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ABSTRACT

Online social networks fail to support users to adequately share co-

owned content, which leads to privacy violations. Scholars proposed

collaborative mechanisms to support users, but they did not satisfy

one or more requirements needed according to empirical evidence

in this domain, such as explainability, role-agnosticism, adaptability,

and being utility- and value-driven. We present ELVIRA, an agent

that supports multiuser privacy, whose design meets all these re-

quirements. By considering the sharing preferences and the moral

values of users, ELVIRA identifies the optimal sharing policy. Fur-

thermore, ELVIRA justifies the optimality of the solution through

explanations based on argumentation. We prove via simulations

that ELVIRA provides solutions with the best trade-off between

individual utility and value adherence. We also show through a

user study that ELVIRA suggests solutions that are more acceptable

than existing approaches and that its explanations are also more

satisfactory.
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1 INTRODUCTION

Privacy in Online Social Networks (OSNs) depends on not just what

one user reveals about herself but also on what others reveal about

her [45]. In particular, whenever the content to be shared involves

more people, they should all have a say on with whom the content

is shared. Otherwise, a Multiuser Privacy Conflict (MPC) is likely to

occur. MPCs are frequent, and have been suffered by the majority

of OSN users [46, 54].

A commonly-studied example is the case of a photo depicting a

group of friends, where each one of them would assign different

degrees of publicity/privacy to the picture on OSN. Currently, OSN

platforms lack collaborative privacy controls [54] and the responsi-

bility to decide the sharing policy for some content is generally left

solely to its uploader. If the other involved users (the co-owners)
are unhappy with the uploader’s choice, they can only resort to
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unsatisfactory reparative solutions (e.g. untagging), which do not

guarantee avoiding a privacy violation [22, 46].

Although some MPCs occur in adversarial settings (e.g., revenge

porn), the vast majority of MPCs happen in non-adversarial settings
[46], where it is simply too difficult for uploaders to identify the

optimal sharing policy for an item that involves other co-owners

[6, 20, 54].

In order to tackle these common non-adversarial MPCs, research

was conducted on how to design collaborative models to support

adequate multiuser privacy management in OSN. Importantly, pre-

vious research and empirical evidence suggest that models should

meet the requirements below to help resolve MPCs collaboratively

[1, 29, 33, 36, 46].

First, role-agnosticism (RA), i.e., models should treat all the users

involved in an MPC in the same way regardless of whether they are

uploaders or co-owners. In fact, the asymmetry between uploaders

and co-owners in their ability to influence access to content in

OSNs is among the main causes for MPCs [54].

Second, adaptability (AD), i.e., a model should behave differently

depending on the users’ subjective preferences, because individuals

manage privacy in different ways depending on the context [1].

Third, utility-driven (UD), i.e. models should consider solutions

to MPCs according to the personal advantage or disadvantage that

the users involved can face in terms of both: positively enjoying

the benefits of sharing in OSN and maintaining relationships [18];

and negatively experiencing privacy violations [20].

Fourth, value-driven (VD), i.e., models should consider moral

values, because empirical evidence suggests that users do so in

MPCs [46], e.g., some users go beyond their perceived personal

gain (or utility) to consider the consequences of their actions on

others, or self-transcend to accommodate others’ preferences.

Last but not least, explainability (EX), i.e., the capability of a

model to provide an explanation of its processes [26], is crucial for

users to know why a solution is suggested and its effects [36], and

to align the differences between uploaders and co-owners [46].

Although models for better supporting users to collaboratively

deal with MPCs have been proposed in the related literature (see

Sec. 2), none of them satisfies all these requirements together. In

this paper, we present ELVIRA, an agent that satisfies the above

requirements to recommend the best sharing policy for an MPC.

In particular, ELVIRA is both utility-driven and value-driven (see

Sec. 3), as it computes the sharing policy in terms of: (i) the util-

ity that each user gains/loses from sharing the content with each

particular audience; and (ii) the promotion of moral values, i.e.

the degree of coherency with the user’s values of choosing each

possible policy. When comparing with existing models, we show

experimentally that ELVIRA recommends solutions which present
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Table 1: Comparison of the requirementsmet bymodels rep-

resentative of different approaches in the literature.

Approach EX RA AD UD VD

Game-theoretic [43] - ✓ ✓ ✓ -

Aggregation-based [49] - ✓ - - -

Learning-based [9] - ✓ ✓ - -

Argumentation-based [17] ✓ ✓ - - -

Value-driven [32] - ✓ ✓ - ✓
Fine-grained [15] - ✓ ✓ - -

No support (Facebook) - - - - -

better utility-value trade-offs (see Sec. 5) and are generally more

accepted by users (see Sec. 6). In addition, ELVIRA is able to justify

its recommendations by providing explanations, which we show

are satisfactory to users. Finally, formal properties such as sound-

ness, completeness, anonymity and neutrality guarantee ELVIRA

to be adaptive and role-agnostic.

2 RELATEDWORK

We now discuss briefly the main approaches suggested so far to

solve MPCs in OSNs, but refer the reader to reviews on the topic

for more details and references [14, 36, 45]. For each approach, we

comment how it meets the requirements previously introduced;

Tab. 1 shows a summary, with a representative work from each

approach.

In game-theoretic approaches, the protocols and strategies that

the users can follow to find an agreement are analysed according

to game theory solution concepts [16, 38, 39, 43, 47]. In general,

they are role-agnostic, utility-driven and adaptive. Despite their

elegant formal frameworks building upon well-studied analytic

tools, users’ behaviour does not seem to be always rational in MPC

[20, 54] (as assumed in these approaches), and even if some models

are starting to consider bounded rationality [38] and other factors

like reciprocity [16], they are far from considering a general value-

driven approach.

Aggregation-based approaches combine the users’ preferences

in various ways, e.g. by applying voting rules such as majority and

veto [7, 13, 49]. These models are mostly role-agnostic, but their

rigid way of aggregating the preferences makes them generally not

adaptive. In [44] users’ preferences are aggregated more adaptively

according to the context, but only in a limited number of situations.

