computation of £ and of I(p),

3http://wiki.ros.org/stage
4http://wiki.ros.org/gmapping
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no £ with £ with £ +ES gain
t o t o t o with L with £L+ES
3440 313 3090 316 3003 321 10.1% 12.8%

Table 1: Exploration results over 10 runs in 10 simulated
large-scale buildings. ¢ (in s) is the average time and o is
the corresponding standard deviation. “no £” is the baseline
method, “with £” is our proposed method, and “with £ + ES”
is the variant of our method with ES. The percentage gain of
our method is reported in the last two columns.

for all the candidate locations on the frontiers, takes few seconds at
early stages of exploration and less than 10 s atfi nal stages, and is
performed by a dedicated ROS node so that an updated version of
L is always available without introducing delays. After performing
several tests, we set @ = 0.5 in (3) to equally balance distance and
information gain and guarantee a good overall performance in ex-
ploration. With & ~ 1, the robot tends to select the closest frontier,
without considering the information gain and, ultimately, slowing
down the exploration process by choosing frontiers with a limited
information gain. With a = 0, the robot tends to select the most
informative frontier even if it is far from its current position. This
results in an exploration pattern where the robot could travel to the
extremities of the environment to reach frontiers with a high i(p),
ultimately slowing down the exploration process and increasing the
travel cost. The balance between the two components of equation
(3) obtained with values of a around 0.5 produces a more stable
and more efficient performance across different environments.

Exploration runs are concluded when no frontier is left and the
set of candidate locations C is empty. However, when we employ the
ES variant of Section 3.4 (“with £ + ES”), the exploration is stopped
when the estimated unexplored area visible from all the current
candidate locations in C is less than 1 m?2. We set this threshold to a
very conservative value. If increased, the exploration process could
terminate earlier, at the cost of possible inaccuracies in estimating
the unobserved parts of the environment. This issue is discussed
later. Although we do not perform any quantitative evaluation of the
quality of the maps obtained in our experiments, visual inspection
does not identify any relevant imperfection.

4.2 Experimental results

Table 1 reports the average time required for performing 10 com-
plete exploration runs in all the 10 large-scale environments. The
time includes retrieving the layout £ and computing I(p) for all
candidate locations at each stage. The use of £ for estimating the
information gain brings a speedup of the total exploration time of
approximatively 10%. More detailed results on the average time
(over 10 runs) required to completely explore (exp = 100%) each
one of the 10 environments are reported in Fig. 4. For all 10 envi-
ronments, our method results in a speedup of exploration. The use
of ES further decreases the time for almost all of the environments.

We now look at the progression of the exploration during one
run performed in the environment of Fig. 2. Fig. 5 reports the
partial grid maps and the corresponding retrieved layouts L at
different exploration stages. As expected, £ becomes more stable
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Figure 4: Average exploration time (and standard deviation)
for all the 10 environments (on the x axis) with exp = 100%.

and accurate as the exploration progresses. Reliable estimates of
I(p) can be obtained at exp = 60% and even at exp = 20%. Fig. 6
reports the explored area (averaged over 10 runs) as a function
of time. Our method performs similarly to the baseline until the
explored area is around 90%, when we are able to provide a better
estimate of I(p) and, consequently, to speed up thefi nal part of the
exploration. For this example, “with £” has a gain of 19.1% over
“no L7, while “with £ + ES” has a gain of 30.5%.

Fig. 7 shows an example of a reconstructed layout from a grid
map with exp = 80%, where most of the partially observed rooms
are correctly predicted, despite the fact that relatively large portions
of the building are still unobserved. In settings like this one, our
proposed method could stop the exploration early, because the
reconstructed layout correctly represents the actual environment
and ES can be activated. Fig. 8 shows a partial map obtained during
the early stages of an exploration run. It can be noticed how the
layout of the rooms is a rough estimate of the correct one, as little
information about the shape of the rooms is known at this point.
Nevertheless, even in this case, our method can provide a reasonable
estimate for I(p) for all frontiers.

Further results, including some in more complex environments,
are reported in the video available at: https://amigoni.faculty.polimi.
it/research/ AAMAS2021-exploration-through-prediction.html.

