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ABSTRACT
Open-world AI requires artificial agents to cope with novelties that
arise during task performance, i.e., they must (1) detect novelties, (2)
characterize them, in order to (3) accommodate them, especially in
cases where sudden changes to the environment make task accom-
plishment impossible without utilizing the novelty. We present a
formal framework and implementation thereof in a cognitive agent
for novelty handling and demonstrate the efficacy of the proposed
methods for detecting and handling a large set of novelties in a
crafting task in a simulated environment. We discuss the success of
the proposed knowledge-based methods and propose heuristic ex-
tensions that will further improve novelty handling in open-worlds
tasks.
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1 INTRODUCTION
Much of AI research has dealt with so-called “closed worlds” where
agent designers know all task-relevant concepts ahead of time and
get to develop targeted algorithms based on that knowledge. In
contrast, “open worlds” allow for novelty that is not known in
advance and can thus not be planned or designed for. The shift
from closed to open worlds, therefore, requires artificial agents to
cope with novelties as they arise during task performance.

Coping with novelty involves at least three challenges: (1) de-
tecting it, (2) characterizing it, and (3) accommodating it. The first
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requires the agent to determine, through direct observation or indi-
rect inference, that something is novel, while the second requires
the agent to determine the nature of the novelty (e.g., whether it is a
novel object, a novel property, a novel relation, a novel event, etc.);
and the third then requires the agent to use its characterization of
the novelty to determine whether it is beneficial, detrimental, or
irrelevant for its task performance and accordingly use, circumvent
or avoid it.

While investigations in the past have explored some aspects of
open-world AI (e.g., open-world goals [11, 28, 29]), none of these
approaches have attempted to systematically detect novelty, but
were rather restricted to particular types of novelty that could be
handled (e.g., certain forms of open-world goals or instructions).
The goal of this paper is to present the first systematic architectural
approach for detecting, characterizing, and accommodating novelty
without making any prior assumptions about the nature of the nov-
elty. Specifically, we present a general novelty-handling framework
implemented in extensions to the Distributed Integrated Affect Re-
flection Cognition (DIARC) architecture [24, 25] and evaluate them
in two separate evaluations, one in our own simulation and the
other in Polycraft [22]. To maximally remove any evaluation bias,
the second large-scale evaluation was performed by a third party,
quantifying in great detail the extent to which the architectural
extensions addressed the three novelty-handling challenges.

The rest of the paper is structured as follows. We start by pro-
viding our definition of novelty and motivation for why novelty
handling is important in open worlds, followed by a formal frame-
work for detecting, characterizing, and accommodating novelty.
We then describe in detail the implementation of the framework
and two evaluations that demonstrate its efficacy, also discussing
possible improvements and finishing with a brief summary of our
accomplishments.

2 MOTIVATION
We start by defining what we mean by novelty and then motivate
why being able to handle novelty is an important feature for AI
agents that will make them more versatile and robust, enabling
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critical features for resilience and long-term autonomy in open
worlds.

2.1 What does it mean to be novel?
Novelty is not a property of entities in the world, as they do not
have labels that say “novel” on them. Rather, novelty is relative to
an agent’s cognitive system and past experiences. When an agent
has previously encountered an entity, being able to recall the en-
counter makes a subsequent encounter not novel. However, if the
agent does not remember encountering the entity and can also not
identify the entity or its type through inference, the encountered
entity will be novel for the agent (and it will continue to be novel
as long as the agent does not form memories or acquire the requi-
site knowledge about the entity, regardless of whether an external
observer watching the agent’s repeated encounters with the entity
expects the agents to know the entity after the first encounter).

Since novelty is in the eye of the beholder, i.e., agents observing
or contemplating an entity, action, process, etc., we need to keep in
mind whose novelty we are evaluating when we design artificial
agents that can detect, characterize, and accommodate novelty: the
agent’s or ours? Typical machine learning tasks require our agents
to detect what we – the agent designers and evaluators – consider
novel in the data, i.e., novel items in evaluation data relative to a
set of given items in training data that does not contain these items.
Our reasoning is that any agent familiar with the training set ought
to be able to determine that the evaluation data contains novel items.
Whether this is actually so, however, will depend on a variety of
factors, not the least the agent’s discrimination capabilities.