Learning-based approaches [9, 50, 51] look at decisions made in

the past to come up with the optimal sharing policy in the future,

making these models role-agnostic and adaptive in theory. However,

the lack of explainability about why the particular recommendation

is made, beyond that a similar decision was made in the past, can

hinder the user’s endorsement of the proposed solution [36].

There are also argumentation-based approaches [8, 17], which

partially address explainability, by being able to generate an ex-

planation for the optimal sharing policy; and approaches that are

mostly value-driven [2, 32], as they generate the sharing policy

that adheres the most to the values of the users involved. However,

both approaches only offer limited support in terms of the other

requirements.

Finally, there are fine-grained approaches that allow individu-

alised decisions about whether some personally-identifying objects

Figure 1: MPC between 3 users, a possible solution 𝑎𝑢𝑑𝑠 (rep-

resented with bold borders), and the A,B,C,D sets for user1.

(e.g. faces) in photo are shown or blurred [15, 34, 52]. They are role-

agnostic and adaptive but do not meet the rest of requirements.

3 PRELIMINARIES

We represent a OSN as a graph𝐺 = (𝑉 , 𝑅), where𝑉 is the set of the

OSN users, and 𝑅 describes all their relationships (𝑣𝑘 , 𝑣 𝑗 , 𝑖𝑘 𝑗 ) ∈ 𝑅,

where 𝑖𝑘 𝑗 ∈ [0, 𝑖𝑚𝑎𝑥 ] represents the intimacy or closeness of the

relationship, which can be elicited automatically [10]. In line with

previous work [47], but noting that this is equivalent and can be

translated to and back from the group-based access control models

used in OSN platforms [44], we define a sharing policy as follows:

Definition 1. A sharing policy for an item from user 𝑘 is 𝑠𝑝𝑘 =

⟨𝑑, 𝑖⟩, where 𝑑 is the length of the shortest path connecting a user with
𝑘 , and 𝑖 is the minimum intimacy that each link of the path connecting
the user with 𝑘 must satisfy for the user to have access to the item.

We assume that every user has a preferred sharing policy for each

content they are involved in, and that it can be elicited automatically

(e.g. see [19, 28]). In addition, each sharing policy 𝑠𝑝𝑘 defines an

audience 𝑎𝑢𝑑𝑘 , i.e. a set of users who satisfy the conditions of 𝑠𝑝𝑘 .

A MPC occurs when users that are involved in the same item have

contradictory preferred sharing policies.

Definition 2. A MPC regarding an item co-owned by users 𝑘
and 𝑗 occurs when 𝑘 and 𝑗 ’s preferred audiences do not coincide, i.e.
𝑎𝑢𝑑𝑘 ≠ 𝑎𝑢𝑑 𝑗 .

Users are known to benefit from sharing in social media [18],

e.g. gaining utility if an appealing picture is shared, but they also

lose utility if a compromising picture is seen by the wrong people.

These effects are amplified with people having closer/more intimate

relationships, as they usually generate more utility gain/loss if

included or excluded from the preferred audience [46].

A compromising solution to a MPC may generally moderate the

gain of utility of some users in order to alleviate the loss of utility

for others, according to the portions of the individual preferred

audiences that are included in the solution. In addition, we consider

that the item can be shared in its original form (as-it-is) or in its

pre-processed version (modified), e.g. where some parts are blurred

or cropped [15]. In fact, empirical evidence [46] suggests sharing

modified content is sometimes an acceptable compromise among

co-owners. Finally, we also consider that each user may eventually

prefer to under-share or over-share the item, that is to make it

visible to a smaller or broader audience than the preferred one.

Following the rationale above in order to define the utility of

a suggested solution audience, we first define the following sets

with respect to the user 𝑘 and her preferred audience 𝑎𝑢𝑑𝑘 , con-

sidering the audience 𝑎𝑢𝑑𝑠 as a potential solution to a MPC where

𝑘 is involved (see Fig.1 for a graphical representation), then the
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Table 2: Variation of the individual utility for item 𝑥 , consid-

ering audience sets, appreciation and mode of sharing.

Δ𝑢𝑡𝑖𝑙𝑖𝑡𝑦 Domain

+ 𝑖 𝑗
𝑑 𝑗

∀𝑗 ∈ 𝐴 allowed audience

𝑎𝑝𝑝 (𝑥) 𝑖 𝑗
𝑑 𝑗

∀𝑗 ∈ 𝐵 allowed extra audience

−𝛼 𝑖 𝑗
𝑑 𝑗

∀𝑗 ∈ 𝐶 excluded desired audience

𝑎𝑝𝑝 (𝑥)𝛽 𝑖 𝑗
𝑑 𝑗

∀𝑗 ∈ 𝐷 excluded extra audience

appreciation function capturing the tendencies to under/over-share,

and finally the utility function.

Definition 3. The allowed audience 𝐴 is the set of users who 𝑘
desires to grant access to 𝑥 and that are part of the solution audience,
i.e., 𝐴 = 𝑎𝑢𝑑𝑘 ∩ 𝑎𝑢𝑑𝑠 . The allowed extra audience 𝐵 is the set
of users who 𝑘 desires to forbid access to 𝑥 but that are part of the
solution audience, i.e., 𝐵 = (⋃𝑙≠𝑘 𝑎𝑢𝑑𝑙∖𝑎𝑢𝑑𝑘 )∩𝑎𝑢𝑑𝑠 . The excluded
audience 𝐶 is the set of users who 𝑘 desires to grant access to 𝑥 but
that are forbidden to access or allowed to access only a modified
version, i.e., 𝐶 = 𝑎𝑢𝑑𝑘 ∖ 𝑎𝑢𝑑𝑠 . The excluded extra audience 𝐷 is
the set of users who 𝑘 desires to forbid access to 𝑥 and that are either
forbidden to access or allowed to access only a modified version of the
item, i.e., 𝐷 =

⋃
𝑙≠𝑘 𝑎𝑢𝑑𝑙 ∖ 𝑎𝑢𝑑𝑠 .