4.3 Discussion

An interesting, although intuitively expected, result of our exper-
imental analysis is that the availability of a more accurate I(p),
using the predicted layout £, produces a speedup in exploration.
This fact is remarkably evident at the end of the exploration runs,
when £ is more accurate. Indeed, the speedup obtained by our
method is not uniformly distributed over the entire exploration
process (see Fig. 6). Our method performs similarly to the baseline
method until, approximatively, the 90% of the total area has been
explored. From that moment on, it performs consistently better
than the baseline method, eventually resulting in thefi nal gain
of Table 1. On the one hand, the use of an inaccurate prediction
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Figure 5: Example of the predicted layout £ built from partial grid maps M obtained at different exploration stages of an
environment. The layout obtained in the environment with exp = 95% is in Fig. 2.
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Figure 6: The progression of the explored area (averaged
over runs) as a function of time for the environment of Fig. 5.
Early stopping (ES) time is indicated by a dashed vertical
line. For each method, the solid line in the middle is the av-
erage value, while the other two lines are the standard devi-
ation.

about the environment at the early stages of exploration does not
jeopardize the gain obtained at the end with an accurate prediction.
On the other hand, the use of an inaccurate L for estimating the
information gain produces results similar to those obtained with
the mainstream approaches that consider I(p) equal to the footprint
of the laser range scanner. When the predicted layout £ becomes
enough accurate, the proposed method starts to speed up and, in
some cases, the robot does not need to explore until all area of the
environment has been actually perceived, because of ES.

We use a very conservative threshold (1 m?) for the ES criterion,
with the aim of avoiding to stop the exploration too early when
potentially interesting frontiers could still be present and, conse-
quently, of completing the map with an accurate prediction. In fact,

842

ll
‘4.L]gJ_, — -

N\

(a) Partial grid map. (b) Reconstructed layout.

Figure 7: An example of reconstructed layout £ obtained at
exp = 80%. In this case, the exploration could be considered
complete.
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(a) Partial metric map. (b) Predicted layout.

Figure 8: An example of a predicted layout £ obtained with
exp = 30%. Despite the fact that only a limited portion of the
building is known at this point, the layout £ can provide a
good estimate of I(p).

ES is triggered in 7 of the 10 environments we consider: in 3 environ-
ments its effects are negligible, while in the other 4 environments it
has a significant impact on exploration performance. In these latter
environments, ES is activated when the 99% of the area is explored
(on average) and provides a remarkable gain in terms of exploration
time of 20% (on average). However, observing the runs, we note
that £ reliably represents the layout of partially observed rooms
when exp is 80 — 90%. Setting ES to stop exploration at exp = 95%,
we successfully explore our buildings with only minor inaccuracies
in £ and an average gain of 38% in exploration time. Setting ES
to terminate at exp = 90% results in an impressive average gain
of 50% in exploration time and in missing one room (which is left
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unexplored because not included in £) for each environment, on
average. A more aggressive ES criterion that discards candidate
locations with low estimated I(p) (according to £) could poten-
tially provide higher gains in exploration time at the risk (related
to the accuracy of L) of not exploring some relevant frontiers. It
is intriguing that, while manual exploration stops when the map
is “good enough” for the human operator, automated exploration
stops when no frontier is left. In this sense, a criterion for ES should
stop exploration when the map quality is adequate for the robot’s
tasks.

Finally, our approach can be reliably applied to partial grid maps
acquired in real environments. An example of I(p) computed in
a map obtained by a real robot (from [24]) is shown in the initial
example of Fig. 1. The process of layout reconstructionfi lters out
the clutter and provides a good estimate of the missing parts of
the rooms, for all the three frontiers of the example. Similar results
have been obtained on maps from [10] (see also results of [17]).
In principle, our approach could be applied to irregularly-shaped
environments (e.g., with diagonal walls), as it does not assume a
Manhattan world, and could also be used in presence of nested
rooms. Moreover, the information gain I(p) could be computed
effectively even in maps whose reconstructed layout £ is inaccurate
due to under- or over-segmentation of rooms, because the overall
shape of the environment provided by £ is generally accurate.

5 CONCLUSIONS

In this paper, we have presented a method that shortens the time
required by a robot for exploring an initially unknown indoor envi-
ronment by selecting the next locations according to the predicted
layout of the partially observed rooms. Experimental results show
that our method outperforms state-of-the-art exploration strategies,
similar to those of [5, 8], especially when the predicted layout is
accurate. The use of an Early Stopping (ES) criterion, which ends
exploration when only uninteresting frontiers are left, could further
improve performance.

In addition to devising a more aggressive ES criterion as dis-
cussed in the previous section, future work will study a dynamic
switch from a classical exploration strategy to our method when
the layout £ becomes enough accurate. Moreover, combining prior
knowledge (as in [16, 21]) and layout prediction could be inves-
tigated, especially in exploring environments for which previous
partial maps are available. Finally, experiments with real robots
will further assess the improvement provided by our approach to
the exploration process.
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