We introduce the concept of “original” vs. “derived” novelty to
elucidate an important distinction regarding the agent’s cognitive
capabilities: for some agents, entities they have not per se expe-
rienced will not be novel as these agents can construct patterns
representing or denoting such entities (e.g., by combining patterns
resulting from other previously experienced entities), while others
not capable of such constructions will always find unexperienced
entities novel. We will thus count an item as only novel for an agent
when the agent has not experienced the item before (i.e., cannot
recall it) and cannot actually (or even in principle) derive it from
its knowledge base, which thus leaves us with four cases:

• the agent has experienced it before and remembered it, hence
it is not novel

• the agent derived it without having experienced it, so if and
when it experiences it, it will not be novel

• the agent could in principle derive it based on its knowledge
and derivation processes if it did it for long enough (but
practically not derivable), hence practically the item is novel

• the agent could not derive it given its cognitive capabilities,
hence it is novel

2.2 The utility of being able to handle novelty
Novelty then can arise in many different ways, from novel objects
with novel properties, to novel relations and contexts, to novel
actions and events, to novel goals and tasks, to novel constraints
and rules, and so forth, even in closed worlds. For example, suppose
a closed-world agent encounters an unforeseen fault during task
performance (such as data corruptions, sensor failure, insufficient

compute power, etc.) which causes a change in its performance. The
agent then may or may not be able to detect the change, and even
when it detects the change, it might not be able to characterize the
fault and find a way to address it. Similarly, in open worlds, agents
ought to handle novelty when it presents opportunities for improv-
ing performance, especially when it enables goal accomplishment
(which would not have been possible without utilizing the novelty).

To illustrate the opportunities novelty handling presents, we will
situate the exposition within the Polycraft simulation environment
[22]1 where an artificial agent has to perform a simple “pogo stick”
crafting task, which we will later also use for a thorough evaluation
of our proposed agent’s novelty handling capabilities. The task is
performed within a walled-in region (the “environment”) which
contains trees and a crafting tablewhere more complex items can be
crafted. The agent can directly obtain logs by breaking down trees,
which can then be crafted into planks at the crafting table. These
planks can subsequently be crafted into sticks, and a combination
of planks and sticks can be crafted into a tree tap. Once the tree tap
is placed next to a tree, rubber can be extracted from the tree tap.
Finally, a combination of sticks, planks and rubber can be used to
craft a pogo stick.

Solving this task is challenging for two reasons. First, the agent
must follow a long sequence of actions to craft a pogo stick. Second,
because the resources available in the environment are limited, the
agent must not be wasteful in collecting or crafting any items, as
otherwise goal achievement might become impossible. Yet, being
able to handle novelties clearly increases the versatility of the agent,
as it can utilize novelties it learned about in one task for other future
tasks (e.g., a newly introduced axe could be use for breaking certain
materials later that would not be otherwise breakable). Moreover,
handling novelties also makes the agent more robust to failure (e.g.,
overcoming obstacles such as an unexpected fence enclosure enable
the agent to not only achieve goals in this context, but the agent
might then also be able to generalize the fence to other blocking
structures and the need to remove them through actions in order
to open up paths to goal locations). Both versatility and robustness
then provide the foundations for resilience (i.e., being able to cope
with unexpected deterioration of the task environment) and thus
long-term autonomy. These challenges are also why we consider
Polycraft to be an “open-world” environment. The agent must be
able to handle domain entities beyond what is defined because the
agent does not know, apriori, the universe of objects it might see.
Therefore, the very symbols of the world are open to change and
not just the pre-defined properties.

3 BACKGROUND AND RELATEDWORK
While there are various efforts related to handling novelties in
planning and reinforcement learning, to the best of our knowledge
the problem of handling novelty as laid out above still needs to be
addressed as most proposed methods heavily rely on assumptions
about the types of novelties being introduced in the environment.

Contingent planning, for example, focuses on allowing an agent
to plan online as it senses an environment [16]. Some have proposed

1Polycraft is a modified version of Minecraft, a popular first-person, open-world, 3D
block-based environment where agents collect raw materials that can be crafted, or
put together, into more complex tools or items. Polycraft extends the raw materials
available in the world as well as the items that can be crafted.
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algorithms for planning with incomplete information, whereby
conditional plans have to be developed [5, 7]. However, in both these
approaches, the set of possible states or belief states are assumed
to be known to the agent, which may not be the case in situation
where the agent encounters novelty.

Recent work using deep neural networks has shown promise
in learning planning domain models from images [3, 6]. However,
even if the agent is able to learn the planning domain, the challenge
remains as to how the agent can revise these representations when
planning fails, as is required for accommodating novelties. Work in
belief revision [12] is also related here.

Integrated approaches for growing symbolic representations
through exploration of sub-symbolic spaces shares similarities with
our approach to learning new constants and operators [15, 18, 23,
26].While these approaches are not configured explicitly for novelty
detection and accommodation, they nonetheless provide promising
techniques to enhance our sub-symbolic search capabilities.

Reinforcement learning is another paradigm that offers a helpful
way to model exploration and learning. There is a body of work as-
sociated in dealing with non-stationarity in environments through
reinforcement learning [21]. Curiosity-driven or intrinsically moti-
vated RL [9, 13] is especially relevant to our setting as the approach
attempts to handle domains where reward functions (even long-
range ones) are not readily available or may change over time.
However, those RL methods still do not allow an agent to modify
its own action parameters and input representations, which may be
necessary to handle certain types of novelties. Hierarchical RL and
its use of “option” appears promising for representing meta-level
strategies [17, 27]. Others have proposed a combined planning and
RL approach for learning low-level action policies [1]. However,
this work assumes a complete high-level model, which may become
inaccurate or incomplete once a novelty is introduced.