Definition 4. Given a set of pictures 𝑋 , the function apprecia-
tion, 𝑎𝑝𝑝 : 𝑋 −→ [−1, 1], maps a picture 𝑥 ∈ 𝑋 into a positive value
if the user is happy to overshare, and to a negative value if the user
prefers to undershare.

Definition 5. Given an audience 𝑎𝑢𝑑 , its utility for user 𝑘 is:

𝑢𝑘,𝑎𝑢𝑑 =
∑
𝑗 ∈𝐴

𝑖 𝑗

𝑑 𝑗
− 𝛼

∑
𝑗 ∈𝐶

𝑖 𝑗

𝑑 𝑗
+ 𝑎𝑝𝑝 (𝑥) ©­«

∑
𝑗 ∈𝐵

𝑖 𝑗

𝑑 𝑗
+ 𝛽

∑
𝑗 ∈𝐷

𝑖 𝑗

𝑑 𝑗

ª®¬ . (1)

For the sake of clarity, Tab. 2 shows the individual contributions

of each audience set to the variation in utility. Note that the com-

ponents for the sets 𝐶 and 𝐷 depend on the selection of 𝛼 and 𝛽 ,

parameters which determine whether to share the content as-it-is
(𝛼 = 1 and 𝛽 = 0) or modified (0 < 𝛼, 𝛽 < 1). However, experiments

showed (see [31]) that the optimal choice of these two parameters

does not seem critical, because we did not find any significant im-

pact on the differences between individual utilities achieved under

different values for the parameters.

3.1 Schwartz Basic Values

The theory of basic values by Schwartz [42] is one of the most well-

known and established theories of human values backed by strong

empirical evidence. In this theory, values are socially desirable con-

cepts that represent the mental goals which drive human behaviour

and influence any people’s decision.

Schwartz identifies two dimensions which summarise the main

value tendencies, defining four directions which pull apart while

defining the behaviours. On one axis, openness to change (OTC)
is opposed to conservation (CO), representing dynamic and inde-

pendent ways of acting versus conservatory and self-restraining

attitudes. On the other axis, self-transcendence (ST) reflects tolerant
and altruistic behaviours in opposition to self-enhancement (SE),
that characterises authoritarian and image-conscious conducts.

Table 3: Details of promotion and demotion of the values for

a user, comparing different sharing options with own pref-

erence, and corresponding behaviours.

Value Sharing Condition Behaviour

OTC + with 𝑎𝑢𝑑𝑓 everyone compromising

- with some user’s pref the same

CO + with most private option preserving everyone’s

- with a more public option privacy

ST + with the other’s pref making others happy

- ignoring the other user’s pref

SE + with own pref getting your way

+ gaining better utility

- gaining worse utility

The individual preferred order over the values is proven to be

relatively stable over the lifetime [5], making sufficient to elicit

it –through validated tools [42]– from the users just once. Such

tools are more reliable than the ones offered by other value theo-

ries (see for instance [40]), which do not provide an overall value

architecture or direct insights on the behavioural impact of the

values.

We model behaviours in a MPC along the four main directions:

OTC, meant as appreciating compromises which differ from any-

one’s initial preference; CO, meant as the effort of preserving in-

dividual and social security; ST, meant as doing what is good for

the other people; and SE, meant as getting the own’s way, e.g., by

maintaining or increasing one’s own utility. The selection of any

audience as a solution promotes or demotes these values for each

involved user as shown in Tab. 3. In the remaining part of the paper,

we refer to these value-directions as V .

Example. Let us consider the following situation, where the in-
dividually preferred sharing policies, considered as-it-is, imply dif-

ferent audiences and generate an MPC:

Users Sharing Policy Values 𝑎𝑝𝑝 (𝑥)
Kay (uploader) ⟨3, 6⟩ 𝑆𝑇 ≻ 𝑂𝑇𝐶 ≻ 𝐶𝑂 ≻ 𝑆𝐸 +1

Dan (co-owner1) ⟨2, 6⟩ 𝐶𝑂 ≻ 𝑆𝐸 ≻ 𝑂𝑇𝐶 ≻ 𝑆𝑇 +1

Zoe (co-owner2) ⟨2, 8⟩ 𝑆𝐸 ≻ 𝐶𝑂 ≻ 𝑆𝑇 ≻ 𝑂𝑇𝐶 -1

By selecting ⟨2, 6⟩ as sharing policy, Kay would promote ST, because

is selecting Dan’s preference; however, Zoe would demote both

CO, as ⟨2, 6⟩ is not the most restrictive policy, and SE, because

oversharing would get her a lower utility (the appreciation for the

item is negative).

4 ELVIRA

We now describe in detail ELVIRA, an agent that supports the

collaborative resolution of MPCs. The design of ELVIRA is such

that it complies with all the desired requirements described in Sec. 1:

explainability is given by the practical reasoning approach (Sec. 4.1)

and the process to describe MPCs and their recommended solution

(4.2), which are evaluated in Sec. 6; role-agnosticism and adaptability
are guaranteed by its formal properties (Sec. 4.3); and, finally, both

individual utility and moral values are explicitly considered to

compute the solution to the MPC as described below (and evaluated

in Sec. 5 and 6).
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We assume that there is one ELVIRA agent representing each

user involved in an MPC, and that they will all be working together

collaboratively to resolve the MPC, as the majority of MPCs hap-

pen in non-adversarial settings [6, 20, 54]. That is, for each MPC

involving 𝑛 users, there will be a set 𝐴𝑔 of 𝑛 agents, with one up-
loader agent and 𝑛 − 1 co-owner agents. For clarity and because

of lack of space, we present ELVIRA from the perspective of the

uploader agent, which considers everyone’s individual preferences

in collaboration with the co-owner agents, and identifies a solution

for the MPC.

In order to solve anMPC over one item
1
, the uploader can offer to

the co-owners an audience 𝑎𝑢𝑑 , chosen as-it-is or modified, from a

finite set of optionsA which includes the 𝑛 audiences 𝑎𝑢𝑑1, ...𝑎𝑢𝑑𝑛
deriving from the users’ preferred sharing policies, and 𝑎𝑢𝑑𝑓 , where

𝑓 is some function identifying a subset of the union of all the

individually preferred audiences, such that 𝑎𝑢𝑑𝑓 ≠ 𝑎𝑢𝑑𝑘 ∀𝑘 ∈ 𝐴𝑔.

For each possible audience 𝑎𝑢𝑑 , each agent 𝑘 computes its in-
dividual score, which represents its appreciation of the particular

option in terms of utility and value promotion:

𝑠𝑘,𝑎𝑢𝑑 = 𝑢𝑘,𝑎𝑢𝑑 · 𝑣𝑘,𝑎𝑢𝑑 . (2)

The utility 𝑢𝑘,𝑎𝑢𝑑 is computed as in Eq. (1); the value promotion

𝑣𝑘,𝑎𝑢𝑑 takes as input an order 𝑜 over V , so that:

𝑣𝑘,𝑎𝑢𝑑 =

|V |∑
𝑖=1

(𝐼 − 𝑖) · 𝑝𝑟𝑜𝑚𝑎𝑢𝑑 (𝑜𝑖 )

where 𝐼 = |V| + 1, and 𝑝𝑟𝑜𝑚(𝑜𝑖 ) = 1 if the i-th preferred value

is promoted by selecting 𝑎𝑢𝑑 , 𝑝𝑟𝑜𝑚(𝑜𝑖 ) = −1 if the i-th preferred

value is demoted, and 𝑝𝑟𝑜𝑚(𝑜𝑖 ) = 0 otherwise. In Eq.(2) wemultiply

𝑢 and 𝑣 for assigning equal weight to utility and values regardless

of their range. Then, all the co-owners share their individual scores

with the uploader, who aggregates them in an overall score for each
audience 𝑎𝑢𝑑 :

𝑠𝑎𝑢𝑑 =
∑
𝑘∈𝐴𝑔

𝑠𝑘,𝑎𝑢𝑑 . (3)

4.1 Computing the Solution

In this section we describe how the ELVIRA uploader agent com-

putes the solution to an MPC based on argumentation techniques,

similarly to [30]. By completing the abductive reasoning process

that we describe below, not only ELVIRA uploader identifies the

most desirable audience, but it also gathers all the necessary in-

formation to discuss its causal attribution, which represents the

cognitive process required for providing an explanation [26]. We de-

tail how ELVIRA uses this information to generate the explanations

in Sec. 4.2.

First, we consider that an agent can propose, attack and defend

justifications for a given action by relying on an argument scheme

(AS) and its associated critical questions (CQs) [3]. AS can be ex-

pressed as: “I should offer the audience 𝑎𝑢𝑑 , that will be accepted by
the co-owners, that will generate the score 𝑠

𝑎𝑢𝑑
and that will promote

the values V ”.

1
Note that we discuss MPCs over one item for simplicity but without loss of generality,

as one could define a preferred audience over a collection of items too. The fundamental

way in which ELVIRA works would be the same.

In order to identify the best solution to offer, ELVIRA uploader

follows a practical reasoning process (PR)[3]: (1) it identifies the

most desirable outcome, e.g. the audience 𝑎𝑢𝑑 ; (2) it argues in favour

of offering 𝑎𝑢𝑑 , e.g. by instantiating the AS; 3) it considers objec-

tions (the CQs) based on alternative more desirable audiences, e.g.

by considering possibly better overall scores or promoted values;

and, finally, 4) it attempts to rebut these objections.

Formally, the PR has three stages: (i) the problem formulation, (ii)
the epistemic stage, and (iii) the choice of action.

Problem Formulation. The first step of PR consists of represent-

ing the relevant elements of the situation (i.e. conflict occurrence,

involved users’ preferences, possible actions and solutions, etc.).

We perform this task by building an Action-Based Alternating Tran-

sition Systems with Values (AATS+V) [3]. This structure provides

the underlying semantics used to describe the world and formulate

arguments about joint actions (𝐽𝐴𝑔), i.e. actions that are performed

by a set of agents and that influence each other’s outcome
2
. In the

MPC context, a joint action is composed of the uploader’s offer

and the co-owners’ response. We adapt Atkinson’s definition of an

AATS+V [3] to MPCs as follows:

Definition 6. In the context of anMPC among𝑛 users, anAATS+V
is a 2𝑛 +8 tuple Σ = ⟨𝑄,𝑞0, 𝐴𝑔,𝐴𝑐𝑘 , 𝜌, 𝜏, 𝑆,V, 𝐴𝑣𝑘 , 𝛿⟩, with 𝑘 = 1...𝑛,
where:
• 𝑄 = {conflict, agreement𝑎𝑢𝑑𝑎,𝑚 ∀𝑎𝑢𝑑 ∈ A} is a finite, non-
empty set of states, where each audience is considered as-it-is (𝑎𝑢𝑑𝑎)
and modified (𝑎𝑢𝑑𝑚);

• 𝑞0 = conflict is the initial state;
• 𝐴𝑔 = {𝑢𝑝1, 𝑐𝑜2, ..., 𝑐𝑜𝑛} is the set of agents involved in the MPC,
with the roles of uploader or co-owners;

• 𝐴𝑐𝑘 = {offer𝑎𝑢𝑑 , accept𝑎𝑢𝑑 , reject𝑎𝑢𝑑 ∀𝑎𝑢𝑑 ∈ A} are the actions
available to the agents;

• 𝜌 : 𝐴𝑐𝐴𝑔 → 2
𝑄 is the action-precondition function; here, every

action can be executed just from 𝑞0;
• 𝜏 : 𝑄 × 𝐽𝐴𝑔 → 𝑄 defines what state results from performing the
joint action 𝑗 in the state 𝑞, where possible; here, only the joint
actions where all the co-owners accept the uploader’s offer end up
in an agreement state, the others stay in 𝑞0;

• 𝑆 = {0, 𝑠𝑎𝑢𝑑 ∀𝑎𝑢𝑑 ∈ A} is the set of collective scores characteris-
ing each state, where 𝑠𝑞0 = 0;

• V = {𝑆𝐸, 𝑆𝑇 ,𝐶𝑂,𝑂𝑇𝐶} is the set of values considered;
• 𝐴𝑣𝑘 = 𝑜𝑘 (V) is the preferred total order of the agent 𝐴𝑔𝑘 over the
values V ;

• 𝛿 : 𝑄 × 𝑄 × 𝐴𝑣𝐴𝑔 → {+,−,=} is the valuation function, which
defines the effect of a transition over each value for each agent (see
Tab. 3).