Recent interest has been developed in the context of continual
reinforcement learning and meta reinforcement learning to deal
with non-stationary environment dynamics. Some methods learn
the underlying model dynamics to predict future states for nov-
elty and adapts to those changes [2, 10, 20]. Other related work
borrows concepts from the online learning and probabilistic in-
ference literature to learn an off-policy RL algorithm to deal with
lifelong non-stationarity [31]. Learning a representation of the en-
vironment from present and past experience has been employed
in this approach. Others present a policy gradient-based algorithm
which incorporates counter-factual reasoning to search for optimal
policies for future MDPs [8]. While this direction seems promising,
the definition of anomaly heavily assumes a-priori knowledge in
the system about the novelty to be introduced later. Most of the
above works also assume that the environment is subject to gradual
changes, rather than dealing with sudden changes.

4 THE NOVELTY HANDLING FRAMEWORK
We start by providing a general definition for task environments.
Let E = ⟨𝐸, 𝐼,𝐺, 𝑅, 𝜏⟩ be a (task) environment specificationwhere 𝐸 is
an environment viewed as a set of possible states (e.g., a manifold),
𝐼 ⊂ 𝐸 is a set of initial states, 𝐺 ⊂ 𝐸 is a set of goal states, 𝑅 is
the environmental evolution relation defined on 𝐸 over a period of
time bounded by 𝜏 , the time bound on task performance. Note that

we define environments as sets of states to be both as general as
possible while not committing to a particular notion of state or a
particular formalism to capture all possible environmental states
(e.g., a set of differential equations, an MDP, etc.) and their relations
(e.g., which state is accessible from a given state or whether state
transitions are deterministic or stochastic). Also note that state
descriptions may include objects and their properties as well as
relations among objects. In particular, they include agents, the states
of their embodiment, and their computational states.

Next, we define what we mean by an “agent”. Let A = ⟨𝑃,𝐶⟩ be
an agent specification where 𝑃 is the hardware platform (including
all sensing, actuating, and computing equipment) if the agent is
embodied and 𝐶 is a computational system, e.g., an algorithm (plus
data) initially realized on 𝑃 (and possibly self-modifying afterwards),
a deep neural network, etc.. If required, we could also single out the
set of sensors 𝑆𝑒𝑛, the set of effectors Eff , and the computational
systems 𝐶𝑜𝑚𝑝 being part of 𝑃 such that a computation can be
defined as a relation between sensors and computational states, on
the one hand, and effector and computational states, on the other

𝐶 : 𝑆𝑡𝑎𝑡𝑒𝑠𝑆𝑒𝑛 × 𝑆𝑡𝑎𝑡𝑒𝑠𝐶𝑜𝑚𝑝 × 𝑆𝑡𝑎𝑡𝑒𝑠Eff × 𝑆𝑡𝑎𝑡𝑒𝑠𝐶𝑜𝑚𝑝

where the sensor and effector states are the transduced and non-
transduced computational interface states, respectively (as opposed
to voltage or angle states, say). In case𝐶 is a function, the computa-
tion is said to be deterministic, otherwise non-deterministic. Note
that all state changes (effector and computational) in the agent will
result in environmental state changes given that agent states are
a subset of environmental states. We can then define “open-world
task variations” as different types of modifications or perturbations
applied to E. For example, we add new states to 𝐸 or remove some
states from 𝐸, we could change 𝐼 and 𝐺 (the initial conditions and
the goals), or we could alter the way the environment behaves (even
altering 𝜏 could force the agent to contend with unknown entities).

For the purposes of this paper, we will only consider cognitive
agents, i.e., agents that can reason and plan with symbolic represen-
tations. Specifically, letL be a first-order language (FOL) and define
atoms over L as 𝑝 (𝑡1, . . . , 𝑡𝑛) or negations ¬𝑝 (𝑡1, . . . , 𝑡𝑛) where 𝑡𝑖
represents terms that can be variables or constants and 𝑝 represents
a 𝑛 − 𝑎𝑟𝑦 relation/property or action primitive.2 An atom is consid-
ered grounded if and only if all of its terms are constants. The agent
then uses L to express concepts about the environment specifica-
tion E such as observations (based on information coming from the
sensors via 𝑆𝑡𝑎𝑡𝑒𝑠𝑆𝑒𝑛), actions (being effected via 𝑆𝑡𝑎𝑡𝑒𝑠Eff ), goals
(FOL descriptions of the goal states in𝐺), facts (FOL descriptions of
states in 𝐸, but also other concepts), and rules (FOL formulas cap-
turing regularities in 𝐸 such as knowledge about objects and their
properties, action pre- and post-conditions, etc.), all representations
which are ultimately expressed in terms of states in 𝑆𝑡𝑎𝑡𝑒𝑠𝐶𝑜𝑚𝑝 .
The agent also has a knowledge base 𝐾𝐵 for storing facts 𝜙 ∈ L
about E, in particular, about (what it takes to be) the current state
of the world in 𝐸, and a first-order proof system ⊢ which it uses to
derive new facts 𝐾𝐵 ⊢ 𝜓 ∈ L and to generate plans to accomplish
its goals. A plan 𝜋 = ⟨𝛼1, . . . , 𝛼𝑛⟩ is a sequence of grounded actions