Epistemic Stage. The epistemic stage consists of determining

what the agent believes about the current situation, given the pre-

vious problem formulation. As we mentioned earlier, based on

empirical evidence [46], the ELVIRA agents have a collaborative

behaviour. From this underlying assumption we can further im-

ply two epistemic assumptions: (EA1) all agents share the same

interpretation of the world and have the same knowledge; (EA2)

the co-owners are believed to accept an offer in two situations, i.e.

2
As in [4], we assume the offer and the response to be “simultaneous” actions, despite

their sequentiality.
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Figure 2: TheAATS+V representing the PRperformed by the

agents in the example (𝑎𝑢𝑑𝑓 = ⟨2, 7⟩).

when the offered audience guarantees either (i) the individual max-

imum score (𝑠
𝑘,𝑎𝑢𝑑

= maxA 𝑠𝑘,𝑎𝑢𝑑 ), or (ii) the collective maximum

score (𝑠
𝑎𝑢𝑑

= maxA 𝑠𝑎𝑢𝑑 ). EA1 allows the agent to discard any CQs

related to the problem formulation and its truthfulness; EA2 allows

the agent to evaluate appropriately the expectations regarding the

other agents’ actions.

Choice of Action. Finally, we develop a value-based argumen-

tation framework instantiating an appropriate argument scheme,

and its consequent evaluation according to the preference over the

values. Starting from AS, the agent discusses the CQs which contest

the desirability of the audience 𝑎𝑢𝑑 :

• CQ1 Would another audience guarantee a better score?

i.e. ∃𝑎𝑢𝑑 ∈ A : 𝑠𝑎𝑢𝑑 > 𝑠
𝑎𝑢𝑑

• CQ2Would another audience with the same score promote better

values?

i.e. ∃𝑎𝑢𝑑 ∈ A : 𝑠𝑎𝑢𝑑 = 𝑠
𝑎𝑢𝑑

∧𝑣𝐴𝑔,𝑎𝑢𝑑 > 𝑣
𝐴𝑔,𝑎𝑢𝑑

, where 𝑣𝐴𝑔,𝑎𝑢𝑑 =∑
𝑘∈𝐴𝑔 𝑣𝑘,𝑎𝑢𝑑

• CQ3 Would any co-owner reject this offer?

i.e. ∃ 𝑗 ∈ 𝐽𝐴𝑔, 𝑘 ∈ 𝐴𝑔 : 𝑗1 = offer
𝑎𝑢𝑑

∧ 𝑗𝑘 = reject
𝑎𝑢𝑑

If 𝑎𝑢𝑑 collects negative answers to all of the above questions, then

it is considered the most desirable offer to make. By following this

process, ELVIRA uploader is granted justification for action.

Running Example. By reasoning on the AATS+V in Fig.2, 𝑎𝑢𝑑 =

⟨2, 8⟩𝑎 is identified as a desirable audience, because 𝑠 ⟨2,8⟩𝑎 = 5 is the

maximum score and its selection would promote ST and CO. Next,

the uploader discusses the CQs, which all get negative answers

because (i) there is no audience which would give a better score; (ii)

there is no audience with the same score promoting better values;

and (iii) for EA2, the co-owners are believed to accept this offer,

which would promote CO and ST for Dan and SE and CO for Zoe.

4.2 Generating Explanations

Following Miller’s definition of explainability [26], an explanation
is composed by a cognitive process, i.e. the process of abductive

inference determining the causal attribution for a given event which

we presented in the previous section, and a social process, i.e. the
process of transferring knowledge between the explainer and the

explainee.

We now discuss how ELVIRA conveys such information to the

users. First, we identify the main features that the explanation for

an MPC solution should present; here we keep referring just to

the uploader agent, but an equivalent explanation structure can

be applied for the co-owners as well. Then, in Sec. 6, we discuss

the feedback we received from users regarding their satisfaction

towards such designed explanations.

Conflict Description. If we aim to explain the solution to an MPC,

we need to provide details also about other components of the

conflict, such as its detection and representation [48]. This fits the

necessity for an explanation to present causal attribution [26]: it is

desirable to have an explanation that not only guides the user from

causes to effect, but also that describes to the user the causes and

the effect. This allows the user to assess whether the agent that is

providing the explanation has understood the context and has thus

grounded the explanation in a realistic representation. Therefore,

we include in the explanation a description of 𝑞0.

Tailored and contrastive explanations. As part of the adaptability
of the model, we argue that not only the solution but also its expla-

nation needs to be customised and context-related. Every user may

have different priorities regarding what is important to them: this

influences the way the solution is identified and also the informa-

tion that is worthy to be included in the explanation. Also, Miller

[26] clearly highlights the importance of contrastive explanations,

because people may in general be not as interested in the causes of

selecting the solution 𝑎𝑢𝑑 per se, as they are in the causes of not

selecting their initial preference 𝑎𝑢𝑑𝑘 . Therefore, given the redun-

dancy of reporting ELVIRA’s entire PR process, we suggest that

the agent includes in the explanation only the elements that regard

𝑎𝑢𝑑 in relation to 𝑎𝑢𝑑𝑘 . Whenever 𝑎𝑢𝑑 = 𝑎𝑢𝑑𝑘 , ELVIRA simply

reports the AS instantiated for 𝑎𝑢𝑑𝑘 . On the other hand, whenever

𝑎𝑢𝑑 ≠ 𝑎𝑢𝑑𝑘 , ELVIRA includes in the explanation the positive an-

swers to the CQs discussed during the choice of action, stressing

in particular on the differences between 𝛿 (𝑞0, agreement
𝑎𝑢𝑑

, 𝐴𝑣𝑘 )
and 𝛿 (𝑞0, 𝑞0, 𝐴𝑣𝑘 ). Note that our decision of what to include in

the explanation in this paper is not a limitation of the model: if a

dialogue between the user and the agent was developed, the agent

would be able to reply to any user’s objection regarding the selec-

tion of alternative solutions based on our model in Sec. 4.1. This is,

in fact, a very interesting follow-up future work.