2We do not consider functions for simplicity.
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such that when the corresponding action is executed in the envi-
ronmental state corresponding to 𝜎1 the environment (and thus
the agent) will eventually be in a state corresponding to 𝜎𝑛+1 (if all
goes well, see below), where 𝜎𝑖 is the agent’s FOL description of
some world state 𝑆𝑖 ∈ 𝐸. If 𝜎1 corresponds to a state in 𝐼 and 𝜎𝑛+1
corresponds to a state in 𝐺 and successful execution of 𝜋 is within
bound 𝜏 , then the agent accomplished the task specified by 𝐸.

4.1 Planning and Plan Execution
The basic operation of the agent at a time 𝑡 is as follows. If the
agent does not have a plan, it will compute 𝐾𝐵 ∪ 𝜎𝑡 to derive a
plan 𝜋 = ⟨𝛼𝑡 , 𝛼𝑡+1, . . . , 𝛼𝑛⟩ such that plan execution will get it into
a state in 𝐺 . If such a plan cannot be found and the agent has in-
complete descriptions of an object 𝑜 (e.g., missing properties or
action affordances), it can attempt to infer properties of 𝑜 and re-
plan (e.g., the plan then could include an exploratory goal 𝛾 (𝑜) to
characterize 𝑜), otherwise the agent gives up (as the goal is not
achievable based on its knowledge). If the agent already has a plan
𝜋 = ⟨𝛼1, . . . , 𝛼𝑡 , 𝛼𝑡+1, . . . , 𝛼𝑛⟩, then it simply executes 𝛼𝑡 and in-
spects its FOL rendition of sensory state 𝜎 at 𝑡 + 1 to determine
whether its predicted state 𝜎𝑡+1 ⊆ 𝜎 . If so, action execution was
successful and the agent proceeds with the execution of the next
action. And if 𝐾𝐵 ∪𝜎 ⊬ ⊥, 𝜎 can be added to the 𝐾𝐵, otherwise the
agent needs to find the smallest set Φ such that 𝐾𝐵 − Φ ∪ 𝜎 ⊬ ⊥.
If, on the other hand, the action failed or led to a state different
than the expected state, the agent needs to correct those parts of
its knowledge that led to the incorrect prediction. While in sto-
chastic environments this might just indicate deficiencies in the
agent’s knowledge of the transition function, in deterministic envi-
ronments it clearly indicates lack of knowledge and thus potentially
the presence of novelty, which we will discuss next.

4.2 Novelty Detection
Novelties can be detected when there are discrepancies between
predicted and actual states, with or without action execution of the
agent. If there is an inconsistency 𝐾𝐵 ∪ 𝜎 (the new sensory state at
𝑡 + 1) for the agent it signifies a novelty. If 𝜎 does not contain any
atoms the agent has not seen before and if the agent has not made
a specific prediction about 𝜎 , but only the implicit prediction that
nothing changed, then such unpredicted changes without novel
objects require the agent to simply update its knowledge base as
described above (e.g., a new tree of a known type popped up in a
new location in Polycraft). Yet, if either 𝜎 contains atoms the agent
has not seen before or the agent made a prediction different from
𝜎 , then there is a different type of novelty involved, either a new
object with potentially new properties in the former (e.g., an axe),
or a new object affordance or action in the latter case (e.g., chopping
a tree with an axe produces more logs).

4.3 Novelty Characterization
For a given observation 𝜎 that the agent deems novel, it can simply
characterize the novelty by determining what follows from 𝐾𝐵 ∪ 𝜎
(if 𝜎 is consistent with 𝐾𝐵, otherwise 𝐾𝐵 − Φ ∪ 𝜎 with the incon-
sistent parts Φ removed). For example, if a novel object appears, an
axe, say, the agent can determine based on rules in 𝐾𝐵 that it is a
material object (because only material objects can be located in the

environment) and it can make an assumption (possibly wrong) that
as a material object it can be broken and picked up. These inferences
can be used both to describe properties and affordances of novelty
but could also be used to plan for gathering more information about
the novelty.

4.4 Novelty Accommodation
Novelty accommodation then means to take a novelty character-
ization and add it to the agent’s knowledge base, although it is
important to distinguish different types of accommodation that de-
pend on the type of novelty the agent discovered. For a novel object,
for example, its type and derived properties can just be added as
facts to the knowledge base (e.g., an axe is a material object). In
addition, action affordances that can be derived from the object’s
properties can be added as well (e.g., an axe can be broken given
that it is a material object). However, other action affordances (e.g.,
the axe can break otherwise unbreakable materials) need to be de-
termined through explicit exploration (as they are not derivable
from the agent’s knowledge base) for which the agent needs to gen-
erate a separate exploration goal, and/or through communication
with humans and other agents, if available.