Running Example. ELVIRA presents the following output to Kay:

‘Conflict: The sharing preferences of the other people involved do

not coincide with yours. You suggested to share with ⟨3, 6⟩𝑎 ; Dan
opted for sharing with ⟨2, 6⟩𝑎 and Zoe would like to share with

⟨2, 8⟩𝑎 . Solution: To share with ⟨2, 8⟩𝑎 is the best compromise that

solves the conflict because it satisfies as much as possible every-

one’s preferences. Notice that, by sharing with ⟨3, 6⟩𝑎 (your initial

sharing choice), other users may experience negative consequences,

you would not make other users happy and you would not preserve

everyone’s privacy’. This is a contrastive explanation, which high-

lights how the user’s preference is worse than the recommended

solution because it would demote values (in this case, ST and CO)
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that would not be demoted if selecting the recommended solution.

ELVIRA shows a similar output to Zoe, where the last part would be:

‘Notably, by selecting to share with ⟨2, 8⟩𝑎 , you would get your way

and preserve everyone’s privacy’, which is a tailored, not contrastive
explanation for selecting ⟨2, 8⟩𝑎 .

4.3 Formal Properties

Soundness and completeness show that the model can adapt its

output according to the users’ preferences to always find the optimal

audience, thus satisfying adaptability. Anonimity and neutrality

guarantee that the users and their preferences are treated equally,

thus satisfying role-agnosticism.

Lemma 1 (Soundness). The audience recommended by ELVIRA
is always optimal, i.e. the one which is the most coherent with every-
one’s utility and value preferences.

Proof Sketch. Disregarding the roles of uploader or co-owner,

ELVIRA identifies the audience to recommend by going through the

PR described in Sec. 4.1. The agent can recommend only an audience

that has collected only negative answers to the CQs: therefore, such

audience must present the maximum overall score and the best

individual value promotion. This means that there is no other action

that is more coherent with everyone’s preferences, and this makes

the recommendation optimal. □

Lemma 2 (Completeness). Assuming the agents’ cooperation
in the computation, if an optimal audience exists, then ELVIRA finds
it and recommends it to the users.

Proof Sketch. If the optimal audience exists, i.e. has the maxi-

mum overall score and the best individual value promotion, then

ELVIRA will collect only negative answers to the CQs in the choice

of action. Hence, the optimal audience will be the successful output

of the PR and ELVIRA will recommend it to the users. □

Lemma 3 (Anonimity). The computation of the solution is not
sensitive to permutations of the users, i.e. all the involved users are
treated the same.

Proof Sketch. Anonimity is provided by Eq. (3), where the

commutative property guarantees the sum of the individual scores

to be independent of their order of aggregation, and by CQ2 of the

PR process, where the values of all users are considered equally. □

Lemma 4 (Neutrality). The computation of the solution is not
sensitive to permutations of the possible audiences, i.e. all the audi-
ences are considered equally independently of their order.

Proof Sketch. When performing PR, ELVIRA instantiates the

AS for every possible audience, and all the audiences are considered

when discussing the CQs. Therefore, the order of consideration of

the audiences is irrelevant. □

5 EVALUATION THROUGH SIMULATIONS

Having shown above how ELVIRA meets the explainability, role-

agnosticism, and adaptability requirements, we now examine ex-

perimentally the performance of ELVIRA agents in terms of the

utility and adherence to values of the solutions to MPCs they gen-

erate. Recall, as explained in Sec. 1, that considering both utility

and values to compute a solution to MPC is informed by empirical

evidence [18, 46]. In particular, we present a comparative evalua-

tion of ELVIRA (EL) and three other models inspired by the related

work approaches (see Sec. 2) that either consider utility, values, or

none of them:

•Utility-based (UB): selects the audience that maximises utility for

all the involved users, similar to works only utility-driven;

•Value-based (VB): selects the audience that maximises the pro-

motion of values for all the involved users, similar to works only

value-driven;

•Facebook (FB): selects the uploader’s preferred audience, i.e., nei-

ther utility- or value-driven.

We analysed the performance of these models on real data (portions

of Facebook, as detailed later). To compare the models, we use
3
the

individual average variation of utility (𝑖𝑎𝑢𝑐), normalised over the

size of the network, and the individual average of value promotion

(𝑖𝑎𝑣𝑐) per each conflict, generated by each model𝑀 :

𝑖𝑎𝑢𝑐 = 1

𝑛𝑇𝑁

∑
𝑘∈𝑈𝑡 ,𝑡<𝑇

𝑢𝑘𝑡,𝑀 𝑖𝑎𝑣𝑐 = 1

𝑛𝑇

∑
𝑘∈𝑈𝑡 ,𝑡<𝑇

𝑣𝑘𝑡,𝑀 ,

where 𝑈𝑡 are the users involved in the conflict generated at time 𝑡

and 𝑢𝑘𝑡,𝑀 and 𝑣𝑘𝑡,𝑀 are the variation of utility and of value promo-

tion which the user 𝑘 gets when selecting the solution suggested

by the model𝑀 in the conflict 𝑡 .