5 IMPLEMENTATION
The novelty handling framework was implemented in the “Agent
Development Environment” (ADE) [4] which allows for the devel-
opment of modular components that can be used and reused to
create different cognitive architectures like DIARC [25]. In addition
to using the existing DIARC Goal Manager for goal management
and action execution, new components were developed for the
Polycraft interface (see Fig. 1). The Knowledge Base of the agent is
defined by the Action stack and the Belief stack. Action Execution
provides planning and plan execution to reach goals based on the
agent’s knowledge base and the provided task goal. The Polycraft
Interface provides a link to the Polycraft API and produces novelty
assertions based on percepts received from the environment. These
novelty assertions are consumed by the Novelty Handling system to
identify any novelties within the environment and report them as
well as perform any modifications to the knowledge base as needed.

5.1 The Polycraft Interface
The Polycraft Interface component in Fig. 1 translates environment
information in JSON to novelty assertions and also provides func-
tions for action execution that automatically generate JSON com-
mands that are sent to Polycraft. Actions in the Polycraft environ-
ment can be passive or active. Examples of passive actions include,
“SENSE_RECIPE” which returns a set of recipes that can be used to
craft items, and “SENSE_ALL” which returns information about the
current state of the environment, including a map with locations of
different items and the agent and the agent’s inventory. Examples of
active actions include movement (“MOVE_FORWARD”) and craft-
ing (“CRAFT <params>”). Certain actions also take in parameters
such as the craft action which requires a list of ingredients.

5.2 Novelty Assertions
Novelty Assertions are central to our implementation of the novelty
handling framework. A novelty assertion specifies a set of grounded
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Figure 1: The overall agent architecture of the implemented novelty detection framework.

atoms to add and remove from the agent’s knowledge base such
that the modified knowledge base would have the information that
the novelty assertion is trying to convey. The simplest form of a
novelty assertion are grounded atoms which can be true in and of
themselves, independently of others. For example, if a new material
is seen in a particular location, we can assert that it is of type
“material” in our knowledge base independently of any other fact.

Another type of novelty assertion is based on KB inference, as
described in Section 4.2, where atoms inferred from the novelty
assertion are compared to atoms in the knowledge base and the
knowledge base is updated accordingly, adding inferred atoms not
in the knowledge base and removing atoms from the knowledge
based inconsistent with the novelty assertion. This type of novelty
assertion is, for example, used in describing the environment map
since there can be only one kind of block in a particular location in
Polycraft, hence if the knowledge base contains a statement about
one type of block being in a given location and the novelty assertion
of another type of block being in the same location, then a KB atom
needs to be replaced by the one from the novelty assertion.

Finally, another useful type of novelty assertions concern rules
and exceptions, for example, in the case of conveying that all items
not included in the agent’s inventory percept (the items the agent
holds) should have the amount 0 in the agent’s knowledge base.
Here, the rule specifies the amount in inventory is 0 and the excep-
tions contain materials that are known to have non-zero amount.

5.3 The “Belief Stack” in the Knowledge Base
Cognitive Architectures often have tiered or typed memory sys-
tems [19]: procedural memory contains rule-based based knowledge
such as implication or condition-action rules, declarative memory

contains semantic facts such as relationships between objects, and
episodic memory typically contains the history of past experiences.
We opted for a different memory design based on information per-
manence and duration of validity, identifying three levels of validity:
universal, episodic, and working. Each of the levels can have facts,
rules, and history. The universal level contains knowledge that is
known to be true across different tasks (e.g., the definition and arity
of primitive predicates). The episodic level contains knowledge that
the agent has amassed over several executions of the same task
(for example, recipes of secret items). The working level contains
knowledge that is pertinent to a single specific task execution (for
example, the current location of the agent).

As these levels – the “belief stack” – are nested (see Figure 2), a
fact asserted at a universal level can be successfully accessed from
the episodic and working levels, but not vice versa, as assertions to
the working level are only retained for the duration of a task per-
formance and are erased when the task is complete, very much like
the operation of working memories (procedural and declarative)
in typical cognitive architectures. To retain working-level knowl-
edge across task performances, the agent needs to transfer it to the
episodic level. The three levels are implemented via three instances
of Prolog with the addition that assertions or retractions made at a
higher level (e.g., universal) are also made at the lower level (e.g.,
episodic and working), ensuring that higher level instances cannot
have facts or rules that lower levels do not. Hence, the agent’s total
knowledge is always accessible at the working level, but not all of
that knowledge will be retained across trials or different tasks.

This compartmentalization is also critical for providing a high-
level abstraction for Novelty Handling so that, if needed, aspects
of the knowledge base can be modified without any long-term
detriments. For example, potential modifications can first be applied
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Figure 2: Belief Stack levels are nested based on permanence.

at the working level and then upgraded to the episodic level only
after they have been verified. Therefore, the agent is empowered
to modify its knowledge base freely and only retain the changes if
they are successful.