We implemented the models in Python 2.7.10 (numpy 1.16.2;

networkx 2.2) and we ran all our simulations on Windows 10. In

each network, users were allocated to the nodes with a random

value ordering, which was static for all the simulations, as informed

by [5]; and intimacies were also generated randomly, in the range

[1, 5] as in [10], where 1 represents a mere acquaintance and 5

a very close relationship. For each simulation, an MPC among 𝑛

random connected users was created, with sharing policies and

appreciation functions also generated randomly. In particular, dis-

tances were in the range [0, 5], which captures the vast majority of

cases reported about the degrees of separation between users on

Facebook
4
. Also, to generate audience 𝑎𝑢𝑑𝑓 , we randomly selected

a distance from the range identified by the minimum and the maxi-

mum distance among the users’ preferences; and we selected the

intimacy similarly.

Simulation Settings. We report here the experiment with real por-

tions of Facebook, but we conducted extensive experiments varying

all parameters with similar results (see [31]). In particular, we used

(number of nodes and edges in parenthesis): 𝐺1 = (769, 16656) and
𝐺2 = (1446, 59589) from [53], and 𝐺3 = (4039, 88234) from [21],

and we generated T=500 MPCs among 𝑛 = 3 random connected

users on each of these graphs, with 𝛼 = 0.9 and 𝛽 = 0.1.

Simulation Results. Fig. 3 displays the performance of the models

in terms of 𝑖𝑎𝑢𝑐 and 𝑖𝑎𝑣𝑐 . Pairwise t-tests of EL with the other three

models show significant differences between the distributions with

p-value< .05 (as marked with ‘★’ in the figure). The effect size of

the comparison between the models is medium or large in all cases

(average over the three graphs): (i) w.r.t. 𝑖𝑎𝑢𝑐 , ELvsUT: -.4, ELvsVA:

.36, ELvsFB: .23; w.r.t. 𝑖𝑎𝑣𝑐 , ELvsUT: 1.45, ELvsVA: -.59, ELvsFB:

3
For lack of space, we show only these metrics, but we also studied social, instead of

individual, measures that provided equivalent results (cf. [31]).

4
https://research.fb.com/blog/2016/02/three-and-a-half-degrees-of-separation/
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Figure 3: Models performance on real portions of OSN.

1.58. We can clearly see that UB always generated the maximum

𝑖𝑎𝑢𝑐 , but guaranteed a poor promotion of moral values; VB always

generated the maximum 𝑖𝑎𝑣𝑐 , but with very low utilities; and EL

represented the best utility-value trade-off, very close to UB in

utility and to VB in values.

6 EVALUATION THROUGH USER STUDY

We now discuss the between-subjects user study that we designed

and conducted with a double goal: (i) to study the user acceptability

of the recommendations identified by ELVIRA, comparing it to

existing approaches; and (ii) to understand whether the cognitive

and social processes introduced in Sec. 4.1,4.2 allow ELVIRA to con-
vey the recommendations in a more satisfactory way than existing

approaches. Participants were recruited via Prolific
5
, and the study

received ethical approval by the Ethical Board of our university.

6.1 User Study Design

We developed a web application in Python to conduct the experi-

ment. The application randomly assigned each participant to one

treatment (as in the previous section): ELVIRA, utility-based, value-

based, and Facebook. For all treatments, the application proceeded

as follows: i) participants were presented with MPCs automatically

generated by our tool, given the recommendations suggested by

the model used in the particular treatment, and asked about the

acceptability of the recommendations; ii) after all scenarios, par-

ticipants were asked about their satisfaction with the model of

their treatment. In addition, the treatments for ELVIRA and the

value-based model also included a step to elicit the value prefer-

ences of participants. We now describe the steps further. For the

full specification of the experiment design, including the scenarios

and questions presented to participants, see [31].

Values elicitation. We relied on the Portrait Value Questionnaire

(PVQ) designed by Schwartz [42] to elicit the value preferences of

the users. We used the PVQ-21 version, which includes 21 sentences

describing behaviours of people and asks users how similar are

those people to themselves, and which has been very commonly

used in social studies and as part of the European Social Survey

[41] since 2002. The output of this part informs the ELVIRA and

the value-based models about the participants’ value preference.

5
https://www.prolific.co/

MPCs. We followed an immersive scenario approach [24], which

was successfully used in previous work inMPCs [8, 44]. For this, our

application created six scenarios for each participant and presented

them in a random order. Scenarios were composed of photos and

descriptions taken from [8], in which the scenarios were proved

to be representative of different sensitivities (low/high) and rela-

tionship types (colleagues, friends and family), and a randomly

generated MPC as detailed next. For each scenario, the participant

was asked to provide: (i) their preferred sharing policy
6
among

keeping it private, sharing with common friends, sharing with

friends of friends, or sharing publicly; and (ii) their appreciation,

i.e., whether they would be ok with over/under-sharing. Then, the

application randomly generated the preferences and appreciation

of two (non-participant) users involved in the scenario, making

sure that an MPC was created (e.g. at least one preference would be

different from the one of the participant). Note therefore that even

if the photos and descriptions were the same, the conflicts changed

every time randomly, in practice meaning that there were many

more than just six scenarios (for the same photo and description,

each of two non-participant users could have one of 4 policies, one

of 5 different appreciation levels, and one of 24 orders over values

–see Supp.Mat. for details). The MPC was then presented to the

participant together with the recommendation to solve it that was

computed by the model of the participant’s treatment. Finally, the

participant was asked to say how likely they would be to accept

the recommendation as an individual, and how likely they thought

the other involved users would accept the recommendation.

Satisfaction. After all the MPCs were presented to the partici-

pant, and as a final step, we asked about their satisfaction with the

model of their treatment across the MPCs in terms of the output

that the models generated (rather than just the acceptability of

the recommendations). The output generated by ELVIRA corre-

spond to the explanations discussed in Sec. 4.2. The utility-based

and value-based models communicate the occurrence of a conflict

and recommend a solution according to the works in the related

literature that follow these approaches (cf. Sec. 2). The Facebook

model simulates what happens in Facebook: an uploader, randomly

selected among the involved users, shares the picture with the

uploader’s preference. For further details about each model refer

to [31]. Finally, to measure satisfaction, we used the Satisfaction

Scale proposed in [12]. This scale, based on studies in cognitive

psychology, philosophy of science, and other pertinent disciplines,

is meant to evaluate explanations by considering the features that

make explanations good (e.g., level of detail, usefulness, accuracy,

etc.).