5.4 The “Action Stack” in the Knowledge Base
The Action Stack is primarily responsible for maintaining the trans-
lation between actions as defined by the agent and actions as de-
fined by the environment (see 𝑆𝑡𝑎𝑡𝑒𝑠eff in Section 4). The action
descriptions based on the FOL L are used for planning whereas
the level of 𝑆𝑡𝑎𝑡𝑒𝑠eff is used for interacting with the simulation
environment. For example, the Polycraft component accepts only
egocentric directions as parameters to the “move<direction>” ac-
tion (“up”, “down”, “left” and “right”, corresponding to key strokes
if a human player were to interact with Polycraft), whereas for the
FOL level we might want to use locations (rather than directions)
as arguments in the move action and we might add the current and
the destination locations to make it a two-place predicate (this rep-
resentation also works for action representations in PDDL which
the planner expects).

5.5 Action Execution
The Action Execution component, based on the DIARC Goal Man-
ager [25] ties together the Knowledge Base and Polycraft Interface
by providing goal-driven planning and action execution. When
asked to generate a plan, it creates a PDDL domain and problem
files from the Knowledge Base. As Figure 1 illustrates, the Goal
Manager gets the information for generating PDDL files from var-
ious sources; the PDDL domain file is derived from the Action
Stack, the initial state for the PDDL problem file is derived from
the Knowledge Base, and the goal state for the PDDL problem file
comes from the goal set for the Action Execution component. The
Goal Manager uses the MetricFF planner [14] to generate a PDDL
plan (MetricFF was used because it is extremely efficient and has
support for numeric fluents which was critical for the Polycraft

domain). If planning is successful, the PDDL plan is converted to
actions the agent needs to perform. For every action, the compo-
nent calls the appropriate function in the Polycraft Interface with
the required parameters to perform the action in the environment.
Upon a successful call to that function, the component also up-
dates the Knowledge Base with the expected effects of the action so
that it accurately reflects the agent’s expectations after the action
performance. Finally, the component also requests the Polycraft
Interface to perform a sensory action (“SENSE_ALL”) to verify that
the environment does indeed match Knowledge Base’s expectations
and that there are no novelties. At any point the component also
allows for the process to be interrupted by retraction of current
goal or addition of new goals. This provides a useful abstraction
for Novelty Handling which can make changes to the Knowledge
Base and then request the component to run experimental goals by
setting them as intermediary goals.

5.6 Novelty Handling
TheNoveltyHandling component implements the theoretical frame-
work from Section 4. It does so by leveraging novelty assertions as
discussed above. When non-empty sets of additions and retractions
are obtained after considering the inferences for the assertion (as
described in Section 4), the agent has indeed detected a novelty.
Novelty characterization and novelty accommodation then simply
follow from additions to and retractions from the knowledge base
as discussed before.

6 EXPERIMENTAL EVALUATION & RESULTS
Our approach was evaluated internally, using a combination of the
actual Polycraft environment [22] and an internal “clone grid-world
domain”[30] (Fig. 3a) that mimicked the Polycraft API. Internal ex-
periments were done as regular testing of the system architecture
and to verify key behavioural aspects of the agent towards novel-
ties. External evaluations were performed by an independent team
that was not informed of the agent’s architecture or abilities. They
devised 180 novel scenarios in the original Polycraft environment
for the “pogo stick” task and evaluated the agent on being able to
detect and report novelty and finish the task despite the novelty. For
both evaluations, the agent’s knowledge base initially populated
all knowledge required for the agent to plan how to craft a pogo
stick (without any novelties occurring). The Action Stack included
information about typical preconditions and effects of known ac-
tions and the Belief Stack contained relevant facts and rules such as
the fact that the material “bedrock” is unbreakable.

6.1 Internal Experiments
We introduced novelty into the “clone” environment to be able to
show how it affects the agent’s knowledge and task performance.
For illustration, we here discuss one such case where a fence around
the crafting table is introduced as soon as the agent has acquired
all the ingredients needed to craft the pogo stick (see Fig. 3b). The
“fence” is an entirely new material that the agent has never seen
before, which appears in all locations adjacent to the crafting table.

After the agent initially performs the first “SENSE_ALL” action
to gather information about the environment’s initial state; it forms
a plan and starts to execute its actions. Upon successful execution
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(a) Default Environment (b) With Fence Novelty

Figure 3: Illustrations of the domain used for internal evalu-
ations. Figure (a) shows the default case of the environment
with trees, crafting table and an agent facing a tree. Figure (b)
shows the environment in the post-novelty scenario.

of an action, it updates its knowledge base with the known effects
of the action and performs a “SENSE_ALL” action to verify that
there are no novelties.

After acquiring the last ingredient needed for the pogo stick,
the fence pops up and the percept is included in the results of the
“SENSE_ALL” action, allowing the agent to detect the discrepan-
cies between its prediction and the environment. Specifically, the
predicate “at(fence,<loc>)” is true for each location adjacent to
the crafting table which, according to the knowledge base, were
supposed to be “at(air,<loc>)”, and thus require an update. In ad-
dition, the predicate “material(fence)” needs to be added to the
knowledge base because a fence has not been seen before. A “RE-
PORT_NOVELTY” action is also called to report the detection of
the novelty for evaluation. Using the updated knowledge base, the
agent replans, assuming the fence is breakable (as every other mate-
rial that is not explicitly marked as “unbreakable”). Hence, the new
plan contains an action to break through the fence while navigating
to the crafting table. The agent is finally able to craft the pogo stick
and finish the task. Had the fence not been breakable, the agent
would have detected it when trying to break it and thus reported it
as another novelty.

To further illustrate the agent’s novelty handling, suppose it
expects a fence to surround the crafting table when rubber (one of
the pogo stick ingredients) is obtained. We can implement this by
modifying the known effects of the “EXTRACT_RUBBER” action.
In this case, the agent’s plan includes an action to break through the
fence while navigating to craft the pogo stick because it expects a
fence to be erected around it as soon as it acquires rubber. However,
when the agent obtains rubber, and no fence is observed in the
environment, novelty detection, reporting, and accommodation
proceed similar as above, except this time, just the post-conditions
are updated, and there is no need for adding knowledge about
new objects. The agent replans once again, without an action to
break through the fence, again able to complete its task. Table 1
shows performance results (number of steps and run-time) for the
combinations of the configurations averaged over 50 trials. The
results are as expected though it is interesting to note that it takes
the agent more steps to finish the task in the fenced environment
when it is expecting it than when it is not expecting it. This is most
likely due to the fact that the increased PDDL model complexity
results in the planner producing less optimal plans.

Agent Environment # Steps Time(s)
Not Expecting Fence Default 87.7 55.26
Not Expecting Fence Fenced 90.4 71.85
Expecting Fence Default 96.0 78.07
Expecting Fence Fenced 94.8 67.07

Table 1: Results from internal experiments

Performance Metrics Mean±SD/
[min|med|max]

M1: Novelty Detection Precision 100% ± 0%
M2: Novelty Detection Recall 84.5% ± 36.2%
M3: Novelty Detection Combined 92.3% ± 18.1%
M4: Novelty Reaction Performance 56% [0% |82% |99%]
Table 2: Overall results from external evaluations

6.2 External Evaluations
The external evaluations were performed by a third-party team
that created novelties in the original Polycraft domain. According
to their metrics, our agent was evaluated on two levels of novelties
as described below.

• Level 1 [Class]: A new class of object is introduced in the
environment. This class of object has never been seen by
the agent before. An example of this novelty level can be a
“silver axe” or a “wooden axe”. It can appear as an entity in
the agent’s environment to use it, or a recipe to craft this
object can be provided to the agent. In this novel scenario,
the agent must learn to explore the new item to understand
its importance in task completion.

• Level 2 [Attribute]: The property of an existing object changes.
An example of this scenario can be a change in the material
of the wall in the environment.

Each of the above levels had three variants, five types with two
sub-types and three difficulty levels (easy, medium, and hard). The
difficulty levels denoted the difficulty of using the novelty. For
example, if the novelty involved the addition of a wooden axe, an
“easy” difficulty means the axe was available as an object in the
inventory, a “medium” difficulty means the axe was lying on the
ground and available to be picked up, and a “hard” difficulty means
only a recipe for making an axe is available to the agent. In total,
there were 180 novel scenarios in which the agent was tested, and
results of 100 instance trials were reported. Furthermore, in each
trial, the environment was reset and the agent asked to craft a
pogo stick 1000 times. Initially in the 1000 runs, the environment
contains no novelties but at some random point that switches and
subsequent resets of the environment present the novelty scenario.
No information about the novel scenarios was revealed to our team
before evaluations and similarly the evaluation team had no prior
knowledge of our agent architecture.

The overall results are shown in Table 2. Our agent was evaluated
on 4 performance metrics. Performance metric M1, is the precision
score of agent’s novelty detection. The second metric M2, is the re-
call score of the agent’s novelty detection. The performance metric
M3, provides the combined score for novelty detection (mean of
precision and recall) and M4 denotes the percentage of tasks the
agent was able to complete despite novelties (novelty reaction).
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Novelty Level 1: Class
Metrics Easy Medium Hard

Mean±SD/
[min|med|max]

Mean±SD/
[min|med|max]

Mean±SD/
[min|med|max]

M1 100% ± 0% 100% ± 0% 100% ± 0%
M2 98.4% ± 12.5% 100% ± 0% 89.8% ± 30.2%
M3 99.2% ± 6.2% 100% ± 0% 94.9% ± 15.1%
M4 91% [73%|97%|99%] 86% [24%|97%|99%] 77% [0%|97%|99%]

Novelty Level 2: Attribute
M1 100% ± 0% 100% ± 0% 100% ± 0%
M2 68.1% ± 46.6% 64.0% ± 48.0% 65.3% ± 47.6%
M3 84.1% ± 23.3% 82.0% ± 24.0% 82.7% ± 23.8%
M4 85% [0%|97%|100%] 76% [0%|97%|100%] 76% [0%|96%|100%]

Table 3: Level-wise breakdownofNovelty detection andNov-
elty Reaction performance metrics from external evalua-
tions.