Data Quality Measures. To maximise data quality, we employed

two well-known methods: attention check questions, and partici-

pants’ previous performance [11, 25, 35, 37]. We recruited partici-

pants from Prolific with at least 100 submissions and an approval

rate of 95% according to [37]. Also, during the experiment, the appli-

cation presented participants with three attention check questions

(see [31]).

6
Note that we used group-based policies, which, as aforementioned and shown in

[44], are equivalent to the policies we used in earlier parts of our paper, and as-it-is
modality, because they are both (policies and modalities) more familiar and intuitive

for users, as that is what they currently see in mainstream online social networks [27].
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Table 4: Demographics of participants.

Age ‘18-25’: 32.6%, ‘26-35’: 31.3%, ‘36-45’: 18.9%, ‘46-55’: 9%, ‘55+’: 8.2%

Gender ‘Male’: 56.2%, ‘Female’: 43.3%, ‘Rather not say’: 0.5%

Country ‘UK’: 44.2%, ‘USA’: 15%, ‘Poland’: 9.4%, ‘Greece’: 5.6%, ‘Portugal’: 5.2%, ‘Canada’:

2.6%, other: 18%

Highest

education

‘Grad degree’: 21%, ‘Undergrad degree’: 35.6%, ‘Tech/community college’: 10.3%,

‘Secondary education’: 28.4%, other: 4.7%

Social me-

dia use

‘Daily’: 85.4%; ‘2-3 times/week’: 9.9%; ‘Once aweek’: 2.1%; ‘Less than once aweek’:

2.6%

Privacy ‘Not concerned’: 3%; ‘Concerned’: 46.4%; ‘Very concerned’: 50.6%

6.2 User Study Results

We recruited 321 participants, who were rewarded £2.50 for com-

pleting the survey, which took on average 23.1 minutes (median

20.3 minutes). We discarded participants who failed at least one

attention check question (27.4%), and analysed the remaining 233

participants. Tab. 4 reports the demographic distribution of the

participants, including their privacy attitudes, measured with the

IUIPC scale [23], and social media use. The final split per treatment

(recall this was done randomly) was: 60 ELVIRA, 57 utility-based,

60 value-based, and 56 Facebook.

Acceptability of recommendation. Fig. 4 shows the distribution
of individual and collective acceptability for each model (2=‘Very

likely’, -2=‘Very unlikely’). The symbols on the bottom mark the

distributions that are significantly worse than ELVIRA, when con-

sidering pairwise t-tests with p-value< .05 (★) and p-value< .1 (-)

(effect size for individual acceptability: ELvsUT: .13, ELvsFB: .22; for

collective acceptability: ELvsUT: .32, ELvsFB: .34). We can see that

the recommendations generated by ELVIRAwere significantlymore

accepted than those generated with utility-based or Facebook mod-

els. The value-based model shows a performance not significantly

different from ELVIRA’s, but with a wider interquartile range for

individual acceptability, including negative acceptability. For this

reason, we sought to understand whether this higher proportion of

participants providing negative acceptability for value-based was

related to demographics. In particular, for older people (age≥46), for
participants with at most secondary education, for users accessing

social media less than daily, and for less privacy concerned individ-

uals (IUIPC<.4), we found that ELVIRA’s recommendations were

significantly (p-value< .05) more accepted than the value-based

ones (differences in all other groups remained not significant).

Satisfaction of the output. Regarding the quality of the generated

output, ELVIRA achieved by far the best performance. Fig. 5 shows

the distribution of the answers to the Satisfaction Scale (2=‘Strongly

agree’, -2=‘Strongly disagree’) , with significant differences marked

as above (minimum effect size when marked with ‘★’ is .44; when

marked with ‘-’ is .32). ELVIRA is the only model presenting a posi-

tive average score for each question, and the one with overall the

most compact distribution. Particularly, we note ELVIRA’s domi-

nant results in Q1: ‘From the output, I could understand how the

tool works’; Q3: ‘The output provided sufficient detail about how
the tool works’, Q6: ‘The output that the tool provided are useful to
my goals’, and Q7: ‘The output showed me how accurate the tool
is’.

Discussion. Considering both the acceptability of the recommen-

dations and the satisfaction with the model output, ELVIRA out-

performs all other models. The value-based model provides rec-

ommendations that are, generally, as accepted as ELVIRA’s, but its

Figure 4: Individual and collective acceptability of the rec-

ommendations presented by each model.

Figure 5: Evaluation of the outputs provided by each model,

according to the Satisfaction Scale [12].

outputs are significantly less satisfactory. Even in terms of accept-

ability, ELVIRA generates solutions that are more acceptable across

demographics, while the value-based model seems not to cater for

older, less educated, less privacy concerned and less active social

media users, providing recommendations that are significantly less

acceptable than ELVIRA’s for these groups.

7 CONCLUSION

We introduced ELVIRA, the first agent to support collaborative

multiuser privacy that meets all the requirements suggested by

previous research and empirical evidence on multiparty privacy

[36, 46]. As we proved in Sec. 4.3, ELVIRA is role-agnostic and adap-
tive. Then, through software simulations (see Sec. 5), we showed

how the combination of a utility-driven component with a value-
based one allows to reach a trade-off in terms of utility gain and

value promotion that is better than the other models that have been

suggested in the literature so far. The benefits of such a combination

were also evident in a user study (see Sec. 6), where the solutions

recommended by ELVIRA were considered generally more accept-

able than for the other models. Finally, ELVIRA is able to generate

and convey explanations which are confirmed to be satisfying by

users.

Regarding future work, we plan to also tackle the much less fre-

quent but severe cases of MPCs where malicious, non-collaborative

behaviour may be present, e.g., revenge porn and cyber-bullying.
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