A mean number with the standard deviation or minimum, me-
dian, and maximum values were reported in all the metrics. Table 3
presents a more detailed evaluation. It lists the performance on all
the two levels of novelty (class and attribute) and three difficulty
levels (easy, medium, and hard) individually.

The agent performed very well, achieving a perfect precision
score (i.e., it never reported any false positives) and is able to over-
come a lot of otherwise obstructive novelties by employing its
simple inference-based novelty accommodation strategy. However,
the lack of a perfect recall score was surprising – we expected the
agent to at least detect all the novelties (given how the knowledge
base is used to track objects and actions). On inspection, it turned
out that the agent’s knowledge about the environment and task did
not include all aspects the evaluators manipulated, e.g., in one type
of novelty, the material of the environment’s boundary walls was
changed but the agent did not have any expectations for grid walls
having a particular material or even of the grid being a specific size.
As a consequence, it did not consider those changes to be a novelty
because it did not detect the changes in the first place (as it did not
track them and did not form any expectations about them).

As can be seen from the M4 reaction scores in Table 3, the simple
novelty accommodation strategy – adding inferable properties to
the knowledge base, without further exploring properties of objects
and action affordances – allows the agent to handle Level 1 and 2
novelties very well. For Level 1, this strategy worked just fine when
the introduction of novel objects did not prevent goal accomplish-
ment, e.g., when a novel type of tree is introduced that yields more
wood (without exploring the properties of the novel tree, the agent
misses the opportunity to perform the task faster, but at the same
time it can still execute its original plan using the trees it knows
about). Yet, if only novel trees were available, the agent would not
know what to do with the tree (unless it could recognize them as
“trees”). The same reasoning applies to Level 2 as well.

7 DISCUSSION
The knowledge and inference-based novelty handling mechanisms,
based on our notion of novelty discussed in Section 2, demonstrated
both the potential and limitation of knowledge-based approaches:
when general knowledge was available that allowed the agent to
make relevant inferences and predictions, detected novelties could
be accommodated by adding inferences resulting from augmenting

the agent’s knowledge base with the observed novelty and allowed
the agent to complete its task in altered environments without any
further exploration (something an RL-based agent, for example,
is not able to do). Yet, the evaluations also showed that active
explorations of detected novelties are necessary to better and more
comprehensively characterize the novelty (e.g., when a novel tool
was placed in a location, the agent would not accidentally visit and
thus was never picked up by the agent), especially when it comes to
object affordances and actions effects that are necessary for finding
plans that accomplish goals in altered environments. As such, we
propose to add two heuristics to improve novelty characterization
and accommodation. The first is exploration-driven: Once a novelty
has been detected, we create intermediary goals associated with
that novelty to discover even more potential novelties that correct
any initial (possibly wrong) assumptions wemade about the novelty.
For example, if a new type of axe is discovered, the agent can set
intermediary goals to attempt to perform different actions such
as “BREAK_BLOCK” on a tree while holding this axe. If the axe
causes unexpected effects, the postconditions can be corrected and
properly generalized.

The second heuristic is experiment-driven. Once a novelty is
detected and the agent has multiple hypothesized ways to accom-
modate it, the agent can carry out experiments to test the effects of
each hypothesis by temporarily adding a possible accommodation
to its knowledge base and then setting goals based on it that it ex-
pects to either pass or fail if the hypothesis was valid (in which case
the hypothesized accommodation can be kept, otherwise discarded).

While the pursuit of additional goals for both heuristics will
cause the agent to suspend its pursuit of the overall task and possibly
fail at it (if it has time limitations to perform it), the investment of
exploring and subsequently being able to accommodate novelties
will pay off in the long run when the agent either has to perform the
task repeatedly (as was the case in the external evaluation) or when
the novelty is relevant in other tasks the agent needs to perform.

8 CONCLUSION
We introduced a novelty handling framework to enable agents to
detect, characterize, and accommodate novelties in open-world
settings and implemented the framework in a cognitive agent. The
agent’s novelty handling abilities were thoroughly evaluated in
our own proxy simulations and by a third party in the Polycraft
domain where the agent had to craft a “pogo stick”. The results
demonstrated that the proposed knowledge-based and inference-
based novelty handling methods are effective for detecting novelties
and accommodating many different types of novelty. However, they
also showed that additional methods are needed for more fully
characterizing and accommodating novelties, especially ones that
are needed to improve task performance or enable it in the first
place (when unexpected changes in the environment make goal
accomplishment impossible without utilizing the novelty).
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